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Abstract
We study the smoothed complexity of finding pure Nash equilibria in Network Coordination Games, a
PLS-complete problem in the worst case, even when each player has two strategies. This is a potential
game where the sequential-better-response algorithm is known to converge to a pure NE, albeit in
exponential time. First, we prove polynomial (respectively, quasi-polynomial) smoothed complexity
when the underlying game graph is complete (resp. arbitrary), and every player has constantly many
strategies. The complete graph assumption is reminiscent of perturbing all parameters, a common
assumption in most known polynomial smoothed complexity results. We develop techniques to
bound the probability that an (adversarial) better-response sequence makes slow improvements to
the potential. Our approach combines and generalizes the local-max-cut approaches of Etscheid and
Röglin (SODA ‘14; ACM TALG, ‘17) and Angel, Bubeck, Peres, and Wei (STOC ‘17), to handle
the multi-strategy case. We believe that the approach and notions developed herein could be of
interest in addressing the smoothed complexity of other potential games.

Further, we define a notion of a smoothness-preserving reduction among search problems,
and obtain reductions from 2-strategy network coordination games to local-max-cut, and from
k-strategy games (k arbitrary) to local-max-bisection. The former, with the recent result of Bibak,
Chandrasekaran, and Carlson (SODA ‘18) gives an alternate O(n8)-time smoothed algorithm when
k = 2. These reductions extend smoothed efficient algorithms from one problem to another.
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1 Introduction

Coordination games are a widely studied class of games, where players receive equal payoffs,
and so are incentivized to coordinate. Network coordination games are a succinctly repre-
sented, natural multi-player extension of coordination games. The players simultaneously
play multiple two-player coordination games, and receive the sum of their payoffs from these
individual games. As a caveat, the players must choose the same strategy to play in all
games.
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These games naturally arise in various settings like social and biological networks [3, 32, 29],
and have been extensively studied in various areas like Game theory and economics, Learning,
Networks etc [25, 11, 20, 14, 2].

The natural dynamics in such a game imply that agents will change their strategy choices
if this increases their payoff. Because these are coordination games, this also increases the
total sum of payoffs. This sum is then a proxy for the progression towards an equilibrium,
where no player can improve, hence is a potential function for the game, and the game
becomes a potential game. When no player can benefit by deviating, or equivalently the
potential function reaches a local maximum, this is a pure Nash equilibrium, and the standard
search problem for most potential games is to find such an equilibrium.

Finding a pure Nash equilibrium in a network coordination game is complete for the
class PLS (Polynomial Local Search) [12]. Although it is widely conjectured that PLS is
unlikely to lie in P [6, 9, 38], problems in this class admit local-search algorithms [27], which
have been observed to be empirically fast [27, 15, 18], but requiring exponential time in
the worst case [40, 39]. To understand this discrepancy, we naturally turn to a beyond
worst-case analysis technique called smoothed analysis, which “continuously interpolates
between the worst-case and average-case analyses of algorithms,” [41] (see Section 1.2 for a
detailed discussion). Informally, we wish to show that adversarial instances are “scattered”
in a probabilistic sense. We say that an algorithm is smoothed-efficient if it is efficient with
high probability when all input parameters are perturbed by small random noise. This is one
of the strongest performance metrics beyond worst-case performance. We ask the following:

I Question. Can we design smoothed efficient algorithms for finding pure Nash equilibria
for network coordination games?

In this paper we answer the question in the affirmative. In particular, we obtain
smoothed (quasi-)polynomial time algorithms to find pure Nash equilibria (PNE) in network-
coordination games (NetCoordNash) with a constant number of strategies. We also introduce
a notion for a smoothness-preserving reduction, and show that a special case of NetCoordNash
admits such a reduction to local-max-cut, and the general case admits a reduction to local-
max-bisection (see Section 2.2 for the problem definitions).

To the best of our knowledge, no smoothed efficient algorithm for a worst-case hard Nash
equilibrium problem was known prior to this work, apart from the party affiliation games,
the smoothed complexity of which directly follows from local-max-cut [23]. Similarly, to the
authors’ knowledge, no notion of smoothness-preserving reduction has been shown in the
past, and we believe that such reductions are of independent interest.

Local-max-cut is a PLS-complete problem, where the goal is to find a cut in a graph that
is maximal up to switching one vertex. In a recent series of results, the smoothed complexity
of local-max-cut was shown to be first quasi-polynomial for arbitrary graphs [22], and then
polynomial for complete graphs [1]. Both results and a recent (simultaneous) work [8] follow
a common high-level framework: using anti-concentration bounds for linear combinations of
random variables to argue that bad events are unlikely. Our analysis extends this high-level
approach to NetCoordNash. However, local-max-cut is a special case of NetCoordNash where
every player has two strategies and the matrix on every edge is off-diagonal (see Figure 1).
To handle the extra complexity of NetCoordNash in general, we need to define novel bounds.

1.1 Our Results
A network coordination game is represented by an undirected game graph G = (V,E),
where the nodes are the players, and each player v ∈ V simultaneously plays a two-player
coordination game with each of its neighbors. If players have k strategies to choose from,
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Figure 1 Local-max-cut to 2-strategy network coordination games: mapping of edge (u, v).

the game on each edge uv can be represented by a k × k payoff matrix. Once every player
chooses a strategy, the payoff value for each edge is fixed, and players receive the sum of the
payoffs from incident edges. The goal is to find a PNE of this game. We show the natural
better-response algorithm converges quickly with high probability on perturbed instances.

Smoothed Analysis of NetCoordNash. A strategy profile is at equilibrium if no single
player can gain by deviating while others’ unilaterally. Better-response dynamics/algorithms
are an iterative procedure where any player who benefits by deviating, does so, one at a
time, until an equilibrium is reached. This need not converge in general, e.g. for a game of
rock-paper-scissors, where the players would infinitely cycle through the three strategies. In
our setting, however, the sum of payoffs of all players acts as a potential function, which
increases with every better-response move (Section 2.1). Thus, starting from any initial
choice of strategies, better-response algorithm (BRA) will converge to a PNE in network
coordination games, since it can be shown that the potential function is bounded.

We show that the BRA is an efficient algorithm with probability 1 − 1/poly(n) for
perturbed instances: when the payoff values are independently sampled from distributions
with density bounded by φ, the runtime will be polynomial in φ and the input size with high
probability. One may interpret φ as the inverse of the minimum allowed perturbation. The
exact relation between perturbation size and running time are as follows:

I Theorem 1. Let G = (V,E) be a game graph for an instance of NetCoordNash, with k× k
payoff matrices, whose entries are independently distributed, continuous, random variables,
with densities fu,v,i,j : [−1, 1] → [0, φ]. Let n := |V |. If G is a complete graph, then with
probability 1− (nk)−3, all valid executions of the BRA (even adversarial) will converge to a
PNE in at most (nkφ)O(k) steps, and the expected running time (nkφ)O(k) as well.

If G is arbitrary, all valid executions of the BRA, from all starting points, will converge
to a PNE in at most φ · (nk)O(k log(nk)) steps with probability 1 − (nk)−2 over the payoff
entries. Furthermore, the expected running time is also at most φ · (nk)O(k log(nk)).

The proof of this is discussed in Section 3. The polynomial running time requires the
graph to be complete so that all parameters can be perturbed. This seems to be unavoidable
as all known results on polynomial smoothed complexity so far, e.g., linear-programming [41],
local-max-cut [1], etc., require this.

The above performance guarantees are only (quasi-)polynomial in the input size for k
constant. It is an open problem to improve this to general k. This can be achieved either by
showing that local-max-bisection has polynomial smoothed complexity (see below), or by
directly tightening the bounds in the proof presented in this paper (Section 3).

Smoothness-Preserving Reductions. Note that standard Karp reductions do not suffice to
extend a smoothed efficient algorithm across problems. This is because, among other things,
such a reduction needs to ensure that independently perturbed parameters of the original
problem produce independent perturbations of all parameters in the reduced problem. In this
work, we introduce a notion of a smoothness-preserving reduction, which to the knowledge of
the authors, has not been studied prior to this work. We obtain two such reductions:

ITCS 2020
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I Theorem 2. NetCoordNash with 2×2 payoff matrices admits a weak smoothness-preserving
reduction to the local-max-cut problem. Furthermore, NetCoordNash with k × k matrices for
general k admits a weak smoothness-preserving reduction to the local-max-bisection problem.
For both results, an instance of NetCoordNash with a general or complete game graph reduces
to an instance of local-max-cut/bisection on a general or complete graph, respectively.

The definition of weak reductions is given in Section 4, and a formal statement of the local-
max-cut and -bisection problems is in Section 2.2. In this writeup, we provide an outline of
the reductions in Section 4, and a formal description and proofs of correctness are given in the
full version of this paper [10]. The first reduction, together with smoothed efficient algorithms
for local-max-cut, gives alternate smoothed efficient algorithms for the k = 2 instance; namely,
the result of [8] implies an O(n8) algorithm when the game graph is complete. For general
network coordination games, the smoothed complexity of local-max-bisection is open, and so
any conclusion on the complexity of NetCoordNash is conditional.

1.2 Related Work
The works most closely related to ours are [22] and [1], where the smoothed complexity of
local-max-cut was first analyzed, and [8] which refined the analyses. As discussed above,
local-max-cut is a special case of NetCoordNash, therefore the techniques do not immediately
apply. Independently, [8] also obtained smoothed polynomial algorithms for local-max-3-cut
on complete graphs, and quasi-polynomial algorithms in general for local-max-k-cut with
constant k. Local-max-k-cut naturally reduces to NetCoordNash with k × k payoff matrices.
However, our result does not subsume theirs as the reduction is not smoothness preserving.

Complexity of Equilibrium Computation. There has been extensive work on various po-
tential games, equivalently congestion games (e.g., [35, 31, 36, 23]), capturing routing and
traffic situations (e.g., [37, 25]), and resource allocation under strategic agents (e.g., [26, 24]).
A potential function ensures that these games always have a pure NE [35]. Finding pure NE
is typically PLS-complete in the worst case [23, 12]. Our approach provides tools to prove
smoothed analysis results for such games.

For the general games, NE computation is PPAD-complete [17, 13], even (1/poly)-additive
approximation. This latter result also implies smoothed complexity does not lie in P unless
RP=PPAD [13]. Towards average case analysis, Bárány, Vempala, and Vetta [5] showed that
a game picked uniformly at random has a NE with support size 2 for both the players with
inverse-logarithmic probability The average case complexity of a random potential game was
shown to be polynomial in the number of players and strategies by Durand and Gaujal [19].

Smoothed Analysis. The work of Spielman and Teng [41] introduced the smoothed analysis
framework to study the empirical performance of the Simplex method for linear programming.
They showed that introducing independent random perturbations to any given (adversarial)
LP instance, ensures that Simplex terminates fast with high probability, with polynomial
dependence on the inverse of the magnitude of perturbation. Performance on such perturbed
instances has since been known as smoothed complexity of the problem – one of the strongest
guarantees one can hope for beyond worst-case analysis. In the past decade and a half, much
work has sought to obtain smoothed efficient algorithms when worst-case efficiency seems
infeasible [16, 7, 30, 34, 4, 21, 22, 1], including for integer programming, binary search trees,
iterative-closest-point (ICP) algorithms, the 2-OPT algorithm for the Traveling Salesman
problem (TSP), the knapsack problem, and the local-max-cut problem.
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2 Preliminaries: Game Model and Smoothed Analysis

In what follows, the set {1, 2, . . . , k} is denoted as [k], and 〈·, ·〉 denotes inner product.

2.1 Nash Equilibria in Network Coordination Games
A two-player game, where each player has finitely many strategies to choose from is given by
two payoff matrices A and B. Assume without loss of generality that both players have k
strategies, and thus the matrices are k × k. It is called a coordination game if A = B.

A network coordination game is a multi-player extension of coordination games. The game
is specified by an underlying undirected graph G = (V,E), where the nodes are players, and
each edge represents a two-player coordination game between its endpoints. It is a k-network
coordination game if each player has k strategies. For disambiguation, we represent the payoff
values as an |E|k2-dimensional vector A, and denote as A((u, i)(v, j)) the payoff that players
u and v get for the game-edge uv ∈ E, when u chooses strategy i, and v, strategy j. As
Nash equilibria are invariant to shifting and scaling of the payoffs, assume without loss of
generality that every entry of A is contained in [−1, 1].

Potential Function. Below we show that it suffices to only consider pure strategies, i.e.
players needn’t randomize. Let n be the number of players; a strategy profile is a vector
σ ∈ [k]n, assigning to each player a strategy in [k]. The payoff to player u is given by

payoffu(σ) :=
∑
v: uv∈E A((u, σu)(v, σv))

Define the potential function Φ : [k]n → R to be the sum of all payoffs. Formally,

Φ(σ) :=
∑

(u,v)∈E A((u, σu), (v, σv)) = 1
2
∑
u∈V payoffu(σ) (1)

The potential function is of interest since it captures the possible improvements to all players’
payoffs in the following sense [12]: if player u changes their strategy, Φ(σ) and payoffu(σ)
vary by the same amount. Formally, for all u ∈ V , σu, σ′u ∈ [k], and σ−u ∈ [k]n−1

Φ(σu,σ−u)− Φ(σ′u,σ−u) = payoffu(σu,σ−u)− payoffu(σ′u,σ−u)

where σ−u ∈ [k]n−1 denotes the strategy profile on V \ u. Network coordination games are
termed potential games because they admit such a potential function. As a consequence,
they must admit pure Nash equilibria [35].

Nash Equilibrium and Better-Response Algorithm (BR alg., or BRA). At a Nash equi-
librium (NE), no player gains by deviating unilaterally.

NE: ∀u ∈ V, payoffu(σu,σ−u) ≥ payoffu(σ′u,σ−u), ∀σ′u ∈ [k]

Such a σ is called pure NE (PNE) as every player is playing a deterministic strategy. By
the discussion above, σ is a PNE if and only if it is a local maximum for Φ, where σ′ is
in the local neighbourhood of σ when they differ in exactly one entry. A deviation for one
player is termed a better-response (BR) move if their individual payoff strictly increases.
Note that if σ′ is a BR deviation from σ, differing in a single player, then Φ(σ′) > Φ(σ).
The better-response algorithm (BRA) repeatedly makes better-response moves, increasing the
Φ value in every step. The terminating point has to be a local maximum of Φ, and thereby a
PNE. Since Φ may only take kn different values, this procedure must terminate at a PNE.

ITCS 2020
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2.2 Smoothed Analysis and Reductions
The notion of smoothed analysis was introduced by Spielman and Teng [41] to bridge the
gap between average- and worst-case analysis. The parameters of the problem are perturbed
by some small noise, and the performance is measured as a function of the perturbation size.
We present first a formal definition of smoothed-efficient algorithms in our setting.

I Definition 3 (Independent distributions with bounded density). Let X be a random vector in
[−1, 1]d. We say it is independently distributed with density bounded by φ if the entries are
independently distributed, and the p.d.f. for the i-th entry is a function fi : [−1, 1]→ [0, φ].
Observe that the joint distribution on X has p.d.f. upper-bounded by φd.

Intuitively, a bounded-density X is “spread” by at least 1/φ. Running-time bounds will
be defined as a function of φ. We define here polynomial smoothed complexity in our setting:

I Definition 4 (Polynomial Smoothed Complexity). Let P be a search problem, whose instances
consist of some structural information D – e.g. a graph – and some real-valued information
X – e.g. edge weights. We say A is a smoothed efficient algorithm for P if, A(D,X) returns
a correct solution with probability 1, and there exist constants c, c′ > 0 such that whenever
X ∈ Rd is an independently distributed random vector with density bounded by φ,

max
D

Pr
X

[
running time of A on (D,X) ≥ (d · |D| · φ)c

]
≤ (d · |D|)−c

′
.

P is said to have polynomial smoothed complexity if a smoothed efficient algorithm exists. It
has quasi-poly smoothed complexity if the above holds for running time (d · |D| ·φ)O(log(d·|D|)).

An algorithm is smoothed-efficient in expectation if the expected running time over a
worst-case choice of φ-bounded distributions is (quasi-)polynomial in d, φ, and |D|; a problem
P is said to have (quasi-)polynomial smoothed complexity in expectation similarly.

Local-max-cut and -bisection. In this paper, we define smoothness preserving reductions
which allow the extension of smoothed-complexity results, as defined above, from one problem
to another. Namely, we obtain reductions to the local-max-cut and -bisection problems.
These problems are defined as FLIP and SWAP respectively in [40]. Given a weighted graph
G = (V,E), local-max-cut is the problem of finding a cut which is maximal up to flipping
one vertex across the cut, and local-max-bisection is the problem of finding a balanced cut
of the nodes into two sets of equal size, whose cut value is maximal up to swapping a pair of
nodes across the cut. Both problems are shown to be PLS-hard in [40], and the smoothed
complexity of local-max-cut has been studied at length, as discussed in the introduction.

3 Smoothed Performance of the BR algorithm

This section is a partial proof of Theorem 1. All missing details may be found in the
full version [10]. Recall that Theorem 1 stated that for φ-bounded random variables, the
BRA converges in (nkφ)O(k) steps with probability 1 − (nk)−3 on complete graphs, and
φ · (nk)O(k log(nk)) steps with probability 1− (nk)−2 over the payoff entries. Only the payoff
values are randomized, the BR moves may be chosen adversarially after sampling.

Recall that a profile σ is a PNE if and only if it is a local maximum of the potential Φ.
Note that Φ may only take values in the interval [−n2, n2], since the payoffs are in [−1, 1]. It
suffices then to show that with high probability, every linear-length sequence of BR moves
has significant increase in Φ. We show the following:
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I Theorem 5. Let G = (V,E) be a game graph, with random payoff vector A, and σ0 ∈ [k]n
be an arbitrary strategy profile. With probability 1 − (nk)−2 over the values of A, all BR
sequences of length at least 2nk, initiated at any choice of σ0, must have at least one step in
which the potential increases by ε = φ−1(2n2k3)−20k log(nk). If G is a complete graph, then
with probability 1− (nk)−3, all BR sequences of length at least 2nk, will have at least one
step increasing by ε′ = (20φ2n3k3)−4k−4.

From the above discussion, this implies that the BRA must terminate in φ(nk)O(k log(nk))

steps with probability 1− (nk)−2 in general, and (φnk)O(k) steps with probability 1− (nk)−3

on complete game graphs, implying Theorem 1. We proceed with a proof of Theorem 5.
The high level approach of this paper, and also that of [22, 1, 8], is as follows: Express the

increase in potential as a linear combination of the payoff values, and conclude Theorem 5 via
an anti-concentration inequality and a union bound. Each step of the BRA is some player u,
deviating to a new σ ∈ [k], denoted as the (player,strategy) pair (u, σ). Thus, an execution
of the BRA is fully specified by a sequence of pairs S = (u1, σ1), (u2, σ2), . . . , along with an
initial strategy vector σ0 ∈ [k]n. The strategy profile at time t is given by σt := (σt,σt−1

−ut
).

We wish to control the value of Φ(σt)− Φ(σt−1) as a function of the payoff values. To
this end, define the potential-change indicator matrix for a BR sequence as follows:

I Definition 6. For any fixed BR sequence S of length `, let L(S,σ0) := {λ1, λ2, . . . , λ`},
where λt ∈ {−1, 0, 1}(|E|×k2), for all t. The entries of λt are indexed by indices of payoff
matrix entries, denoted ((v, i)(w, j)). The values of its entries are chosen as follows:

λt((v, i)(w, j)) :=


1 if: ut ∈ {v, w} and σtv = i and σtw = j.

−1 if: ut ∈ {v, w} and σt−1
v = i and σt−1

w = j.

0 otherwise.

Each entry denotes whether the payoff values remain in the payoff (0), get added to the total
payoff (+1), or removed (−1). This set of vectors – or equivalently the matrix whose rows
consist of the λt’s – is termed the potential-change indicator matrix of a sequence.

The arguments S,σ0 are omitted if they are clear from context. Observe Φ(σt) −
Φ(σt−1) = 〈λt, A〉, where A is the vector of payoff values, so the product LA represents
the sequence of changes in Φ along an execution of the BRA. Bounding the probability of
LA /∈ [0, ε]` for all sequences of length ` ≥ 2nk then implies Theorem 5. We use the following.

I Lemma 7 ([33]). Let X ∈ Rd be a random vector such that the joint probability on any
a ≤ d coordinates of X is upper-bounded by φa at all points. Let M be a rank r matrix in
ηZ`×d, i.e. all entries are multiples of η. Then the joint density of the vector MX is bounded
by (φ/η)r, and for any given b1, b2, . . . , b` ∈ R and ε > 0,

Pr
[
MX ∈ [b1, b1 + ε]× · · · × [b`, b` + ε]

]
≤ (φε/η)r (2)

Observe that if X is a vector whose entries are independently distributed, and each Xi

has probability density bounded by φ, then the joint distribution over any ` coordinates of
X has density bounded by φ`. This statement is a generalization of a lemma from [33], but
the proof therein easily extends.

To conclude Theorem 5, we first show that L has large enough rank, then apply the
above lemma with M = L(S,σ0) and X = A, and finally take a union bound over the choice
of S and σ0. The following parameters are introduced for clarity of exposition.

ITCS 2020
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I Definition 8 (Active, Inactive, Repeating, and Non-Repeating players.). Let S be a BR
sequence, then player u is said to be active if she appears in the sequence, and inactive
otherwise. An active player u is said to be repeating if there exists some strategy i such that
(u, i) appears at least twice in S, or if (u, σ0

u) appears in S at all. An active player who is
not repeating is said to be non-repeating. We introduce the following notation:

p(S) number of active players in S, d(S) number of distinct (u, i) moves in S,
p1(S) num. non-repeating players in S, d1(S) distinct moves by non-rept. players in S,
p2(S) number of repeating players in S, q0(S) number of distinct (u, σ0

u) moves in S.

Observe that p = p1 + p2, k · p ≥ d ≥ p, k · p1 ≥ d1 ≥ p1, and q0 ≤ p2. We will often use
the quantity d(S)− q0(S), which is the number of “new” strategies played by the players.

3.1 Inactive Players, Rank Bounds, and Union Bounds
As discussed above, the goal is to show that L(S) has large rank, and apply Lemma 7, taking
a union bound over all possible choices of S and σ0. Naïvely, there are kn(nk)` choices for
sequences of length `. However, if p(S)� n, the rank bound cannot exceed d(S) ≤ k ·p(S) in
our model, which does not match the union bound. To circumvent this issue, we modify the
matrix L in two different ways, for the cases p1(S) ≥ p2(S) and p2(S) ≥ p1(S), respectively.
This case analysis is similar to the proofs in [1, 8], however these two papers each use only
one of the two constructions, whereas our analyses require both, as the large strategy space
allows for more complex interactions between the rows of L, and each construction only
allows bounds of one kind.

3.1.1 Control by rounding.
The first modification to L builds on a technique of [1]. While the construction is valid for
arbitrary graphs, the rank bounds hold only for complete graphs. Let V0 ⊂ V be the set of
inactive players, and V1 the active players. For any u ∈ V1 and i fixed, all ((u, i)(w, σ0

w))
rows of L for w ∈ V0 are identical, up to flipping a row’s signs, since w’s strategy remains
unchanged. Therefore, in the inner product 〈λt, A〉, these ((u, i), (w, σ0

v)) terms are added or
subtracted together, and we may simply “guess” this value approximately, and take a union
bound on the guesses, rather than guessing strategy choices. This is formalized below.

The quantity of interest is the change in Φ(σt) over t, so it is equivalent to instead
consider Φ(σt)− Φ(σ0), a constant shift. Let Ãt−0

uv = A((u,σtu)(v,σtv))−A((u,σ0
u)(v,σ0

v)).

Φ(σt)− Φ(σ0) =
∑
u,v∈V

A((u,σtu)(v,σtv))−A((u,σ0
u)(v,σ0

v))

=
∑

u,v∈V1

Ãt−0
uv +

∑
w,w′∈V0

Ãt−0
ww′ +

∑
u∈V1

∑
w∈V0

Ãt−0
uw

For w ∈ V0, σtw = σ0
w, so the “Ãt−0

ww′” terms are 0. Furthermore, the rightmost terms are
in fact constants, depending only on σu. Let then C(u, σ) :=

∑
w∈V0

A((u, σ)(w,σ0
w)) −

A((u,σ0
u)(w,σ0

w)). Note C(u,σ0
u) = 0. The above sum is therefore equivalent to

Φ(σt)− Φ(σ0) =
∑

u,v∈V1

Ãt−0
uv + 0 +

∑
u∈V1

C(u, σtu)

For p(S) fixed, we need only take a union bound over the nk` choices of BR sequence,
kp(S) choices of initial strategy, and the d(S)− q0(S) different C values for each (u, σ 6= σ0

u).
We will round these to the nearest multiple of ε, leaving 2n/ε choices for each. With this, we
have a union bound of size kp(S)(nk)`(2n/ε)d(S)−q0(S).
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Critical Subsequences and Rank Bounds. It remains to argue that L(S,σ0) has sufficiently
large rank bounds. The statements below are presented informally, in the interest of space.
See the full version for complete details [10]. To this end, we define critical subsequences as
follows, based on the definition of critical block from [1]:

I Definition 9 (Critical Subsequence). Let B be a contiguous subsequence of S. If `(B) ≥
2
(
d(B)− q0(B)

)
, but for every B′ ⊆ B, `(B′) < 2

(
d(B′)− q0(B′)

)
, we say that B is critical.

Note that a return move – i.e. q0-type move – for a subsequence B which starts at time tB is
a move (u,σtBu ), as opposed to a (u,σ0

u) move.

Observe that for any BR sequence S of length 2nk, `(S) ≥ 2(d(S) − q0(S)), and so a
maximal (up-to-inclusion) subsequence satisfying ` ≤ 2(d− q0) will be critical. Thus, any
sequence of length 2nk must contain a critical subsequence B, with `(B) = 2(d(B)− q0(B)).
Critical subsequences are key to the analysis, since their length and number of distinct moves
are perfectly correlated. This will be used in conjunction with the notion of separated blocks.

I Definition 10 (Separated Blocks). Fix a BR sequence S. For any active, non-repeating,
player u, let Tu be the set of indices where the moving player is u, and T := {t1 < t2 <

· · · < tm} be the union of the Tu’s. Note that |T | = d1(S). Let Si for 0 ≤ i ≤ m be the
subsequences of S from time ti to ti+1 excluding boundaries, respectively, where t0 = 0 and
tm+1 = |S|. We say these Si’s are the separated blocks of S.

The separated blocks allow us to isolate large-rank submatrices and combine their
ranks. Let w be any inactive player, and (ui, σi) be the non-repeating move which begins
separated block i for all i. Then, up to column permutations, the submatrix with rows from
T and columns indexed by ((ui, σi)(w, σw)) is upper-triangular with a non-zero diagonal.
The diagonal is necessarily nonzero because the graph is complete. Furthermore, for a
separated block S′ which begins at move (ui, σi), the submatrix of rows from S′ and columns
((v, σv)(ui, σi)) also form an upper-triangular matrix with non-zero diagonals, where the
columns are sorted by the first appearance of v, σv in S′. Finally, if we sort the rows of T
first, then by chronological order of separated blocks, we can form a block-upper-triangular
submatrix with non-zero diagonal terms, of size d1(S) +

∑
S′ separated(d(S′) − q0(S′)). As

above, graph completeness is necessary for the diagonal to be nonzero. This submatrix is
block-upper-triangular because ((·, ·), (ui, σi)) rows are all 0 before ui first enters σi, since ui
is non-repeating. Assuming that the overall sequence S is critical, this gives

rank(L) ≥ d1(S) +
∑
S′ sep.

d(S′)− q0(S′) > 1
2d1(S) + 1

2d1(S) +
∑
S′ sep.

1
2`(S

′)

However, `(S) = d1(S) +
∑
S′ sep. `(S′), so we have rank(L) ≥ 1

2d1(S) + 1
2`(S). By criticality,

`(S) = 2(d(S)−q0(S)), which gives a rank bound of 1
2 (d1(S)+`(S)) = 1

2d1(S)+d(S)−q0(S).

Combining Rank and Union bounds. Recall that we have shown, for any BR sequence
of length 2nk, it must contain a critical subsequence B. Assuming B has length `, there
are kp(B)(nk)` choices for the (modified) matrix L(B,σ0), and (4n/ε)d(B)−q0(B) choices for
the approximate C(u, σ) values. The C(u, σ)’s are rounded to the nearest ε, so the true
improvements lie in (0, ε) if the approximated improvements lie in (−ε, 2ε), since there can
be at most two C terms in each change, and rounding introduces error at most ε/2.

We have shown that L(B,σ0) has rank at least 1
2d1(B) + d(B) − q0(B). Applying

Lemma 7, we conclude that the probability that every critical subsequence of a valid
BR sequence of length at least 2nk has all improvements in (0, ε) is upper-bounded by
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kp(B)(nk)`(4n/ε)d(B)−q0(B)(3φε)d1(B)/2+d(B)−q0(B). Recall d1(B) ≥ p1(B), and assume
p1(B) ≥ p2(B) =⇒ d1(B) ≥ p1(B) ≥ 1

2p(B). Also, d(B) − q0(B) ≤ k · p(B), and re-
call ` = 2(d(B)− q0(B)). Thus the probability that all improvements are small, for complete
graphs, when p1(B) ≥ p2(B) is at most

(
(20n3k3φ2)kε1/4)p(B). We later combine this bound

with one for the case p2(B) ≥ p1(B), and take a union bound over the choice of p(B).

3.1.2 Control by cyclic sums

The second rank bound argument is more intricate, and is loosely based on a construction
in [22]. The bounds proved here hold for arbitrary graphs. We construct a new matrix Q
whose columns lie in the span of L, which cancels the contributions of inactive players, but
still captures improvement. Let (u, σ) be some move which appears twice in S, or suppose
some (u, σ0

u) appears in S. Let τ0 be the index of the first occurrence of (u, σ) in the BR
sequence (τ0 = 0 in the latter case), and let τ1, τ2, . . . be all subsequent appearances of (u, ·)
in the sequence. Suppose τm is the second occurrence of (u, σ) in the BR sequence. Then
we let qu,σ :=

∑m
j=1 λτj

, noting that the τ0 is omitted. Let Q(S,σ0) be the matrix whose
columns consist of the qu,σ’s. Observe, for any inactive player w,

qu,σ
(
(u, σ′)(w, σ0

w)
)

=
m∑
j=1

λτj

(
(u, σ′)(w, σ0

w)
)

=
m∑
j=1

I[στj
u = σ′]− I[στj−1

u = σ′] = 0

Thus, the qu,σ’s are all 0 in entries corresponding to edges with inactive players, and therefore
the Q matrix does not depend on the initial strategies of the inactive players. Thus, to union
bound the possible Q matrices, it suffices to fix the initial strategy of only the active players
and the BR sequence. Furthermore, L ·A ∈ [0, ε]` =⇒ Q ·A ∈ [0, `ε]d−d1 , so it suffices to
apply Lemma 7 on the matrix Q, with only polynomial blowup, since ` ≤ O(nk).

Fixing a critical subsequence B, there are at most (nk)`(B) choices of the BR sequence,
and kp(B) choices of initial strategy profiles for the active players.

Rank Bounds. It remains to show that Q has large rank relative to this smaller union bound.
Since we have eliminated inactive players, the high-rank submatrix will consist of interactions
between active players. As in [22], construct an auxiliary directed graph G′ = (V,E′), where
V is the set of players, and E′ is constructed as follows: for any repeating move (u, σ), add
the directed edge (u,w) for every w ∈ V , such that ∃σ′ ∈ [k] : qu,σ

(
(u, σ)(w, σ′)

)
6= 0. Note

that u and w must be connected in the game graph, and we do not need completeness.
Let P2 ⊆ V be the set of repeating players, and note that they all have non-zero out-degree,

since qu,σ 6= 0 as this would contradict the fact that the sequence is improving. Repeatedly
perform the following: choose r1 ∈ P2, and let T1 be the BFS arborescence rooted at r1
which spans all nodes reachable from r1 in G′. Delete V (T1) from G′ and repeat, picking
an arbitrary root vertex r2 ∈ P2 \ V (T1). Stop when every vertex of P2 is covered by some
arborescence. For all i, let T 0

i and T 1
i be a partition of the nodes of Ti which are of even or

odd distance from the root, respectively. Let P ′i be the larger of V (T 0
i )∩P2 and V (T 1

i )∩P2,
and let P ′2 :=

⋃∞
i=1 P

′
i , noting that |P ′2| ≥ |P2|/2 = p2(S)/2. We claim that the collection

V := {qu,· : u ∈ P ′2} is linearly independent.
For every u ∈ P ′2, either u was an internal node to the arborescence that covers it, or a

leaf. If it is internal, we may associate to u any of its children in the arborescence, which are
not contained in P ′2, by definition. Let w be the chosen child, then the only V vectors which
have nonzero ((u, ·)(w, ·)) entries are the qu,· vectors.
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Conversely if u is a leaf, then its out-neighbours must be in previously constructed
arborescences. Let w be any such neighbour, then qw,· can not contain a non-zero ((u, ·)(w, ·))
entry, as otherwise u would have been in w’s arborescence. Therefore, qu,· is the only vector
in V to contain a nonzero ((u, ·)(w, ·)) entry. Observe that these matrix entries are necessarily
nonzero even if the graph is not complete. The above discussion demonstrates a |V| × |V|
diagonal submatrix of V, which implies Q has rank at least |V| ≥ p2(S)/2.

Combining Rank and Union Bounds. This section considers the complete graph case.
These bounds will be extended to general graphs in the next section. Section 3.1.1 gives
bounds for the case p1(B) ≥ p2(B), and so we restrict our attention to the case p2(B) ≥
p1(B) =⇒ p2(B) ≥ p(B)/2.

For any fixed critical subsequence B, we have argued that the probability that L(B,σ0)
has all entries in (0, ε) is at most the probability that Q(B,σ0) has all entries in (0, `ε). By
Lemma 7 and the above rank bounds, this occurs with probability at most (`φε)p2(B)/2. Recall
that by criticality, ` = 2(d(B)− q0(B)) ≤ 2k · p(B). Thus, with the above union bound, the
probability that all critical subsequences with p(B) active players and p2(B) ≥ p1(B) have bad
improvements is at most kp(B)(nk)2kp(B)(2k · p(B) · εφ)p(B)/4 ≤

(
2(nk)2kk5/4(nφε)1/4)p(S).

3.2 (Quasi-)Polynomial Smoothed Complexity for NetCoordNash
Complete Game Graphs. From Sections, 3.1.1 and 3.1.2, the probability that all valid BR
sequences of length at least 2nk have all improvements in (0, ε) is at most

n∑
p=1

(
(20n3k3φ2)kε1/4)p +

(
2(nk)2k(nk5φε)1/4)p

by simply taking a union bound over the value of p(B), and whether p1(B) ≥ p2(B) or the
converse hold. Setting ε = (20φ2n3k3)−4k−4, we conclude that this probability is at most
1/(20φ2n3k4 − 1), which concludes the complete-graph portion of Theorem 5 noting that
φ > 1

2 . We omit calculation details and handling edge-cases where all players are active.
These are included in the full version [10].

General Game Graphs. For general game graphs, we will use the cyclical-sum construction,
as it does not require completeness. Note that it was phrased in terms of critical subsequences,
but never used this property. However, the cyclic-sum construction only gives bounds in
terms of p2(S). As in [22], we use the following lemma:

I Lemma 11 ([22], Lemma 3.4). Any valid BR sequence of length 5nk contains a contiguous
subsequence S′ with |S′|/(5 log(nk)) repeating moves (pairs).

This implies that any 5nk-length BR sequence S contains a subsequence S′ with p2(S′) ≥
|S′|/(5 log(nk)). Therefore, the probability that all 5nk-length sequences have improvements
in (0, ε) is at most

∑5nk
`=1 k

n(nk)`(φε)`/10 log(nk). Setting ε = φ−1(2n2k3)−20k·log(nk), the
probability is at most 1/(nk)2. This concludes the general-graph portion of Theorem 5. As
above, the details of calculation are omitted.

Performance in Expectation. The performance analysis of BRA in expectation is discussed
in the full-version. It is derived as a consequence of the with-high-probability bounds,
integrating over the choice of ε.
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4 Smoothness-Preserving Reduction to Local-Max-Cut and
-Bisection

In this section, we refine standard Karp reductions to define smoothness preserving reductions,
and outline the two reductions of Theorem 2. Recall from Section 2.2 that an algorithm is
said to be smoothed-efficient if, on applying independent random perturbations to all inputs
of an adversarially chosen instance, the algorithm runs in time polynomial in the input size
and inverse perturbation size, with high probability.

I Definition 12 (Strong and Weak Smoothness-Preserving Reductions). A weak (randomized)
smoothness-preserving reduction from a search problem P to problem Q is defined by poly-time
computable functions f1 and f2, a full-row-rank, integer, matrix M with polynomially bounded
entries, a constant η ≥ 1/poly, and a real probability space Ω ⊆ Rd; such that the following
holds: For any I = (D,X) ∈ P and R ∈ Ω, J = (f1(D), ηM(X ◦ R)) is an instance of Q
whose solutions σ map to solutions f2(σ) for I. Here, ◦ denotes concatenation.

We require that |f1(D)|, the dimension of R, and the size of M , be polynomial in |I|; that
the probability density of the entries of R be polynomial in |I| and the density bound on X;
and that the entries of R be independently distributed.

If M is a diagonal matrix, then this is a strong smoothness-preserving reduction.

The R variables may seem superfluous at first, but are included to ensure that M has
full-rank. A key fact to the proof of Lemma 7, the anti-concentration bound at the heart of
this paper and previous local-max-cut papers, is the following:

I Proposition 13 ([33]). Let X ∈ Rd be a random vector such that the joint probability
on any a ≤ d coordinates of X is upper-bounded by φa at all points, and let M ∈ R`×d
be full-rank, with entries which are multiples of η, for ` ≤ d. Then the random variable
Y := MX also has bounded joint density fY (y) ≤ (φ/η)` for all y ∈ Rd.

Thus, if the entries of X and R have bounded density, and |det(ηM)| ≥ ηd, then the joint
distribution on M(X ◦R) has polynomially bounded density. A proof of this statement is
provided in the full version of the paper [10].

When M is diagonal, the reduced instance trivially has independent entries, which is
sufficient for most smoothed-analysis results to hold. Hence, strong reductions easily extend
smoothed efficient algorithms. We conjecture that for many problems, upper-bounding the
joint density of the input values suffices for smoothed-efficient algorithms to exist.

I Lemma 14. (a) Suppose problem Q has (quasi-)polynomial smoothed complexity. If P
admits a strong smoothness-preserving reduction to Q, then P also has (quasi-)polynomial
smoothed complexity. (b) If Q has a smoothed efficient algorithms when the input distribution
has joint density bounds as in Proposition 13 and Lemma 7, then if P admits a weak
smoothness-preserving reduction to Q, P has (quasi-)polynomial smoothed complexity.

The proof is straightforward modulo technicalities, and is included for completeness in
the full version of this paper [10]. It is key that the matrix M has full (row) rank, since this
ensures that the joint density on the reduced parameters is sufficiently bounded.

Observe that local-max-cut satisfies the conditions of part (b), since the proofs of [22, 1]
simply apply Lemma 7 to the input, similarly to the argument in Section 3. Thus weak
reductions to local-max-cut do imply smoothed efficient algorithms. This would not be
an interesting notion of reduction if it only held for reductions to max-cut. As mentioned
above, we conjecture that many smoothed-analysis results satisfy the conditions for part (b).
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As an example, we note that the analyses for the smoothed efficient algorithms for a TSP
2-approximation [21] and for multidimensional bin-packing [28], are robust to this form of
input assumption.

The smoothed complexity of local-max-bisection is open, but we believe that the natural
local search procedure may admit a similar smoothed analysis to local-max-cut. This would
imply a smoothed efficient algorithm for k-NetCoordNash for non-constant k.

4.1 Outline of Reductions
It suffices then, to provide weak smoothness-preserving reductions from NetCoordNash to
local-max-cut and -bisection, as stated in Theorem 2. The main technical part involves the
construction of M such that its rows are independent, and solutions of the resulting instance
map to solutions of the original.

In this writeup, we give only a sketch of the reductions. The formal definitions and
rank analyses may be found in the full version of this paper [10]. The reduction from
2-NetCoordNash to local-max-cut will be given first and in more detail, as it is cleaner, and
is the basis for the reduction from k-NetCoordNash to local-max-bisection.

2-NetCoordNash reduces to Local-max-cut. Let G = (V,E) be the game graph, with
payoff vector A. Construct a weighted cut graph H = (V ′, E′) where V ′ = V ∪ {s, t}, and
E′ = E ∪

⋃
u∈V {su, ut}. We will define edge weights such that (1) every locally maximal cut

is an s-t cut, and (2) the value of the cut (S, T ) with s ∈ S and t ∈ T is equal to the total
payoff of the game when σu = 1 if u ∈ S, and 2 if u ∈ T . Thus changing a player’s strategy
is equivalent to flipping its vertex across the cut. In the reverse direction, local-max-cuts are
exactly the local maxima of the game’s potential function, and thereby pure NE.

The following figure gives the edge weights for a small 2-player example which achieves
the above properties, with the payoff matrix given as follows:

uv game payoffs:
(
a b
c d

)
s u

v

t

1
2 (c+ d) +Ru

1
2 (b+ d) +Rv

1
2 (a+ b) +Ru

1
2 (a+ c) +Rv

1
2 (b+ c− a− d)

− 1
2 (b+ c)−Ru −Rv

The general construction consists of placing copies of the above gadget on H for every game
edge in E, taking the sum of the edge-weights for the su, ut, and st edges.

Observe that the above construction has edge weights which are linear combinations of
the payoff values. Furthermore, for all values of Ru and Rv, the cut values are equal to
payoff values. The R values are added only to increase the rank of the reduction matrix, and
choosing them negative ensures that only s-t cuts are maximal. We show [10] by induction
on |V | that the matrix rows are independent, and so the reduction satisfies the necessary
conditions. Note that the cut graph is complete if and only if the game graph is.

k-NetCoordNash reduces to Local-max-bisection. The reductions from games with k

strategies are not as straightforward. Let G = (V,E) be the game graph with payoff
vector A. We construct a weighted cut graph H = (V ′, E′) where V ′ = (V × [k]) ∪
{s0, s1, . . . , sn(k−2), t}, the (player,strategy) pairs, and construct E′ as follows: for every
node (u, i) and 0 ≤ a ≤ n(k − 2), we add an {sa, (u, i)} and {(u, i), t} edge; for every u ∈ V
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and i 6= j, we add a {(u, i), (u, j)} edge; and for every uv ∈ E and i, j ∈ [k], we add a
{(u, i), (v, j)} edge. Call a cut (S, T ) valid if s` ∈ S for all `, t ∈ T , and S contains exactly
one (u, i) node for all u ∈ V . Note that all valid cuts are balanced.

By construction, there is a natural strategy profile associated with each valid cut, namely
if node (u, i) is in S then σu = i. We wish to choose edge weights such that (1) all locally
maximal bisections are valid, and (2) the cut value is equal to Φ(σ). (1) will be achieved by
giving low weight to the {(u, i), (u, j)} edges, and higher weight to the {sa, (u, i)} edges, using
the extra randomness available. This respectively ensures that it is always in our interest to
have a small number of (u, ·) nodes in S, but not none. As above, we will introduce extra
randomness to the edge weights to ensure that M is full-rank. In this case, we will show M

is full rank by arguing that it is upper-triangular after basic row operations.
The cut graph is again complete if and only if the game graph is, and thereby we have

shown the second part of Theorem 2. The edge weights are not given directly, but are instead
found by solving for the total cut values. As it would not be of any value to the reader to be
given the values of the edge-weights without the full exposition, the details are left to the
full version of this paper [10].
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