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Abstract
An affine determinant program ADP : {0, 1}n → {0, 1} is specified by a tuple (A, B1, . . . , Bn) of
square matrices over Fq and a function Eval : Fq → {0, 1}, and evaluated on x ∈ {0, 1}n by computing
Eval(det(A +

∑
i∈[n] xiBi)).

In this work, we suggest ADPs as a new framework for building general-purpose obfuscation and
witness encryption. We provide evidence to suggest that constructions following our ADP-based
framework may one day yield secure, practically feasible obfuscation.

As a proof-of-concept, we give a candidate ADP-based construction of indistinguishability
obfuscation (iO) for all circuits along with a simple witness encryption candidate. We provide
cryptanalysis demonstrating that our schemes resist several potential attacks, and leave further
cryptanalysis to future work. Lastly, we explore practically feasible applications of our witness
encryption candidate, such as public-key encryption with near-optimal key generation.
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82:2 Affine Determinant Programs

1 Introduction

Program obfuscation “scrambles” a program, preserving functionality while hiding implement-
ation details. A theoretical study of program obfuscation was initiated by Barak et al. [6], who
demonstrated that the natural notion of virtual black-box (VBB) obfuscation is impossible
to achieve for all circuits. This initially led to skepticism that general cryptographically
useful program obfuscation might not be realizable.

The situation changed several years ago when Garg et al. [17] gave the first candidate con-
struction of indistinguishability obfuscation – a weaker notion not subject to the impossibility
– and, along with subsequent work [32], showed how to use this weaker notion in a multitude
of cryptographically useful ways. In fact, today indistinguishability obfuscation (iO) is widely
regarded as “crypto complete,” capable of achieving essentially any cryptographic task.1

Initially all candidate obfuscators required cryptographic multilinear maps [16, 13, 20],
a powerful new mathematical tool. Very recently, two new lines of work have emerged on
constructing obfuscation without multilinear maps. The first line of work builds upon the
connection between obfuscation and functional encryption (see [1] and the references therein);
the second builds on a number of new mathematical methods [21]. While these new directions
expand the set of methodologies for achieving general-purpose obfuscation, the set of viable
approaches for building general-purpose obfuscation remains extremely limited.

We view the situation as being reminiscent of the early days of public key cryptography,
which also required new mathematical tools for the time. Some, such as Diffie-Hellman
and RSA, have withstood the test of time, whereas others, such as the Merkle–Hellman
knapsack cryptosystem, were ultimately found to be insecure. But even the failures yielded
interesting insights, such as new cryptanalysis techniques. Therefore, given the importance of
obfuscation, we believe it is crucial to investigate many potential lines of inquiry for realizing
obfuscation. Furthermore, we believe it is particularly important to emphasize simplicity in
our search for new approaches, since even successful cryptanalyses of simple proposals are
likely to inform the scientific quest for secure and efficient obfuscation. (This perspective is
part of a larger research agenda exploring new sources of hardness in cryptography [31].)

This Work

In this work, we propose a new framework for building obfuscation through affine determinant
programs (ADP). An ADP consists of a tuple of square matrices (A,B1, . . . ,Bn) over
Fp, where evaluation on an input x ∈ {0, 1}n involves computing the affine combination
A +

∑
i∈[n] xiBi and taking the determinant. While ADPs have appeared before in the

literature (e.g. to build randomized encodings [28]), to the best of our knowledge no prior
work has considered their application to general obfuscation. We believe ADPs are a promising
route toward obfuscation for several reasons:

ADPs are conceptually very simple.
We can interpret the recent work of Bartusek et al. [8] as an ADP for conjunction
obfuscation, with provable security under the LPN assumption. Thus, ADPs certainly
provide security for obfuscation in some situations.
As we will show, ADPs may offer a route toward implementable applications.

1 To be slightly more precise, building cryptography from iO also requires one-way functions.
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Therefore, we initiate the study of ADPs for obfuscation, giving the following results:
A New Framework for Building Obfuscation. We suggest ADPs as a route toward
building obfuscation without multilinear maps. To facilitate this approach, we provide
a number of techniques for protecting ADPs against attacks, and study the security of
these techniques by developing new cryptanalysis techniques.
A Candidate Witness Encryption Scheme. We examine a special case of obfuscation,
called witness encryption, and give a very simple candidate construction. As an application,
we use our scheme to build a public key encryption scheme with low-complexity key
generation. Our approach yields for the first time implementable applications of witness
encryption.
Towards Candidate iO Constructions. We then turn to the much more difficult
problem of constructing full indistinguishability obfuscation. We develop some initial
ideas, including cryptanalytic methods, leading to an initial candidate construction.

1.1 Technical Overview
One of the main approaches to general-purpose program obfuscation, pioneered in [17], can
be seen as following a particular recipe:
1. Construct an algebraic randomized encoding for the input program, which can be seen as

offering a sort of “one-time” security.
2. Place the algebraic encoding “in the exponent” of a multilinear map, using the multilinear

map operations to evaluate the encoding.

In most of the literature, the randomized encoding used is a matrix branching program,
which can be obtained using Barrington’s theorem and Kilian re-randomization. Another
common example due to [37] converts a circuit into an algebraic circuit.

Affine Determinant Programs

In this work, we consider another variant of randomized encodings from the literature (though
not yet considered in the obfuscation literature) which we call Affine Determinant Programs
(ADPs). Here, the program consists of a matrix M whose entries are affine functions mapping
inputs x to a field Fp. We will denote by M(x) the entry-wise evaluation of M on input x.
There is also a fixed evaluation function Eval : F→ {0, 1}. To evaluate the program on input
x, we simply compute Eval(det(M(x)).

We note that, just like Barrington’s theorem or the algebraic circuit approach to construct-
ing algebraic randomized encodings, ADPs can also plausibly be used in conjunction with
multilinear maps (and appropriate re-randomization) to yield secure obfuscation2. However,
the central question we consider in this work is:

Can we obfuscate with ADPs in the clear, without using multilinear maps?

Witness Encryption – An Initial Idea

As a starting point, we consider the easier task of constructing a secure witness encryption [19]
scheme. In witness encryption, a ciphertext c is encrypted with respect to an instance x of
some NP language L. The ciphertext may be decrypted using any witness π that attests

2 There is a potential issue that the standard multilinear map interface does not allow for efficiently
computing determinants over encoded values. However, the first two multilinear map candidates [16, 13]
do allow for determinant computations.
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82:4 Affine Determinant Programs

that x ∈ L. Security stipulates that, for any false instance x /∈ L, encryptions relative to
x completely hide the message from computationally bounded adversaries. Note that the
instance x is considered public.

We build a new framework for witness encryption for the NP-complete subset-sum problem,
where instances x are vector/scalar pairs (v, t) ∈ Zn × Z, and witnesses are 0/1 vectors
w ∈ {0, 1}n such that v · w = t. Under standard NP reductions, our construction extends to
any NP language.

Testing the validity of a subset-sum witness can be trivially expressed as an ADP of
dimension one: Mv,t(w) = −t + v · w is an affine function that is 0 if and only if w is a
witness for (v, t). We can introduce randomization and extend this to a matrix program by
choosing a random R ∈ Fk×k and setting Mv,t(w) = (−t+ v ·w)R. Then, with overwhelming
probability over the choice of R, for w ∈ {0, 1}n, det(Mv,t(w)) = 0 if and only if w is a
valid witness.

While the above allows for testing if a witness is valid, we need a way to actually encode
a message in the output. There are many ways to do this, but perhaps the simplest is to
encrypt 0 by sampling the distribution above, and encrypting 1 by sampling a uniformly
random ADP. Let Mv,t,m be the resulting ADP. A random ADP over a large field will have
det(M(w)) 6= 0 with high probability for any w. Therefore for valid witnesses w, we have
that det(Mv,t,m(w)) = 0 if and only if m = 0.

Witness Encryption – Resisting Attacks Through Structured “Noise”

It is not difficult to see that the idea so far is completely insecure. The attacker can learn m
by, for example, choosing a w∗ that satisfies v ·w∗ = t, but where w∗ now consists of arbitrary
field elements rather than 0/1. Such a w∗ can be found trivially using linear algebra. In this
case, we will still have that det(M(w)) = 0 if and only if m = 0, thus revealing m. We call
attacks of this form invalid input attacks.

Alternatively, one could simply inspect a single entry of M and notice that in the case
m = 0, the entry is a multiple of the (known) function (−t+ v · w), whereas if m = 1 the
entry is a random affine function and is most likely not a multiple of (−t+ v · w).

To remedy these issues, we will add as “noise” a randomized “all-accept” ADP MAA,
which is an ADP that accepts every 0/1 input, but rejects (with high probability) any input
that is not 0/1. The encryption of 0 will then be

M(w) = MAA(w) +Mv,t,m(w).

Since the all-accept program rejects any input that is not 0/1, meaning MAA(w) is full
rank, it is also the case that M(w) is full rank with high probability. Therefore, our witness
encryption scheme will reject any invalid inputs, just as a random ADP will. This shows that
our witness encryption scheme is at least immune to invalid input attacks.

Of course, as suggested by our noise analogy above, the security of this proposal depends
on how “noisy” the all-accept programMAA is. In Section 5 we discuss two simple approaches,
and how these approaches evade our attempts at cryptanalysis.

Applications

As suggested in [19], one application of witness encryption is to build a public key encryption
scheme where public keys are extremely short and generated by a lightweight process. In
particular, given a PRG G, the secret key will be a seed s and the public key will be the
output x = G(s). To encrypt a message m, simply witness encrypt m to the statement “x
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has a pre-image under G”. Correctness is immediate, and security follows from a simple
two-step hybrid: first replace x with a random string, which with overwhelming probability
will not be in the image of G. Then invoke witness encryption security to show that m is
hidden. Under a stronger assumption of extractable witness encryption due to [23], G can
even be taken to be an arbitrary one-way function.

We show how to optimize our witness encryption candidate for use with Goldreich’s
one-way function, which is a very simple one-way function where every output bit depends
on only 5 input bits. Thus, public-key generation is linear-time in the secret key length. For
a plausible setting of parameters, we obtain 300-bit public keys, and 50 megabyte ciphertexts.
We note that while our ciphertexts are too large for any practical use, they are well within the
realm of implementability. In contrast, existing approaches to building witness encryption
using multilinear maps are extremely impractical and their concrete efficiency has never even
been estimated, to the best of our knowledge.

Indistinguishability Obfuscation

We now turn to the task of using ADPs to build general-purpose indistinguishability obfusca-
tion (iO). We note that this case is much more challenging than witness encryption. First,
there is the obvious question of converting general computations into ADPs. Second, the
security requirements for witness encryption are much weaker: it only needs security to hold
in the evasive setting, where the adversary cannot find accepting inputs, and the adversary
is allowed to know almost the entire program, save for a single message bit.

Fortunately, there are multiple ways to convert a circuit in NC1 into an ADP, outlined
in Section 4, and iO for NC1 can be bootstrapped into iO for all circuits following known
techniques [17]. However, simply taking such a program and adding an all-accept program
as in our witness encryption construction is insufficient, as doing so leads to various attacks,
which we outline in Section 9.

As mentioned earlier, the common approach starting with [17] to obfuscating circuits
in NC1 first applies Barrington’s theorem [7] to obtain a representation of the circuit as a
polynomial-size branching program. Then, the branching program is represented as a matrix
branching program, and the matrix entries are encoded in the exponent of a multilinear map.

In this work, we still make use of branching programs as the underlying computational
model, but instead appeal to the works of [28, 4], which give a representation of any determ-
inistic branching program as an ADP (A,B1, . . . ,Bn). In particular, this representation has
the property that for any binary input x ∈ {0, 1}n, det(A +

∑
i xiBi) = 1 if x induces an

accepting path in the branching program, and det(A +
∑
i xiBi) = 0 otherwise.

We argue that this ADP representation of branching programs has several qualitative
advantages over the matrix branching program approach. Notably, the earlier matrix
branching program approach gives rise to so-called “mixed input” attacks, since multiple
matrices are associated with each input bit. In contrast, the ADP encoding associates a
single matrix with each input bit.

In this work, we initiate a systematic study of various randomization strategies that can
be applied to ADPs that encode branching programs, in the hope that such safeguards will
lead to a secure obfuscation scheme. As a first attempt, we left- and right-randomize with
matrices R,S over Fp such that det(R) · det(S) = 1, preserving the correctness property
of the ADP, while scrambling the individual matrix entries. However, this safeguard is not
sufficient, due to the existence of “polynomial extension attacks,” discussed in Section 9.1.
Thus, we consider methods of scrambling the underlying ADP encoding first, before applying
the left and right randomization as a final step.

ITCS 2020
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In particular, we make use of the fact that on honest evaluation, the determinant will
always be in {0, 1}. This motivates the possibility of adding random even-valued noise to
the matrices in the ADP, which shifts the determinant by an even value on every input.
Correctness is then preserved by simply having the evaluator compute the parity of the
determinant. Parameters must be set carefully so that the size of the field over which these
determinant calculations are being carried out is large enough so that determinants on honest
inputs do not wrap around the modulus. This is discussed in detail in Section 8.1.

Unfortunately, as we show in Section 9.3, this even-valued error does not yet give a
secure obfuscation scheme. In particular, there exist attacks on iO that use the fact that the
adversary may know the underlying structure of the branching program it is attacking to
learn non-trivial information about the random even-valued error. This in turn motivates
the need to inject entropy into the structure of the branching program itself, before encoding
it as an ADP and applying the safeguards described above. We term this process “random
local substitution,” where each individual “step” of the branching program is randomized,
and discuss one concrete method of doing this in Section 8.1.1. However, we stress that there
is a vast space of transformations to explore here, and our proposal is only the first of many
simple possibilities to explore.

In summary, we present the following generic recipe for obfuscating a deterministic
branching program BP :

Apply random local functionality-preserving transformations to BP , producing BP ′.
Represent BP ′ as an ADP, following [28, 4].
Add random even-valued error to each matrix in ADP, fixing the evaluation function to
compute the parity of the determinant.
Left- and right-randomize with matrices R,S such that det(R) · det(S) = 1.

In the body, we give an instantiation of the above recipe, resulting in a candidate iO
scheme for all circuits (noting that it suffices to obfuscate the class NC1, which can be
simulated by polynomial-size branching programs). However, we view the recipe itself as the
main contribution of this section, and hope that it will motivate other candidates and more
cryptanalysis, with the eventual goal of obtaining efficient and secure obfuscation without
the use of multilinear maps.

2 Preliminaries

Let Z,N be the set of integers and positive integers respectively. For n ∈ N, we let [n] denote
the set {1, . . . , n}. For p ∈ N, denote Z/pZ by Zp, and denote the finite field of order p by
Fp. A vector v ∈ Fnp (represented in column form by default) is written as a bold lower-case
letter and we denote its ith element by vi ∈ Fp. A matrix A ∈ Fn×mp is written as a bold
capital letter and we denote the entry at position (i, j) by (A)i,j . For any set of matrices
A1, . . . ,An of potentially varying dimensions, let diag(A1, . . . ,An) be the block diagonal
matrix with the Ai on the diagonal, and zeros elsewhere.

We use the usual Landau notations. A function f(n) is said to be negligible if it is n−ω(1)

and we denote it by f(n) := negl(n). A probability p(n) is said to be overwhelming if it is
1 − n−ω(1). We write D1 ≈S D2 if there exists a negligible function negl(n) such that the
statistical distance between D1 and D2, denoted SD(D1, D2), is bounded above by negl(n).
Recall for any two distribution D1 and D2 taking values in some set S the statistical distance
or SD(D1, D2) is defined as:

SD(D1, D2) = 1/2
∑
x∈S
|Pr[D1 = x]− Pr[D2 = x]|
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We write D1 ≈C D2 if no computationally-bounded adversary can distinguish between
D1 and D2 except with advantage negl(n).

2.1 Randomized Encodings
A randomized encoding of the function f(x) is a function f̂(x, r) such that a sample from
the output distribution of f̂(x, r) for a uniformly chosen r reveals f(x) and no additional
information about x. We formalize and generalize this below.

I Definition 1 (Randomized Encodings [5]). Let f : {0, 1}n → {0, 1}` be a function. We say
that f̂ : {0, 1}n × {0, 1}m → {0, 1}s is a δ-correct, ε-private randomized encoding of f , if it
satisfies the following:

δ-correctness. There exists an algorithm B, called a decoder, such that for any input
x ∈ {0, 1}n,

Pr[B(f̂(x, Um)) 6= f(x)] ≤ δ.

ε-privacy. There exists a randomized simulator algorithm Sim such that for any x ∈
{0, 1}n,

SD(Sim(f(x)), f̂(x, Um)) ≤ ε.

2.2 Witness Encryption
The following definition is taken almost verbatim from [19].

I Definition 2. A witness encryption scheme for an NP language L (with corresponding
witness relation R) consists of the following two polynomial-time algorithms:

Encrypt(1λ, x,m) takes as input a security parameter 1λ, an unbounded-length string x,
and a message m ∈ {0, 1}, and outputs a ciphertext ct.
Decrypt(ct, w) takes as input a ciphertext ct and an unbounded-length string w, and
outputs a message m or the symbol ⊥.

These algorithms satisfy the following two conditions:
Correctness. For any security parameter λ, for any m ∈ {0, 1}, and for any x ∈ L such
that R(x,w) holds, we have that

Pr[Decrypt(Encrypt(1λ, x,m), w) = m] = 1.

Soundness Security. For any PPT adversary A, there exists a negligible function
negl(·) such that for any x 6∈ L, we have:

|Pr[A(Encrypt(1λ, x, 0)) = 1]− Pr[A(Encrypt(1λ, x, 1)) = 1]| < negl(λ).

We also consider an “extractable” version of witness encryption, introduced by [23].
In extractable witness encryption, if an adversary that can break semantic security for
an instance x, an extractor can extract the witness for x. Formally, in an extractable
witness encryption, the following definition (taken verbatim from [23]) replaces the standard
soundness security notion.

ITCS 2020
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Extractable Security. A witness encryption scheme for a language L ∈ NP is secure
if for all PPT adversary A and all polynomials q, there exists a PPT extractor E and a
polynomial p(·) such that for all auxiliary inputs z and for all x ∈ {0, 1}∗, the following
holds:

Pr[m← {0, 1}; ct←WE.Encrypt(1λ, x,m) : A(x, ct, z) = b] ≥ 1
2 + 1

q(|x|)

=⇒ Pr[E(x, z) = w : (x,w) ∈ RL] ≥ 1
p(|x|) .

2.3 Indistinguishability Obfuscation

I Definition 3 (Indistinguishability Obfuscator [6]). A uniform PPT machine iO is an
indistinguishability obfuscator for a circuit class {Cλ} if the following conditions are satisfied:

(Strong Functionality Preservation) For all security parameters λ ∈ N, for all C ∈ Cλ,

Pr
C′←iO(λ,C)

[∀x, C ′(x) = C(x)] ≥ 1− negl(λ).

For any non-uniform PPT distinguisher D, there exists a negligible function α such that
the following holds: for all λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ, we have that if
C0(x) = C1(x) for all inputs x and |C0| = |C1| (where |C| denotes the size of a circuit),
then

|Pr[D(iO(λ,C0)) = 1]− Pr[D(iO(λ,C1)) = 1]| ≤ α(λ).

3 Affine Determinant Programs: Syntax and Definitions

An affine determinant program (ADP) : {0, 1}n → {0, 1} is parameterized by an input
length n, a width k, and a finite field Fp. An ADP is comprised of an affine function
M : {0, 1}n → Fk×kp along with an evaluation function Eval : Fp → {0, 1}. The affine function
M is specified by an (n+ 1)-tuple of k × k matrices M = (A,B1, . . . ,Bn) over Fp so that

M(x) := A +
∑
i∈[n]

xiBi.

On input x ∈ {0, 1}n, ADPM,Eval(x) is computed as

Eval(det(M(x))).

We will typically use one of the following Eval functions.

Eval0(y) =
{

1 if y = 0
0 if y 6= 0

.

Eval6=0(y) =
{

1 if y 6= 0
0 if y = 0

.

Evalparity(y) = y mod 2.
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3.1 Encoding Functions as ADPs
We will consider a randomized procedure ADP-Encode which takes as input a description 〈f〉
of a function f : {0, 1}n → {0, 1} and produces ADPM,Eval such that ADPM,Eval ≡ f . Formally,
the algorithm works as follows.

ADP-Encode(1λ, 〈f〉) : This algorithm takes in a security parameter 1λ and a canonical
description 〈f〉 of a function f ∈ Fn. It outputs width-k ADPM,Eval over Fp where
k = poly(λ, |〈f〉|) and p = 2poly(λ).

In this work, Eval will be fixed as part of the description of ADP-Encode and will be
independent of the particular input 〈f〉. We will therefore view ADP-Encode as an algorithm
outputting M = (A,B1, . . . ,Bn) where A,B1, . . . ,Bn ∈ Fk×kp .

3.2 One-time Security
We say that ADP-Encode satisfies one-time security if the matrix M(x) can be simulated
given only f(x).

I Definition 4 (One-time Security). ADP-Encode is one-time secure for Fn if there exists a
PPT simulator Sim such that for any f ∈ Fn and any x ∈ {0, 1}n,

M(x) ≈S Sim(f(x))

where M← ADP-Encode(1λ, 〈f〉).

We stress that while M = (A,B1, . . . ,Bn), the simulator is only required to simulate a
single evaluation of M(x) = A +

∑
i∈[n] xiBi.

I Theorem 5 ([28]). There exists an algorithm ADP-Encode which satisfies correctness and
one-time security for all branching programs.

I Remark 6. One-time security implies that M(x) is a randomized encoding [27] of f(x).

Achieving One-time Security Generically

When the evaluation function is Eval0 or Eval6=0, there is a simple generic transformation
that turns any functionality-preserving ADP-Encode procedure into one that additionally
satisfies one-time security.

We first import the following lemma from [26].

I Lemma 7 ([26]). For any fixed A ∈ Fk×kq and uniformly random invertible R,S← Fk×kq ,
the distribution of R ·A · S depends only on rank(A).

Let ADP-Encode be an encoding procedure which uses Eval0 or Eval6=0, and outputs

M = (A,B1, . . . ,Bn) ∈ (Fk×kp )n+1.

B Claim 8 (One-Time Security for Eval0,Eval6=0). Suppose ADP-Encode has the property that
when det(M(x)) = 0, then rank(M(x)) = k′ for some fixed k′ < k. Furthermore, ADP-Encode
uses Eval0 or Eval6=0. Let ADP-Encode′ be an algorithm which runs ADP-Encode, samples
uniformly random invertible R,S← Fk×kp , and outputs

R ·M · S := (R ·A · S,R ·B1 · S, . . . ,R ·Bn · S).

Then ADP-Encode′ has identical functionality to ADP-Encode, and is additionally one-time
secure.

ITCS 2020



82:10 Affine Determinant Programs

Proof. Identical functionality holds since det(M(x)) = 0 implies det(R ·M(x) · S) = 0, and
det(M(x)) 6= 0 implies det(R ·M(x) · S) 6= 0 since R,S are invertible.

One-time security follows from the fact that given f(x), R ·M(x) · S can be simulated by
either drawing a random matrix of rank k′ or of rank k (by Lemma 7) C

3.3 iO Security
In contrast to one-time security, iO security holds even if the adversary is free to evaluate M
on as many inputs x of its choosing. In particular, we ask that M = (A,B1, . . . ,Bn) be an
iO of the input program f .

I Definition 9. ADP-Encode is iO-secure for Fn if for any two functions f1, f2 ∈ Fn such
that f1 ≡ f2 and |〈f1〉| = |〈f2〉|, then

M1 ≈C M2

where M1 ← ADP-Encode(1λ, 〈f1〉) and M2 ← ADP-Encode(1λ, 〈f2〉).

4 Constructing ADPs

4.1 Obfuscating Simple Functionalities with ADPs
In this section we describe simple ADP-based obfuscations of point functions and conjunctions.
These constructions have appeared before in the literature, but we recast them in the language
of our ADP framework.

Point Functions

Consider the class of point functions {Iy}y over {0, 1}n, where for any x ∈ {0, 1}n, Iy(x)
outputs 1 if and only if x = y, and outputs 0 otherwise. There exists a simple ADP encoding
scheme for point functions due to [9] where each ADP matrix is 1× 1 (i.e. a scalar).

On input point y, the ADP encoding of Iy is generated as follows. Fix a superpolynomial-
size modulus p, draw uniformly random b1, . . . , bn ← Zp, and set

a = −
∑

i∈[n]:yi=1

bi.

The resulting scalar ADP is M = (a, b1, . . . , bn). To evaluate M on input x ∈ {0, 1}n,
compute the scalar sum M(x) = a +

∑
i∈[n] xibi and output 1 if and only if the resulting

scalar is 0. Correctness holds with high probability on any input since the modulus p is
superpolynomial. Observe that this ADP construction fits into the more general framework
of taking a determinant of an affine combination of matrices, since the determinant is simply
the identity for 1× 1 matrices.

If the accepting point y is chosen from a distribution with sufficient entropy, this ADP
information-theoretically hides y (this follows immediately from the Leftover Hash Lemma).

Conjunctions

Point functions can be naturally extended to conjunctions, a more expressive class of
functionalities that allow for “wildcard” positions (which we denote by ∗) indicating locations
where the input bit can be either 0 or 1. Formally, a conjunction Cpat is parameterized by a
pattern string pat ∈ {0, 1, ∗}n. On input x ∈ {0, 1}n, Cpat = 1 if and only if x matches pat at
all indices i where pati ∈ {0, 1}. Bartusek et al. [8] give a simple ADP-based obfuscation for
conjunctions, which we recall here.
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For pat ∈ {0, 1, ∗}n, the corresponding ADP will consist of square matrices of width n
over Fp where p is a superpolynomial-size prime. We use the notation colspan(M) to denote
the linear subspace spanned by the columns of M.
1. Sample a uniformly random rank-(n− 1) matrix L ∈ Fn×np .
2. For each index i ∈ [n] where pati ∈ {0, 1}, sample a uniformly random rank-one matrix

Bi ∈ Fn×np .
3. For each index i ∈ [n] where pati = ∗, sample a uniformly random rank-one matrix Bi

conditioned on colspan(Bi) ⊆ colspan(L). Since a rank-one Bi can be written as uiv>i ,
this is equivalent to sampling vi uniformly at random from Fnp , sampling wi uniformly at
random from Fnp , and setting ui := Lwi.

4. Set A = L−
∑
i∈[n],pati=1 Bi, and output

M = (A,B1, . . . ,Bn)

To evaluate the ADP M on input x ∈ {0, 1}n, compute

M(x) = A +
∑

i∈[n]:xi=1

Bi

and accept (output 1) if and only if det(M(x)) = 0.
Correctness follows since for any input x that agrees with pat on all 0/1 positions,

colspan(M(x)) ⊆ colspan(L). Since L is rank-(n − 1), det(M(x)) will be 0. On any input
x that disagrees with pat on a 0/1 position, M(x) is the sum of a random rank-(n − 1)
matrix and at least one independent random rank-one matrix, which yields a full-rank with
overwhelming probability.

Bartusek et al. [8] prove that this construction statistically hides pat assuming that
pat has sufficient entropy on its 0/1 entries. The entropy of pat is used to argue that
A = L−

∑
i∈[n],pati=1 Bi is statistically close to a uniformly random matrix. This means L

is statistically hidden, and so for all i ∈ [n], Bi is statistically close to uniformly random
rank-one matrix. At this point, the distribution of (A,B1, . . . ,Bn) is independent of pat.

4.2 ADPs for Log-depth Boolean Formulas
We now give a simple construction that directly converts any log-depth formula into a
functionally equivalent ADP. In contrast to the point function and conjunction setting,
we have been unable to prove that this ADP encoding achieves any meaningful notion of
obfuscation security. Nevertheless, this encoding procedure will be useful for one of our
candidate witness encryption constructions (see Section 5), as well as to develop general
intuition for the ADP framework.

We describe the construction recursively, associating an ADP with each wire in the
formula and demonstrating how to construct an output ADP given two input ADPs to either
an OR gate or an AND gate.

Fix a superpolynomial-size prime p. For this ADP construction, evaluation is done by
computing the determinant of M(x) := A +

∑
i∈[n]:xi=1 Bi over Fp and accepting if and only

if the result is 0.
Throughout this construction, we maintain the invariant that (with overwhelming prob-

ability) on an accepting input M(x) will be rank-deficient by 1, and on a rejecting input
M(x) will be full-rank.

Positive Input Wire: An ADP for the (positive) input wire f(x1, . . . , xn) = xj consists
of n+ 1 scalars (i.e. a width-1 ADP) (a, b1, . . . , bn) set as follows. Sample a uniformly
random r ← Fp and set a = −r and bj = r. For all i 6= j, set bi = 0.
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Negated Input Wire: An ADP for the (negated) input wire f(x1, . . . , xn) = ¬xj consists
of n+ 1 scalars (a, b1, . . . , bn) set as follows. Sample a uniformly random r ← Fp and set
bj = r. Set a = 0 and bi = 0 for all i 6= j.

For any input x ∈ {0, 1}n, correctness of the input wire ADP constructions holds with
high probability over the randomness of r.

The ADP M that computes the AND of two n-bit input ADPs M1,M2 with widths w1, w2
respectively is constructed as follows. Define k := k1 + k2. Sample a uniformly random
matrix R ← F(k−1)×k

q and a uniformly random matrix S← Fk×(k−1)
q . Output

M(x) = R ·
(

M1(x) 0
0 M2(x)

)
· S.

We briefly sketch correctness of the AND construction.
(Both input wires accept) If det(M1(x)) = 0 and det(M2(x)) = 0, then(

M1(x) 0
0 M2(x)

)
is a k × k matrix which is rank-deficient by 2. Left- and right-multiplying by random
matrices R ← F(k−1)×k

q ,S ← Fk×(k−1)
q yields M(x) which is rank deficient by 1 with

overwhelming probability.
(Some input wire rejects) If either of det(M1(x)) 6= 0 or det(M2(x)) 6= 0 holds, then(

M1(x) 0
0 M2(x)

)
is a k × k matrix which is rank-deficient by at most 1. Left- and right-multiplying
by random matrices R ← F(k−1)×k

q ,S ← Fk×(k−1)
q yields M(x) which is full-rank with

overwhelming probability.

An ADP M which computes the OR of two n-bit input ADPs M1,M2 with widths w1, w2
respectively can be constructed as follows. Define k := k1 + k2. Sample a uniformly random
matrix R ← Fk×kq and a uniformly random matrix S← Fk×kq . Sample a uniformly random
affine function T : {0, 1}n → Fk1×k2

q . Output

M(x) = R ·
(
M1(x) T(x)

0 M2(x)

)
· S.

We briefly sketch correctness of the OR construction.
(Either input wire accepts) If det(M1(x)) = 0 or det(M2(x)) = 0, then(

M1(x) T(x)
0 M2(x)

)
is a k×k matrix which is rank-deficient by 1; even if both det(M1(x)) = 0 and det(M2(x)) =
0 hold, the random T(x) will ensure the rank is only deficient by 1 with overwhelming
probability. Left- and right-multiplying by random matrices R ← Fk×kq ,S← Fk×kq yields
M(x) which is still rank deficient by 1 with overwhelming probability.
(Both input wires reject) If both det(M1(x)) 6= 0 and det(M2(x)) 6= 0 hold, then(

M1(x) T(x)
0 M2(x)

)
is a full-rank k × k matrix. Left- and right-multiplying by random matrices R ←
Fk×kq ,S← Fk×kq still yields a full-rank M(x) with overwhelming probability.
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4.3 Encoding Branching Programs as ADPs
In this section we describe a way to represent branching programs as ADPs. This repres-
entation is implicit in [28] (see also [4]). Different notions of branching programs (e.g.,
deterministic vs. non-deterministic vs. counting) correspond to different choices of the field
and evaluation Eval.

We start by defining the most expressive notion and then specialize it to the weaker
notions on which we will rely.

I Definition 10 (Counting Branching Programs [28]). A Z-arithmetic branching program
computing f : {0, 1}n → Z is specified by a directed acyclic graph G = (V,E) and a labeling
φ(·, ·) where each edge (u, v) is labeled with a literal φ(u, v) = xi or φ(u, v) = ¬xi, or the
constant 1. Two of the vertices are labeled s, t. Its size is |V | − 1. Any input x induces
a subgraph Gx limited to edges consistent with x (i.e. edges that evaluate to 1 on x). An
accepting path on input x is a directed s− t path in Gx. A Z-arithmetic branching program
(ABP) computes the function f : {0, 1}n → Z such that f(x) is the number of accepting paths.
It computes a boolean function f : {0, 1}n → {0, 1} if the number of accepting paths is equal
to f(x) ∈ {0, 1}.

I Lemma 11 ([28, 4]). Suppose there is a Z-arithmetic branching program (ABP) of size `
computing a boolean function f . Suppose L(x) satisfies the following

L(x) has −1 along the second diagonal (right below the main diagonal).
L(x) is 0 below the second diagonal.
Each entry of L(x) is a degree (at most) 1 polynomial in a single input variable xi.
More precisely, L(x) is defined as follows. Fix a topological ordering of the vertices in
V , and label the columns / rows (from left to right / top to bottom) according to this
ordering of vertices. In particular we want s labeled 1 and t labeled `. We first define a
matrix A(x) of dimension `× `. For entry (i, j) of A(x), write φ(i, j) if (i, j) is an edge
in G and 0 otherwise. Note that A(x) will be 0 on and below the main diagonal. Now
consider A(x)− I, and delete its first column and last row to obtain the (`− 1)× (`− 1)
dimensional matrix L(x).

Then for all x ∈ {0, 1}n, we have det(L(x)) = f(x). (If f is boolean, we say f(x) accepts if
det(L(x)) is non-zero.)

This immediately gives us an ADP for Z-arithmetic branching programs. Namely, M = L

and Eval is simply the identity function (if f is boolean). This ADP can also be implemented
over a finite field Fp if the number of accepting paths is at most p − 1. Simply compute
f(x) = det(L(x)) mod p.

Example

Suppose we have vertices in the order s, v1, v2, t. We can write a point function that accepts
on x = 010 with an edge from s to v1 labeled with 1 − x1, an edge from v1 to v2 labeled
with x2, and an edge from v2 to t labeled with 1− x3. So the resulting A(x)− I and L(x)
matrices are

A(x) =


−1 1− x1 0 0
0 −1 x2 0
0 0 −1 1− x3
0 0 0 −1

 ,

ITCS 2020



82:14 Affine Determinant Programs

L(x) =

1− x1 0 0
−1 x2 0
0 −1 1− x3

 .

Thus the resulting ADP is of the following form:

A =

 1 0 0
−1 0 0
0 −1 1

 ,B1 =

−1 0 0
0 0 0
0 0 0

 ,

B2 =

0 0 0
0 1 0
0 0 0

 ,B3 =

0 0 0
0 0 0
0 0 −1

 .

Then, as done in [4] and described above, the resulting program can be “re-randomized” by
left- and right-multiplying by uniformly random matrices R,S such that det(R) = det(S) = 1.

5 Witness Encryption

5.1 Definitions
In this section we will use ADPs to construct witness encryption [18]. Since our focus will
not be on encoding functions as ADPs, we will ignore the Eval part of our ADP formalism.
For the remainder of this section, a width-k ADP M over Fp will refer to a tuple of n + 1
matrices (A,B1, . . . ,Bn), where each matrix is in Fk×kp . Since we will not have a dedicated
Eval function, the evaluation of M(·) on an input x ∈ {0, 1}n will refer to the matrix

M(x) := A +
∑
i∈[n]

xiBi.

Consider the NP-complete subset sum problem (or more generally, vector subset sum).

I Definition 12. The VECTOR-SUBSET-SUM language consists of instances (H, `) where
H ∈ Zd×n, ` ∈ Zd, such that there exists w ∈ {0, 1}n satisfying H ·w = ` (over the integers).

We refer to d as the dimension of the instance. When d = 1, we simply refer to this as
SUBSET-SUM.

Vector Subset Sum Encoding

A dimension d = 1 instance (h, `) can be represented as an ADP of arbitrary width k as
follows. Sample a uniformly random matrix R ← Fk×kp and set A = −`R and Bi = hiR for
all i ∈ [n]. This ADP accepts on input w ∈ {0, 1}n if and only if

det(A +
∑
i∈[n]

wiBi) = det((−`+
∑
i∈[n]

wihi)R) = 0.

We can generalize this approach to any instance (H, `) of dimension d ≥ 1 as follows. We
define the procedure VSS.Encode, which takes an instance (H, `) of VECTOR-SUBSET-SUM
instance and outputs a width-k ADP over Fp.

VSS.Encode((H ∈ Zd×n, ` ∈ Zd), p, k) : Interpret each entry of H and ` as the corres-
ponding element over Fp; for correctness we will require p > maxx∈{0,1}n ||H · x||∞.
For each j ∈ [d], draw uniformly random Rj ← Fk×kp . Set A := −

∑
j∈[d] `jRj and

Bi :=
∑
j∈[d] Hj,iRj for each i ∈ [n]. Output

MH,` = (A,B1, . . . ,Bn).
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An Insecure Witness Encryption

Consider the following insecure construction of witness encryption for VECTOR-SUBSET-
SUM. To “encrypt” a bit b with respect to an instance (H, `):
1. Fix a width k and a prime p > maxx∈{0,1}n ||H · x||∞ such that p is at least super-

polynomial in the security parameter.
2. Sample

MH,` ← VSS.Encode((H, `), p, k).

3. Sample uniformly random S← Fk×kp and output the ciphertext

MH,`,b := MH,` + (bS,0, . . . ,0).

To decrypt a ciphertext of the form (A,B1, . . . ,Bn) using a witness w ∈ {0, 1}n, we
compute

det(A +
∑
i∈[n]

wiBi).

If this determinant is a non-zero element in Fp, then b = 1 and if the result is zero then b = 0.
Correctness holds since if w ∈ {0, 1}n is a witness for (H, `) ∈ VECTOR-SUBSET-SUM,

then H ·w = `, so

A +
∑
i∈[n]

wiBi = bS.

Since S is a random matrix in Fp, where p is super-polynomial in the security parameter,
its determinant is nonzero with overwhelming probability.

However, this construction is insecure; given an instance (H, `) 6∈ VECTOR-SUBSET-SUM,
an adversary can potentially find x ∈ Fnp (where x 6∈ {0, 1}n) such that H ·x = ` . The same
correctness argument used for valid witnesses w ∈ {0, 1}n will also imply that for such an
x ∈ Fnp , the “encrypted” bit b can be recovered as

b = Eval6=0(det(MH,`,b(x))).

Preventing Invalid Evaluations

For this approach to have any hope for security, we will need to modify the ciphertext MH,`,b
so that det(MH,`,b(x)) does not leak the value of b on inputs x 6∈ {0, 1}n.

Our approach is to add “noise” to MH,`,b which will prevent the adversary from gaining
information on non-binary inputs. This noise will take the form of another ADP Mnoise which
will satisfy the following properties:

(Zero on binary inputs) For all x ∈ {0, 1}n, det(Mnoise(x)) = 0,
(Non-zero on non-binary inputs): For all x ∈ Fnp \{0, 1}n, Pr[det(Mnoise(x)) = 0] = negl(n),

where the probability is taken over the randomness used to generate Mnoise. In the construction,
we will simply add Mnoise to MH,`,b, so the “non-zero on non-binary inputs” property will
intuitively block the attack described above. We set Mnoise to be the result of sampling from
an “All-Accept” encoding scheme, defined as follows.

An All-Accept ADP encoding scheme AllAcc.Gen is a randomized procedure that takes
an input length n and field Fp, and outputs M of width k with the following properties:

(Correctness) For all x ∈ {0, 1}n,

Pr[det(M(x)) = 0 : AllAcc.Gen(n,Fp)→ (M, k)] = 1.

(Rejection of Invalid Inputs) For all non-binary x, i.e. x ∈ Fnp \ {0, 1}n,

Pr[det(M(x)) = 0 : AllAcc.Gen(n,Fp)→ (M, k)] = negl(n).
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An All-Accept ADP from a Boolean Formula Encoding

A natural attempt to construct such an encoding scheme would be to use the formula
encoding scheme described in Section 4.2 to encode any formula that accepts all boolean
inputs x ∈ {0, 1}n. Unfortunately, this does not in general guarantee rejection of invalid
inputs. However, it turns out that encoding the simple boolean formula

f(x1, . . . , xn) = (x1 ∨ ¬x1) ∧ · · · ∧ (xn ∨ ¬xn)

via the procedure described above does guarantee rejection of invalid inputs. This sampling
procedure is equivalent to the concrete procedure given here.

AllAcc.GenFORM(n,Fp) :

Draw uniformly at random 4 sets of n vectors of dimension n+ 1:

{ui}i∈[n], {vi}i∈[n], {si}i∈[n], {ti}i∈[n],

along with n2 scalars {c(i)
j }i,j∈[n] over Fp.

Let

A =
∑
i∈[n]

uiv>i ,

Bi = −uiv>i + sit>i +
∑
j∈[n]

c
(j)
i ujt>j ,

and output M = (A,B1, . . . ,Bn).

Correctness and security follow by fixing the field size p = ω(poly(n)) and rewriting an
evaluation on input x ∈ Fnp as follows, setting ki :=

∑
j∈[n] xjc

(i)
j :

A +
∑
i∈[n]

xiBi =
∑
i∈[n]

(
(1− xi)uiv>i + xisit>i + kiuit>i

)

=
∑

i∈[n]:xi=0

ui
(

v>i + kit>i
)

+
∑

i∈[n]:xi=1

(
si + kiui

)
t>i

+
∑

i∈[n]:xi /∈{0,1}

ui
(

(1− xi)v>i + kit>i
)

+ xisit>i .

Thus when x is binary, A +
∑
i∈[n] xiBi can be written as a sum of n rank one matrices

(recall the dimension is n+ 1). Otherwise, it can be written as a sum of at least n+ 1 rank
one matrices which do not share column or row spans (with overwhelming probability over
the sampling randomness). Since the field size is p = ω(poly(n)), the resulting matrix will be
full rank except with probability negligible in the input length n.

We now describe a slight generalization of the above sampling procedure, which will
help with security of the eventual witness encryption candidate. We replace the vectors
ui,vi, si, ti with matrices Ui,Vi,Si,Ti of width q(n) (where q(·) is now a parameter for
the encoding procedure). In the sampling procedure given above, q(n) is implicitly set to
always output 1. In general, the resulting dimension of the output program will be set to
k = nq(n) + 1. This more general sampling procedure is used in the concrete candidate we
give in Section 5.2.
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An All-Accept ADP from “Nearly Skew Symmetric” Matrices

To state our next construction of an all-accept ADP, it will be helpful to define a “nearly-
skew-symmetric” matrix.

I Definition 13 (Nearly Skew Symmetric Matrices). A matrix N ∈ Fk×kp is nearly-skew-
symmetric (NSS) if Ni,j = −Ni,j for all i, j > 1 such that i 6= j, and Ni,1 + N1,i + Ni,i = 0
for all i.

Observe that any nearly-skew-symmetric matrix will have N1,1 = 0. Furthermore, the
bottom-right (k − 1) × (k − 1) supmatrix of any NSS matrix is skew-symmetric. Setting
n = k − 1, note that it is easy to sample a random NSS by choosing uniformly random
field elements a1, . . . , an, d1, . . . , dn, as well as a uniformly random width-n skew-symmetric
matrix B, and outputting

0 0 · · · 0
0
... B
0

+


0 a1 · · · an

−a1 − d1 d1 · · · 0
...

...
. . .

...
−an − dn 0 · · · dn

 .

The above formulation makes it clear that for any finite field Fp and matrix width k,
the set of all NSS matrices lies in a known linear subspace. Let NSS.Sample(p, k) be the
procedure that produces a uniformly random sample from this subspace, i.e. outputs a
random nearly-skew-symmetric matrix N of width k over Fp.

We define the following all-accept encoding procedure.

AllAcc.GenNSS(n,Fp) :
Let k = n+ 1, and draw a uniformly random full rank matrix T← Fk×kp .
For each i ∈ [k], draw Ni ← NSS.Sample(k) and set Ci = T−1 ·Ni.
Let A be the k × k matrix obtained by concatenating the first column of each of the Ci

matrices, and let Bi be the k × k matrix obtained by concatenating the i+ 1st columns
of each of the Ci matrices. Output M = (A,B1, . . . ,Bn).

To show correctness, fix any x ∈ {0, 1}n, and let x′ = [1 | x>]>. Denote the jth column
of a matrix M by (M)j . Then for all j ∈ [n+ 1],

T · (A +
∑
i∈[n]

xiBi)j = T ·Cj · x′ = Nj · x′.

Now we claim that for all j,x′> ·Nj · x′ = 0, which implies that x′> ·T is in the kernel
of A +

∑
i∈[n] xiBi, and thus that det(M(x)) = 0. In fact, for any NSS matrix N, and any

vector x′ = [1 | x>]>, where x ∈ {0, 1}n, it holds that x′> ·N · x′ = 0. To see this, treat
each entry of x as a distinct formal variable, and expand out the expression as a quadratic
polynomial over x1, . . . , xn. Since x is binary, we know that x2

i = xi. Thus, the coefficient
on xi is equal to N1,i + Ni,1 + Ni,i = 0, and the coefficient on xixj for i 6= j is equal to
Ni,j + Nj,i = 0, which establishes the claim.

To argue security, we take n to be the security parameter, and fix the field size to be
p = ω(poly(n)). Fix any x /∈ {0, 1}n and again let x′ = [1 | x>]>. We want to bound the
probability that there exists some vector v 6= 0 such that v> · (A +

∑
i xiBi) = 0. Setting

w′> = v> ·T−1, we have that

v> · (A +
∑
i

xiBi) = 0⇔ w′> ·Ni · x′ = 0 ∀i ∈ [n+ 1].
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We will union bound over all vectors w′> to show that there does not exist such a vector
with high probability. Note that it suffices to union bound over all w′ with first entry equal
to 0 or 1, for a total of 2pn vectors.

First consider the case where w′> = [0 | w>] for some w ∈ Fnp . Recall that each Ni is
generated by choosing random values a1, . . . , an, d1, . . . , dn and a skew-symmetric B and
arranging in a matrix as described above. Now treat these values as formal variables, and
consider the linear polynomial over these variables induced by the expression [0 | w>] ·Ni · [1 |
x>]>. We argue that this polynomial must not be identically zero. The coefficient on the
variable ai is exactly −wi. Since w′ 6= 0, it must be the case that w 6= 0, so there must be
some i such that wi 6= 0.

Now consider the case where w′> = [1 | w>] for some w ∈ Fnp . The coefficient on ai
is exactly wi(xi − 1) and the coefficient on di is exactly xi(wi − 1). But by assumption,
there must be some i such that xi /∈ {0, 1}, implying that the coefficient on either ai or
di is non-zero. Thus, for each of the 2pn vectors w′ that we consider, the probability that
w′> ·Ni ·x′ = 0 is at most 1/p over the randomness of sampling Ni. This holds simultaneously
for each i ∈ [n+ 1] with probability at most 1/pn+1. So by a union bound, there exists a w′
orthogonal to each Ni · x′ with probability at most 2/p = negl(n).

5.2 Candidate Witness Encryption Constructions
Generic Candidate

Given the above definitions, we can define a general paradigm for constructing witness en-
cryption (encrypting a single bit b) for VECTOR-SUBSET-SUM. Instantiating the framework
with any AllAcc.Gen and VSS.Encode procedures will result in a correct witness encryption.

WE.Enc(b, (H, `)) : Let d× n be the dimension of H.
1. Choose a prime p > maxx∈{0,1}n ||H · x||∞. Additionally we require p = ω(poly(n)).
2. Sample (MAA, k)← AllAcc.Gen(n,Fp).
3. Sample MH,` ← VSS.Encode((H, `),Fp, k).
4. Sample S← Fk×kp .
5. Output MAA + MH,` + (bS,0, . . . ,0).
WE.Dec(M, w) : output Eval6=0(det(M(w))).

Concrete Candidate

We now give a simple, self-contained instantiation of the general witness encryption framework
described above.

This candidate will be a witness encryption for SUBSET-SUM, with instances (h ∈ Zn, ` ∈
Z). Given an instance (h ∈ Zn, ` ∈ Z), define the instance (H ∈ Z(n+1)×2n, ` ∈ Zn+1) of
VECTOR-SUBSET-SUM where

H :=


h1 h2 · · · hn 0 0 · · · 0
1 0 · · · 0 1 0 · · · 0
0 1 · · · 0 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 0 0 · · · 1

 , ` :=


`

1
1
...
1

 .

As discussed in Section 7, this transformation will help with security. In particular, an
instance ((h1, . . . , hn), `) 6∈ SUBSET-SUM could potentially have many hi = 0, so encoding
without the above transformation will leak many Bi of the all-accept encoding in the clear.
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The following instantiation combines the VSS.Encode scheme described above with the
all-accept encoding AllAcc.GenFORM, with parameter q(n) = nε for some constant ε > 0.
As discussed in Section 7.1, setting q(·) to be a super-constant function of n will help
defend against MQ-style attack strategies. Note that the encryption scheme below takes as
input a one-dimensional SUBSET-SUM instance and first follows the above conversion to
a VECTOR-SUBSET-SUM instance. Then, it encrypts under this VECTOR-SUBSET-SUM
instance following the generic paradigm above.

WE.Enc(b, ((h1, . . . , hn), `)). Choose p > maxx∈{0,1}n |
∑
i xihi| such that p = ω(poly(n)),

and fix the field Fp.
1. For each i ∈ [2n], draw 4 uniformly random matrices

Ui,Vi,Si,Ti ← F(2n1+ε+1)×nε
p .

2. For each i, j ∈ [2n], draw a uniformly random scalar

c
(i)
j ← Fp.

3. Draw 2n uniformly random matrices

R0,R1, . . . ,Rn,S← F(2n1+ε+1)×(2n1+ε+1)
p .

4. Define

A :=
∑
i∈[2n]

UiV>i − `R0 −
∑
i∈[n]

Ri + bS.

For ` ∈ [n], define

B` := −U`V>` + V`T>` +
∑
j∈[2n]

c
(j)
` UjT>j + h`R0 + R`

For ` ∈ {n+ 1, . . . , 2n}, define

B` := −U`V>` + S`T>` +
∑
j∈[2n]

c
(j)
` UjT>j + R`.

5. Finally, output

M = (A,B1, . . . ,B2n).

WE.Dec(M, w). Let ŵ be such that each ŵi = 1− wi. Output Eval6=0(det(M([w | ŵ]))).

6 Applications of ADP-Based Witness Encryption

6.1 Public-Key Encryption with Short Public Keys

In this section, we show how to use our witness encryption candidate to construct a public
key encryption scheme with extremely short public keys and with fast key generation.
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6.1.1 A Generic Framework
We recall from [19] the generic construction of public-key encryption from a witness encryption
scheme WE and any pseudo-random generator g : {0, 1}λ → {0, 1}n(λ).

PKE.Gen(1λ). Sample a uniformly random sk ← {0, 1}λ, and set pk = g(sk). Output
(pk, sk).
PKE.Encrypt(pk,m ∈ {0, 1}). Define the boolean circuit C[g, pk](·), which on input
x ∈ {0, 1}λ, outputs 1 if and only if g(x) = pk. Interpreting C[g, pk](·) as an instance of
CIRCUIT-SAT, apply a deterministic reduction from CIRCUIT-SAT to SUBSET-SUM and
obtain an instance (h, `). Output c←WE.Enc(1λ, (h, `),m).
PKE.Decrypt(sk, (h, `), c). Run the reduction from CIRCUIT-SAT to SUBSET-SUM to
transform the witness sk for C[g, pk](·) to a subset-sum witness w for (h, `). Return
m←WE.Dec(c,w).

I Remark 14. The choice of g is fixed in the specification of the public-key encryption scheme
and is not included in pk. Notice that 1λ is an input to WE.Enc since there is no set-up/gen
algorithm in witness encryption, but it is not an explicit input to PKE.Encrypt; however, it
can be easily obtained by inspecting the length of pk.

The following claim captures the fact that security of this construction can be proved
assuming either the standard security notion for witness encryption [19], or the stronger
extractable security notion given by [23]; in the latter case the requirement on g can be
weakened to one-wayness.

B Claim 15 (Security of Witness-Encryption-based PKE). The above public-key encryption
scheme satisfies CPA-security if

WE is secure under the standard [19] security notion for witness encryption, and g :
{0, 1}λ → {0, 1}n(λ) is a pseudo-random generator with n(λ) ≥ 2λ, OR
WE is secure under the stronger [23] security notion for extractable witness encryption,
and g : {0, 1}λ → {0, 1}n(λ) is a one-way function.

Proof. In the case where we use the standard [19] security notion for witness encryption,
an encryption with respect to pk which is not generated as the output of g computationally
hides the encrypted message. Therefore, an adversary that can distinguish encryptions of 0
and 1 also distinguishes between outputs of g and uniformly random strings, breaking the
pseudorandomness of g.

If we rely on the [23] extractable security notion, then an adversary which can distinguish
encryptions of 0 and 1 implies the existence of an extractor which outputs a witness that pk
is in the image of g; this breaks the one-wayness of g. J

6.1.2 A Concrete Instantiation from Goldreich’s PRG
For an arbitrary one-way function, the CIRCUIT-SAT to SUBSET-SUM reduction may be
costly. Thus, we give a concrete instantiation of the above approach using Goldreich’s
PRG [22, 3] in place of g, along with a custom reduction to VECTOR-SUBSET-SUM. We
first recall the construction of Goldreich’s PRG.

I Definition 16 (Goldreich’s PRG with locality k). Fix a boolean predicate P : {0, 1}k → {0, 1},
and a list S1, . . . , Sm ∈ [n]k of k-tuples of indices. Write Si as (i1, . . . , ik). On input
x ∈ {0, 1}n, the jth bit of the output is set to P (xi1 , . . . , xik).
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For this work, we will exclusively focus on the locality k = 5 setting with the TSA
(“Tri-Sum-And”) predicate, defined as

TSA(x1, x2, x3, x4, x5) = x1 + x2 + x3 + x4x5 mod 2.

Hereinafter, “Goldreich’s PRG” will refer to the instantiation with the TSA predicate.
For a list S = (S1, . . . , Sm) where each Si ∈ [n]5, let gS : {0, 1}n → {0, 1}m be Goldreich’s
PRG instantiated with the TSA predicate, parameterized by index sets S1, . . . , Sm.

I Definition 17. The GOLDREICH language consists of instances (n,y, (S1, . . . , Sm)) such
that each Si ∈ [n]5, and y is in the image of gS where S = (S1, . . . , Sm).

I Lemma 18 (GOLDREICH to VECTOR-SUBSET-SUM). There is a Karp reduction which
takes (n,y, (S1, . . . , Sm)) in GOLDREICH and outputs (H, `) in VECTOR-SUBSET-SUM,
where H ∈ Zm×(n+2m) and ` ∈ Zm.

Proof. Given a list S = (S1, . . . , Sm) with corresponding Goldreich PRG gS : {0, 1}n →
{0, 1}m, along with a string y ∈ {0, 1}m, we construct an instance (H, `) where H ∈
Zm×(n+2m) and ` ∈ Zm such that there exists w ∈ {0, 1}n+2m satisfying H ·w = ` if and
only there exists x ∈ {0, 1}n satisfying GS(x) = y.

We define n+ 2m variables by allocating 1 variable for each input position j ∈ [n], and 2
variables ai, bi for each output position i ∈ [m]. We generate m equations as follows. For
each i ∈ [m], write Si = (i1, i2, i3, i4, i5) and consider the pair (Si, yi).

If yi = 0, the associated equation is

2xi1 + 2xi2 + 2xi3 − xi4 − xi5 − 4ai + bi = 0.

If yi = 1, the associated equation is

2xi1 + 2xi2 + 2xi3 + xi4 + xi5 − 4ai − bi = 2.

Since each equation is a linear equation over n+ 2m variables, writing the coefficients of
each of the m equations as a matrix yields the matrix H ∈ Zm×(n+2m). Correspondingly,
` ∈ Zm is specified by the right-hand-side values of the m equations.

We can extend a pre-image x ∈ {0, 1}n into a vector w ∈ {0, 1}n+2m satisfying H ·w = `

as follows. For each i ∈ [m]:
If yi = 0, set ai = 1 if and only if xi1 + xi2 + xi3 ≥ 2.
If yi = 1, set ai = 1 if and only if xi1 + xi2 + xi3 + xi4xi5 ≥ 3.
Regardless of yi, set bi = 1 if and only if xi4 + xi5 = 1.

It can be verified that if any constraint i is not satisfied, then there is no {0, 1} setting of
the ai, bi variables that can result in a satisfying VECTOR-SUBSET-SUM witness. J

6.1.3 Optimizations and Parameter Size Estimates
In this section, we describe an extension of the above witness encryption candidate for one-bit
messages that allows for encoding an h-bit message in a single ADP. We will make use of the
NSS based all-accept, and will first generalize the AllAcc.GenNSS algorithm to output wide
rectangular matrices of dimension k × (k + r). We include the parameter r in the input to
the sampling procedure, noting that the procedure given before implicitly set r = 0.
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AllAcc.GenNSS(n, r,Fp) :
Let k = n+ 1, and draw a uniformly random full rank matrix T← Fk×kp .
For each i ∈ [k + r], draw Ni ← NSS.Sample(k) and set Ci = T−1 ·Ni.
Let A be the k× (k+ r) matrix obtained by concatenating the first column of each of the
Ci matrices, and let Bi be the k × (k + r) matrix obtained by concatenating the i+ 1st
column of each of the Ci matrices. Output M = (A,B1, . . . ,Bn).

It is also straightforward to generalize the VSS.Encode procedure to take in an additional
input r and produce an ADP with matrices of width k × (k + r). Simply draw the random
Ri matrices over Fk×(k+r)

p .
The optimized witness encryption algorithm will additionally take as input a parameter

λ which determines the correctness of the encryption, and the input message will now be
m ∈ {0, 1}h. It operates as follows.

WE.Enc(1λ,m, (H, `)) : Let d× n be the dimension of H, and h be the bit length of m.
1. Choose a prime p > maxx∈{0,1}n ||H · x||∞.
2. Set t = dh/ log(p)e and r = λ+ t.
3. Sample (MAA, k)← AllAcc.GenNSS(n, r,Fp).
4. Sample MH,` ← VSS.Encode((H, `),Fp, k, r).
5. Encode m ∈ {0, 1}h as a vector m̂ ∈ Ftp. Let Xm̂ be the matrix of dimension k×(k+r)

whose only non-zero entries consist of the vector m̂, placed in the last t positions of
the first row.

6. Output MAA + MH,` + Xm̂.
WE.Dec(M,w) : Compute Aw = A +

∑
i wiBi. If the first k + λ columns of Aw do not

form a matrix of rank exactly k − 1, abort. Otherwise, find a rank k − 1 submatrix A′w
of dimension k× (k− 1) among the first k+λ columns of Aw. Let X be the matrix of all
zeros except for a formal variable x in the top right corner. Now, for each i ∈ [t], let m̂i

be the solution to the linear equation det([A′w | (Aw)k+λ+i]−X) = 0 over the variable
x. Assemble the m̂i into a vector m̂ ∈ Ftp and recover the message m ∈ {0, 1}h.

To argue correctness of decryption on input a valid witness w, first note that since A′w
has full rank k − 1, each equation det([A′w | (Aw)k+λ+i] − X) = 0 will be linear with a
non-zero coefficient on variable x. Hence, each element of m̂ can easily be recovered. It is
left to argue that the decryption function aborts with negligible probability. Let Aw be the
first k + λ columns of Aw. We claim that the rank of Aw is k − 1, except with negligible
probability. We know it is not full rank, since by the properties of the NSS all-accept scheme,
the vector [1 | w] ·T must be in its left kernel. Similar to the proof of security of the original
NSS all accept, we can union bound over all other possible vectors, concluding that Aw is
rank deficient by at least 2 with probability at most 1/pλ, which is negligible in λ, even for
constant size fields.

Now we estimate the ciphertext size of the public key encryption scheme that results from
combining the optimized witness encryption scheme with our reduction from GOLDREICH
to VECTOR-SUBSET-SUM. We will set λ = 80 to be the security and correctness parameter.
Note that for any public key encryption scheme, it suffices to encrypt a security parameter
number of bits and then appeal to key encapsulation to encrypt arbitrarily long messages.
We set p = 11 to be the smallest prime satisfying p > maxx∈{0,1}n ||H · x||∞ for H output
by the reduction from GOLDREICH.
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We will make use of Goldreich’s PRG3 with input length n = 300 and output length
m = 300 [15]. Plugging in these parameters, the optimized witness encryption will output
n+ 2m = 900 matrices of dimension 900× 1007 over the field of size 11. Assuming 4 bits per
field element, this comes to a ciphertext of size about 400 MB. Again, the public key size
will be extremely small: 300 bits. Perhaps even more impressively, the key generation can be
done by a Boolean circuit with 300 AND gates and 900 XOR gates. This can be useful for
fast distributed generation of keys via secure multiparty computation. We are not aware of
any other (practically feasible) public-key encryption schemes whose key generation is nearly
as efficient.

7 Cryptanalysis of the Witness Encryption Candidate

Recall that in our generic witness encryption framework of Section 5, we encrypt a bit b with
respect to an instance (h, `) by sampling the following 3 ADPs.

An instance-encoding ADP

Mh,` = (A(h,`),B(h,`)
1 , . . . ,B(h,`)

n ).

A bit-encoding ADP

Mb = (bS, 0, . . . , 0).

An all-accept ADP

MAA = (A(AA),B(AA)
1 , . . . ,B(AA)

n )← AllAcc.Gen(n,Fp).

The ciphertext is the ADP

Mh,` + Mb + MAA = (A(h,`) + bS + A(AA),B(h,`)
1 + B(AA)

1 , . . . ,B(h,`)
n + B(AA)

n ).

A described in Section 5, Mh,` + Mb on its own would be insufficient for security, since
given any vector w ∈ Fnp such that h · w = `, it is possible to recover b. For security,
recovering b should only be possible when the vector w additionally satisfies w ∈ {0, 1}n.

We therefore include the “all-accept” ADP MAA such that for any x 6∈ {0, 1}n,
det(MAA(x)) 6= 0 with overwhelming probability, and for any x ∈ {0, 1}n, det(MAA(x)) = 0.
We note that both Mh,` + Mb and MAA on their own are “insecure” in the sense that we
can show randomness recovery attacks on the procedures used to sample them. However,
security relies on the idea that adding these ADPs to each other may block such attacks.

First, we show how to mount a randomness recovery attack on MAA. On its own, this will
not constitute an attack on the witness encryption ciphertext. However, we will show that
this attack strategy can be extended to a full attack on a simplified version of our concrete
witness encryption candidate, without the additional safeguards.

Indeed, to obtain secure witness encryption for VECTOR-SUBSET-SUM, we need semantic
security of ciphertexts to hold for any instance (h, `) that is not in the language. A toy NO
instance to consider is

h = (0, . . . , 0, 1), ` = 2.

3 This function is conjectured to be one-way when the output length is equal to the input length. Here
we use it as a one-way function, which by Claim 15 suffices if our WE candidate is extractable. The
latter assumption is only sufficient but not necessary; in fact, the security of this PKE candidate is a
relatively clean and falsifiable assumption that can serve as a good target for cryptanalysis.
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Intuitively, such an instances is particularly vulnerable since the resulting Mh,` + Mb + MAA
will give out all but 2 of the matrices of MAA in the clear.

Attacks on this instance motivate the concrete candidate given in Section 5, in which
we first encode the instance (h, `) into a VECTOR-SUBSET-SUM instance (H, `) where H
consists of many linearly independent rows.

7.1 Formula-Based All-Accept

We will consider two attacks on the AllAcc.GenFORM sampling procedure, where the width
of each ui,vi, si, ti is set to 1. The second attack in particular will motivate the need to
consider a more general width parameter q(·).

7.1.1 Correlated Span Attack

We first show a polynomial-time algorithm that given M = (A,B1, . . . ,Bn) ←
AllAcc.Gen(n,Fp), recovers all 4n vectors {ui,vi, si, ti}i∈[n] up to scalings. The high-level
intuition for the attack is that for any x ∈ {0, 1}n, the matrix A +

∑
i xiBi is rank-deficient.

Moreover, if we look at the kernel of this matrix for many different choices of x ∈ {0, 1}n,
correlations between these kernels will allow us to recover the original randomness used to
sample (A,B1, . . . ,Bn). We refer to this as a correlated span attack.

More precisely, the algorithm proceeds in the following steps.

1. Observe that A is rank deficient by 1. Thus, we can find vectors α and β such that
A ·α = 0 and β> ·A = 0.

2. Observe that with high probability α⊥vi for all i ∈ [n]. Similarly, β⊥ui for all i ∈ [n].
3. Now to recover ti up to a scalar, compute β> ·Bi. Since β is perpendicular to ui for all

i ∈ [n], β> ·Bi = (β> · si) · ti.
4. Now find a vector γ that is perpendicular to ti for i ∈ [n]. Then, one can compute Bi · γ

to find a vector that is a scalar multiple of ui. Continuing this way, one can recover all
vectors ui,vi, si, ti for i ∈ [n] up to scalar multiples.

Note that this attack crucially relies on access to the rank deficient matrix A +
∑
i xiBi

for various choices of x ∈ {0, 1}n. In the witness encryption candidate, it appears difficult
to recover such a matrix when the instance is not in the language SUBSET-SUM, which is
crucial for security.

7.1.2 Linearization Attack

Next we discuss linearization-style attacks [29, 14]. At a high level, a linearization attack
first models the problem to be solved as a system of non-linear equations. Then, it attempts
to find certain structures within the equations that enable solving them with just linear
algebra. Generally, one derives new variables and re-expresses the system as a larger system
of linear equations. Note that in general, systems of quadratic equations are difficult to solve.
However, certain systems may be vulnerable to this style of attack.

For concreteness, we give a particular witness encryption instance that we are interested in
attacking. We describe the output of encrypting a bit b under the SUBSET-SUM NO instance
(h, `) = ((0, . . . , 0, 1), 2), without first applying the transformation to VECTOR-SUBSET-SUM
instance (H, `).



J. Bartusek, Y. Ishai, A. Jain, F. Ma, A. Sahai, and M. Zhandry 82:25

WE.Enc(b, ((0, . . . , 0, 1), 2)). Fix a large enough field Fp and draw at random 4 sets of n
vectors of dimension n+ 1: {ui}i∈[n], {vi}i∈[n], {si}i∈[n], {ti}i∈[n], along with n2 scalars
{c(i)
j }i,j∈[n] over Fp. Also draw uniformly random matrices R,S ∈ F(n+1)×(n+1)

p . Let

A =
∑
i∈[n]

uiv>i − 2R + bS,

B1 = −u1v>1 + s1t>1 +
∑
j∈[n]

c
(j)
1 ujt>j ,

...

Bn−1 = −un−1v>n−1 + sn−1t>n−1 +
∑
j∈[n]

c
(j)
n−1ujt>j ,

Bn = −unv>n + snt>n +
∑
j∈[n]

c(j)
n ujt>j + R.

Output

M = (A,B1, . . . ,Bn).

First, observe that A and Bn are masked by R, so we will attempt to extract information
only from B1, ...,Bn−1. Our goal is to recover vectors (u1, ...,un, s1). In the end, we will
be left with Ω(n6) equations of degree 3 over the the O(n2) variables that constitute these
vectors. As discussed at the end of the section, these asymptotics fall in the range where
successful linearization attacks may be mounted. Thus, we view this as evidence that the
above simplified scheme requires the safeguards described in Section 5.2.

The idea can now be described as follows.

1. Compute Mi = B1 · B−1
i for i ∈ {2, . . . , n − 1}. Denote matrix P = [u1, ...,un, s1]

and Q = [t1, ..., tn,−v1]>. In this notation, B1 can be written as P · D1 · Q where
D1 ∈ F(n+1)×(n+1)

p is:

D1 =


c

(1)
1 0 . . . 0 1
0 c

(2)
1 . . . 0 0

...
...

. . .
...

...
0 0 . . . c

(n)
1 0

1 0 . . . 0 0


2. Now for i ∈ {2, . . . , n− 1}, Bi can be expressed as P ·Di ·Q + LowRanki. Here, Di is

described below, and LowRanki is a matrix with rank at most 2.

Di =


c

(1)
i 0 . . . 0 0
0 c

(2)
i . . . 0 0

...
...

. . .
...

...
0 0 . . . c

(n)
i 0

0 0 . . . 0 0



ITCS 2020



82:26 Affine Determinant Programs

3. Calculate D′i := D−1
1 ·Di as

D′i =


0 0 . . . 0 0
0 (c(2)

1 )−1c
(2)
i . . . 0 0

...
...

. . .
...

...
0 0 . . . (c(n)

1 )−1c
(n)
i 0

0 0 . . . 0 0


4. Now, define Mi := B−1

1 · Bi. Note that the attacker can compute all Mi for i ∈
{2, . . . , n− 1} in the clear. Observe that

Q ·Mi = Q ·B−1
1 ·Bi = Q ·Q−1 ·D′i ·Q + Q · LowRanki = D′i ·Q + LowRank′i,

where LowRank′i is a matrix of rank at most 2.
5. Defining Q′i := D′i ·Q, we have that Q ·Mi −Q′i has rank at most 2. Then, for any i,

letting Q and Q′i be matrices of formal variables, the attacker can set up O(n6) degree 2
equations over 2n2 variables. These arise by setting the determinant of each of the O(n6)
submatrices of size 3× 3 in Q ·Mi −Q′i equal to zero.
We also have more equations that arise from the fact that Q′i has the following structure:

Q′i =


0 0 . . . 0

(c(2)
1 )−1c

(2)
i Q2,1 (c(2)

1 )−1c
(2)
i Q2,2 . . . (c(2)

1 )−1c
(2)
i Q2,n+1

...
...

...
(c(n)

1 )−1c
(n)
i Qn,1 (c(n)

1 )−1c
(n)
i Qn,2 . . . (c(n)

1 )−1c
(n)
i Qn,n+1

0 0 . . . 0


Thus, for every i1, i2 ∈ [2, . . . , n − 1] and j1, j2 ∈ [n + 1],Q′i,j1

· Qi,j2 = Q′i,j2
· Qi,j1 .

Similarly, one can set up new equations for every i ∈ [n]. We can further impose that∑
i Qi,i = 1 to ensure non-triviality.

6. It is not immediately clear that there are enough linearly independent equations to mount
an attack. As long as we have a unique solution, Kipnis and Shamir [29] suggest that
(heuristically) it should be possible to solve for Q and D′i (up to scaling factors).4 This
argument can be generalized to any constant degree d. For a degree 3 system with n2

variables, we need 0.1 · n6 equations. A rudimentary counting argument suggests that if
Bi are random, such a solution should not exist. We leave a more refined analysis of this
attack to future work.

This attack suggests that we should set parameters so that LowRank matrices have
a super-constant rank, or alternatively, that we do not allow the attacker to see many
Bi matrices in the clear. The construction in Section 5.2 incorporates safeguards that
address both, generalizing the width of the ui,vi, si, ti vectors via the parameter q(·), and
encoding SUBSET-SUM instances into VECTOR-SUBSET-SUM instances with many linearly
independent vectors.

4 More specifically, for a degree-2 system of equation over n variables, roughly 0.1 ·n2 linearly independent
quadratic equations suffice to recover an over-determined solution in polynomial time [29, 35].
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7.2 NSS-Based All-Accept

One potential advantage that the NSS-based construction has over the formula-based con-
struction is in the amount of randomness used to generate a sample. For dimension n, the
formula-based sampling procedure uses 4(n + 1)n + n2 = O(n2) uniformly random field
elements to produce n+ 1 matrices of dimension (n+ 1)× (n+ 1). On the other hand, the
NSS-based sampling procedure generates a fresh NSS matrix for each i ∈ [n], each of which
requires about n2/2 fresh random variables. Thus the sampling procedure overall uses O(n3)
random field elements to produce n+ 1 matrices of dimension (n+ 1)× (n+ 1).

However, the NSS matrices are very structured, which leads to randomness recovery
attacks in certain settings, even when the attacker is not given the entire all-accept sample.
Consider a sample (A,B1, . . . ,Bn) ← AllAcc.GenNSS(n,Fp), recalling that the width k of
each matrix is n+ 1. The goal will be to recover the random matrix T drawn during the
sampling procedure. First assume that just B1 and B2 are given in the clear. This means
we have the 2nd and 3rd column of each Ci matrix for i ∈ [k], where Ni = T ·Ci and each
Ni is NSS. The symmetric properties of each Ni immediately give us k linear equations
over the 2k variables comprising the 2nd and 3rd row of T. Generalizing, if we started with
s matrices Bi in the clear, we could form

(
s
2
)
linear equations over 2s variables of T and

eventually the linear system will be over-determined.
We can use this structure to attack the (h, `) = ((1, 0, . . . , 0), 2) instance of SUBSET-SUM

as follows (note this is the same instance considered above but relabeled for convenience).
Encryption of the bit 0 results in the set of matrices A′ = A + 2R,B′1 = B1 + R,B2, . . . ,Bn,
where (A,B1, . . . ,Bn)← AllAcc.GenNSS(n,Fp) and R is a uniformly random matrix. Using
B2, . . . ,Bn, recover all but the first two rows of T as described above, and call this matrix
T̃ ∈ F(k−2)×k

p . We will be interested in solving for the first and second rows of T, denoted
t(1) and t(2), using T̃ and the matrices A′ and B′1.

Note that T̃ and B2, . . . ,Bn reveal the bottom right (k − 2)× (k − 2) submatrix of each
Ni, and in particular the diagonal entries of each of these submatrices. Now let di be the
column vector that consists of the final k − 2 elements on the diagonal of Ni, and arrange
the k columns di into a matrix Ñ of dimension (k − 2) by k. Using the symmetries present
in the Ni, we see that

T̃ ·A =

−t(1) ·B2
...

−t(1) ·Bn

− Ñ := T̃(1) − Ñ and T̃ ·B1 =

−t(2) ·B2
...

−t(2) ·Bn

 := T̃(2),

and we can then compute

T̃(A′ + 2B′1) = T̃(A− 2R + 2B1 + 2R) = T̃(A + 2B1) = T̃(1) − 2T̃(2) − Ñ.

This gives k2 linear equations over the 2k variables comprising t(1) and t(2).
This attack again highlights the danger of giving the adversary many Bi matrices in

the clear. This motivates the need for encoding the SUBSET-SUM instance (h, `) into
a VECTOR-SUBSET-SUM instance (H, `) where H contains many linearly independent
rows, as described in the concrete candidate above. Now an adversary attacking the
(h, `) = ((1, 0, . . . , 0), 2) instance can recover matrices B1 −Bn/2+1, . . . ,Bn/2 −Bn in the
clear, and about half the information in T, but it is unclear how to use this limited information
to mount a full randomness recovery or message distinguishing attack.
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8 Candidate Obfuscation for Branching Programs

As discussed in Section 4.3, the ADP model is powerful enough to capture different types
of branching programs. In this section, we describe a general paradigm for taking an
arbitrary deterministic branching program BP and producing an ADP that is plausibly an
indistinguishability obfuscation (iO) of BP. Since polynomial-size deterministic branching
programs are powerful enough to simulate the class NC1 (by Barrington’s theorem) or even
log-space computations, our construction directly yields a candidate iO for NC1 and log-space.
As shown in [17], this suffices to obtain a candidate iO for all polynomial-size circuits.

8.1 Functionality-Preserving Transformations

In this section, we describe three generic transformations that can be applied to affine
determinant programs satisfying specific conditions. Our candidate NC1 obfuscation will be
the result of applying these three transformations in sequence to an ADP encoding of [28, 4].

8.1.1 Transformation 1: Random Local Substitutions

Recall the ADP encoding of counting branching programs described in Section 4.3. Consider
any such branching program, specified by a directed acyclic graph G = (V,E), and fix a
topological ordering on the vertices v1, . . . , v|V |. Each pair of ordered vertices (vj , vk), for
j < k, is labeled by a function xi, ¬xi, 1, or 0 (no edge). Given such a branching program,
our first transformation will perform what we term a random local substitution for each
vertex pair (vj , vk). We describe in Section 9.3 an attack strategy that motivates the need
for random local substitutions.

Viewing the branching program as ADP = (M,Eval), where M = (A,B1, . . . ,Bn), we see
that each vertex pair (vj , vk), for j < k, defines a width-1 ADP. For concreteness, these
matrices can be thought to be over some finite field Fp and Eval is just the identity function.
In particular, each pair gives rise to the (j, k − 1)th entry of each matrix A,B1, . . . ,Bn,
which we denote by a(j,k), b

(j,k)
1 , . . . , b

(j,k)
n , as follows. If the label is the bit 0 or 1, then

a(j,k) is equal to the bit, and all b(j,k)
i = 0. If the label is xi, then a(j,k) = 0, b(j,k)

i = 1, and
b

(j,k)
i′ = 0 for i′ 6= i. If the label is ¬xi, then a(j,k) = 1, b(j,k)

i = −1, and b(j,k)
i′ = 0 for i′ 6= i.

We will inject entropy into the branching program by replacing each of these width-1
ADPs with a random width-2 ADP computing the same function. There are many possible
such local substitution operations and generalizations, but we present here a particularly
simple realization, which maintains the property that the resulting matrices have all entries
in {−1, 0, 1}.

In the graph representation of the original branching program, the effect of replacing
each each width-1 ADP with a width-2 ADP amounts to adding a vertex vj,k for each pair
(vj , vk). Thus, if the width of the original ADP was `, the width of the resulting ADP
A′,B′1, . . . ,B′n will be `+

(
`+1

2
)
. With this view it is easy to see what transformations are

possible. For any pair (vj , vk), we consider the set of 2×2 submatrices of A′,B′1, . . . ,B′n with
rows indexed by vj , vj,k and columns indexed by vj,k, vk. Denote this set of 2× 2 matrices
as A′(j,k),B′(j,k)

1 , . . . ,B′(j,k)
n . If the label of (vj , vk) was 0, we set all B′(j,k)

i = 0, and have
the following possibilities for A′(j,k):

A(0)
1 =

[
0 0
−1 0

]
,A(0)

2 =
[

1 0
−1 0

]
,A(0)

3 =
[

0 0
−1 1

]
.
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If the label of (vj , vk) was 1, we set all B(j,k)
i = 0, and have the following possibilities for

A(j,k):

A(1)
1 =

[
0 1
−1 0

]
,A(1)

2 =
[

1 1
−1 0

]
,A(1)

3 =
[

0 1
−1 1

]
,A(1)

4 =
[

1 0
−1 1

]
.

If the label of (vj , vk) was xi, we can set A′(j,k) to be A(0)
c for some c ∈ {1, 2, 3}, and

B′(j,k)
i to be A(1)

d −A(0)
c for some d ∈ {1, 2, 3, 4}. This gives a total of 12 possible substitutions.

Finally, if the label of (vj , vk) was 1− xi, we again obtain 12 possible substitutions by fixing
A′(j,k) to be A(1)

c for some c ∈ {1, 2, 3, 4}, and B′(j,k)
i to be A(0)

d −A(1)
c , for some d ∈ {1, 2, 3}.

The operation we perform will, for each vertex pair, pick uniformly at random from the
set of possibilities described above. For convenience, we denote this random local substitution
operation by ADP′ = RLS(ADP).

We stress that our particular method of performing random local substitutions is only
one potential candidate, and there are many possible transformations to explore. Our
candidate was designed specifically to thwart attacks on iO described in Section 9.3, which
take advantage of the fact that the structure of the underlying branching program is known.

8.1.2 Transformation 2: Small Even-Valued Noise
Our next transformation assumes the following about the input ADP = (M,Eval).

M = (A,B1, . . . ,Bn) is such that each entry of A,B1, . . . ,Bn is in {−1, 0, 1}.
Eval = Eval6=0, and furthermore, on any input x ∈ {0, 1}n, det(A +

∑
i xiBi) ∈ {0, 1}.

Note that any ADP output by the [28, 4] encoding and then subjected to the random
local substitution above satisfies these properties.
AddNoise(ADP):

Let ` be the width of the matrices in ADP and n be the input length. Based on n, `, fix
a prime modulus p and error distribution χ as explained below. Consider each matrix
A,Bi as now being over F`×`p .
Sample matrices U,V randomly in F`×`p such that det(U) · det(V) = 1.
Sample matrices Erri ← χ`×`.
Set A′ = U · (A + 2 · Err0) ·V and B′j = U · (Bj + 2 · Errj) ·V for all j ∈ [n].
Finally, in the resulting ADP, set M = (A′,B′1, ...,B′n) and set Eval = Evalparity.

Parameters

We set χ to be the distribution that samples uniformly from the range [−B(`),+B(`)], where
B(`) = `ω(1). We set p to be a prime modulus such that p is Θ((n ·B(`) ·

√
`)`). This can

be done by setting the bit length of p as `1+ε for any constant ε > 0, assuming ` > n.

Correctness

Let x be any input in {0, 1}n and let L(x) := A +
∑
i xiBi be the branching program that

is being obfuscated. Observe that

det(M(x)) = det(U · (L(x) + 2 · Err0 +
∑
i

xi · 2 · Erri) ·V)

= det(U) det(V) det(L(x) + 2 · Err0 +
∑
i

xi · 2 · Erri)

= det(L(x) + 2(Err0 +
∑
i

xi · Erri)).
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Correctness follows from the following observations.
The value of det(L(x) + 2(Err0 +

∑
i xi · Erri)) over the integers is of the form L(x) + 2z

for some z ∈ Z.
The number of monomials in the degree ` polynomial defined by the determinant is
(loosely) bounded by ``.
Each entry in L(x) + 2(Err0 +

∑
i xi ·Erri) is bounded by n ·B(`) + 1 in absolute value, so

the determinant is smaller than (n ·B(`)+1)` ·`` in absolute value. If p > (n ·B(`)+1)` ·``,
correctness holds.

One can also carry out a more refined calculation as follows. For a boolean input x, let
Qx = L(x) + 2(Err0 +

∑
i xi · Erri). With overwhelming probability over the choice of x, Qx

has entries bounded by n1/2+δB(`) in absolute value for any δ > 0. This can be shown using
a Chernoff bound. The signs of the entries of this matrix Qx, are random and independent,
so one can use the matrix Bernstein inequality (see for example, Theorem 6.6.1 [36]) to
bound the maximum eigenvalue and hence the determinant (as determinant is the product of
eigenvalues), to be (n1/2+δ ·B(`) · `1/2+δ)`. This implies that p can be a Θ(`1+ε) bit prime
for any ε > 0.

8.1.3 Transformation 3: Block-Diagonal Matrices

Ideally, the obfuscation of a circuit over n bits should not leak anything other than its
input/output behavior on x ∈ {0, 1}n. However, consider evaluating the ADP that results
from the above transformation on a short but non-binary input x. Due to the setting of
parameters necessary for correctness, the determinant of the matrix A +

∑
i xiBi will not

be large enough to wrap around the modulus. Intuitively, the even-valued noise should
ensure that the only useful information gained from this determinant is the evaluation of the
circuit on input x mod 2. However, the fact that the determinant does not wrap around p is
nevertheless worrisome, and we present a simple method to potentially block any attacks that
might make use of short non-binary evaluations, such as the polynomial extension attacks
described in Section 9.1.

The idea will be to post-process any M = (A,B1, . . . ,Bn) in a way that forces the
determinant on non-binary inputs to be large and random. This can be accomplished using
2n random matrices {Gi,Hi}i∈[n] of determinant 1. We will append each Gi to A along the
diagonal, and then append Hi−Gi to Bi in the ith slot along the diagonal. After appending,
we rerandomize as before with U and V. The determinant on any binary input will be the
product of the determinant of the original ADP times the product of the determinant of Gi

or Hi for each i, which are both 1. On any non-binary input, some block diagonal will be
a linear combination of Gi and Hi that results in a large and random determinant. The
following transformation also takes as input a parameter d, which determines the size of the
random Gi,Hi matrices. In our obfuscation construction, it is reasonable to set d = 2.

AddBlockDiagonals(ADP, d):
Let ` be the width of the matrices in ADP and n be the input length.
Sample 2n matrices {Gi,Hi}i∈[n] uniformly from Fd×dp conditioned on their determinant
being equal to 1.
Sample U,V uniformly from F(`+nd)×(`+nd)

p conditioned on det(U) · det(V) = 1.
Set A′ = U·diag(A,G1, . . . ,Gn)·V, and B′i = U·diag(Bi,0, . . . ,0,Hi−Gi,0, . . . ,0)·V,
and return the resulting ADP, consisting of M = (A′,B′1, . . . ,B′n) and Eval = Evalparity.
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In summary, to obfuscate a deterministic (alternatively, F2 counting) branching pro-
gram, we first convert it into an ADP as described in Section 4.3. We then output
AddBlockDiagonals(AddNoise(RLS(ADP)), 2) as the final obfuscation.

8.2 Extensions of the Basic Construction
8.2.1 Obfuscating Affine F2 Counting Branching Programs
Motivated by the goal of improved concrete efficiency, we extend the branching program
model to allow labeling of edges by any affine function over the input bits. This is captured
by the following notion of Affine F2 Counting Branching Programs.

I Definition 19 (Affine Counting Branching Programs [28]). An Affine F2 Counting Branching
Program computing f : {0, 1}n → {0, 1} is specified by a directed acyclic graph G = (V,E) and
a labeling φ(·, ·) where each edge (u, v) ∈ E is labeled with an affine function φ(u, v) = fu,v(x),
and two special source and sink vertices are labeled s and t respectively. fu,v has the form

fu,v(x) =
∑
i∈Su,v

xi + cu,v mod 2,

where cu,v ∈ F2. Its size is |V | − 1. Any input x ∈ {0, 1}n induces a sub-graph Gx limited
to edges consistent with x (i.e. edges that evaluate to 1 on x). An accepting path on input
x is a directed s− t path in Gx. An Affine F2 Counting Branching Program computes the
function g : {0, 1}n → {0, 1} such that g(x) is the number of accepting paths in Gx mod 2.

We now import the following theorem.

I Lemma 20 ([28, 4]). Suppose there is an Affine F2 Counting Branching Program of size `
computing a boolean function f . Suppose L(x) satisfies the following

L(x) has −1 along the second diagonal (right below the main diagonal).
L(x) is 0 below the second diagonal.
Each entry of L(x) is a degree (at most) 1 polynomial in a single input variable xi.
More precisely, L(x) is defined as follows. Fix a topological ordering of the vertices in V ,
and label the columns / rows (from left to right / top to bottom) according to this ordering
of vertices. In particular we want s labeled 1 and t labeled `. We first define a matrix A(x)
of dimension `× `. For entry (i, j) entry of A(x) write affine function φ(i, j) (written as
a degree one polynomial over the reals) if (i, j) is an edge in G and 0 otherwise. Note
that A(x) will be 0 on and below the main diagonal. Now consider A(x)− I, and delete
its first column and last row to obtain the (`− 1)× (`− 1) dimensional matrix L(x).

Then for all x ∈ {0, 1}n, we have det(L(x)) mod 2 = f(x).

Observe that this class of branching programs contain Z branching programs, since
the evaluation of a Z branching program is exactly its evaluation modulo 2. What we
observe is that in this case, our obfuscation scheme described in Section 8 is already
capable of obfuscating affine F2 counting branching programs. The idea is that we can
apply transformation 2 given in Section 8 to the matrix L(x) representing an Affine F2
Counting Branching Program as follows: Each edge in L(x) is an affine function of the form
f(x) =

∑
i∈S xi + c mod 2. We construct a new matrix L′(x) where the edge is replaced by

f ′(x) =
∑
i∈S xi + c, and the computation is now over integers. The range of this new affine

function is [0, n+ 1]. If the parameters are chosen appropriately, what we end up computing
by the evaluation procedure is det(L′(x)) mod 2. We set p so that this can be computed
without a wrap-around. Note that det(L(x)) mod 2 = det(L′(x)) mod 2 as the error that is
added to the matrices is even. This ensures correctness.

In the next section, we refine the notion of random local substitution and propose another
alternative safeguard that relies on the ideas developed in this section.
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8.2.2 Using Embedded Affine F2 Branching Programs
In Section 8.1.1, we discussed the notion of random local substitutions, which is our safeguard
for preventing attacks such as the one described in Section 9.3. However, that solution incurs
a quadratic blow up in the size of the branching program. In this section, we propose an
alternate safeguard. Let BP : {0, 1}n → {0, 1} be a Z branching program with ` vertices,
including source s and target t. First, sample a BP′ : {0, 1}n → {0, 1} as follows:

Fix ` vertices, and select two vertices s′, t′ among these ` vertices to act as the source
vertex and target vertex of BP′.
Induce a random directed acyclic graph among these vertices. This is done by connecting
all vertices i ∈ [`] to vertices j where j ≥ i+ 1. In this numbering, the starting vertex
s′ is the 1st vertex and t′ is the `th vertex. For every edge u, v sample a random affine
function fu,v(x) which is used to label the edges.

We now combine BP and BP′ into the final transformed BP′′ as follows. BP′′ consists of
2`+ 2 vertices: the ` vertices of BP, the ` vertices of BP′, and a new source s′′ and target
t′′. Form edges from s′′ to s, from s′′ to s′, and from t to t′′, all with label 1. Note that
there will be no edge between t′ and t′′. Observe that BP′′ computes the same function as
BP′. Indeed, any additional paths that go via BP′ are never connected to the target vertex
t′′. There can be either 0 or 1 path going via BP since we started with a deterministic Z
branching program. This resulting new BP′′ can now be input to transformations 2 and 3
outlined in Section 8.

9 Cryptanalysis and Parameter Estimation for the Branching
Program Obfuscation Candidate

9.1 Polynomial Extension Attacks
As an instructive example, consider the ADP obfuscation of a point function Iv, without the
even-valued error. Recall that on input x ∈ {0, 1}n, Iv outputs 1 if x = v and 0 otherwise.
A simple branching program computing Iv contains n+ 1 vertices, with a single edge from
each vertex i to vertex i+ 1 that is either set to vi or 1− vi. Thus, L(x) can be written as
the following matrix:

1 + 2v1x1 − v1 − x1 0 . . . . . . 0
−1 1 + 2v2x2 − v2 − x2 . . . . . . 0

0 −1
. . . . . . 0

...
...

. . . . . .
...

0 0 . . . −1 1 + 2vnxn − vn − xn


Hence, for x ∈ {0, 1}n, det(L(x)) is 1 if x = v and 0 otherwise. Writing

L(x) = L0 + x1L1 + . . .+ xnLn,

we see that an attacker given

ADP = (A = U · L0 ·V,B1 = U · L1 ·V, ...,Bn = U · Ln ·V),

can evaluate

det(A +
∑
i

xiBi) = det(U · L(x) ·V) = det(L(x)).
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Thus, the attacker has input-output access to the polynomial det(L(x)) over the field Fp,
and is not restricted to evaluation on binary inputs x ∈ {0, 1}n. This leads to the following
attack.

1. Observe that det(A +
∑
i xiBi) is the unique multilinear polynomial over Fnp agreeing

with
∏
i∈[n](1 + 2vixi − vi − xi) on inputs from {0, 1}n. This implies

det(A +
∑
i

xiBi) =
∏
i∈[n]

(1 + 2vixi − vi − xi)

over Fnp .
2. To recover v1, compute

det(A + x1 ·B1 +
∑
i≥2

2−1Bi) = (1− 2−1)n−1(1 + 2v1x1 − v1 − x1).

We can find x1 = 1− v1 by equating this quantity to 0. This recovers the first bit of the
point function, and the others can be computed in the same way.

The reason that this particular attack succeeds is that the polynomial extending the
boolean function det(L(x)) is multilinear. Read-once branching programs give rise to such
polynomials. More generally, Klivans and Shpilka [30] showed that any read-once, oblivious
branching program can be learned efficiently. In their model, the attacker is given membership
and equivalence query access to an unknown polynomial P computed by a read once branching
program over a field Fp. This means the attacker is able to evaluate the program on any
input x ∈ Fnp , as well as submit a hypothesis H and learn that either H is equal to P or
receive a point y on which H(y) 6= P (y). In our setting, we just argued that the attacker
has membership query access to the polynomial computed by the branching program, and
equivalence queries can be simulated by evaluation on random points and appealing to
Schwartz-Zippel.

For our construction to satisfy the security notion of indistinguishablity obfuscation, we
need to be able to successfully obfuscate simple classes of functions computable by read once
branching programs. Thus, we have to include some noise in the obfuscation procedure that
destroys the read once nature of any such program. One can view the random even-valued
error as adding an edge between every pair of vertices in the branching program, labeled with
a random, small, even linear combination of the entire input vector. The resulting program
is very far from read-once, as evaluating every edge requires reading the entire input. Thus,
learning results that apply to restricted classes on branching programs will not apply. As
an example, [30] state that their techniques would not apply to a polynomial as simple as
f(x1, . . . , xn) =

∏n
i=2(x1 + xi).

9.2 The Need for Super-polynomial Error and Modulus

Now we present a contrived example consisting of two ADPs which will motivate the need
for super-polynomial noise for transformation 2. While these specific ADPs will not arise
from the [28] transformation, we will set our error-size to err on the side of caution.

The attack works as follows. Suppose we have an ADP A,B1, . . . ,Bn that is in one of
the two following forms.
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In the first form, A,B1, . . . ,Bn = 0.
In the second form, A = 0, and Bi for i ∈ [n] is the matrix

1 1 . . . 1
0 0 . . . 0
...

...
...

...
0 0 . . . 0

 .
Now consider applying the AddNoise operation to one of the ADPs, hoping that the

choice of ADP is masked by this operation. Assume that the even-valued error added by
the AddNoise operation is actually chosen in {−2, 2}, so that each entry of the matrices
Err0,Err1, . . . ,Errn is uniform in {−1,+1}. Observe that in both cases det(A +

∑
i xiBi) = 0

for all x ∈ {0, 1}n, so the parity of the determinant will not reveal which ADP was chosen.
A relevant result of [33] states that the determinant of a matrix where the entries are chosen
uniformly at random from {−1,+1} concentrates in absolute value around

√
n!. This fact

can be used to estimate the determinant of the matrix A +
∑
i Bi in both cases, which is

the ADP evaluated on input x = [1, . . . , 1].

Case 1: The value det(A +
∑
i Bi) is exactly det(2(Err0 +

∑
i xi · Erri)), whose entries are

independently signed, with standard deviation about
√
n. Thus, the determinant will

concentrate around
√
n! · (
√
n)n in absolute value.

Case 2: To estimate the value det(A +
∑
i Bi) in this case, we apply a Chernoff bound and

find that the elements in the top row are typically in the range [n−
√
n log2 n, n+

√
n log2 n].

If we divide the top row by
√
n, we are left with a matrix whose entries are distributed as

the matrix in case 1, with the only difference being that the top row is positively signed.
Heuristically, this will result in det(A +

∑
i Bi) being a

√
n factor larger.

Thus, the magnitude of the determinant on input [1, . . . , 1] will give a distinguisher. Note
however that neither ADP considered here is a valid [28, 4] encoding of a branching program.
We chose these particular ADPs for simplicity, to illustrate the need for super-polynomial
error; similar attacks can be carried out on ADPs that result from encodings of real branching
programs.

Setting the Modulus

Once we fix the noise bound B(`), we can choose p in a more refined manner as follows. Let
L = (L0, ..., Ln) be the branching program to obfuscate. We would like to add noise to the
matrices of L to form an ADP (A,B1, . . . ,Bn), in such a way that for all y0, y1, ..., yn ∈ {0, 1},(

det(y0A +
∑
i

yiBi) mod p

)
mod 2 = det(y0L0 +

∑
i

yiLi) mod 2.

Let t = poly(`) be a parameter, and set p = Θ(t` · B(`)` ·
√
`! · `). Then we observe the

following:
If t ≥ n2, then with overwhelming probability we can correctly evaluate any boolean com-
bination y0, y1, ..., yn ∈ {0, 1}n+1. To see this, first note that the entries of y0A +

∑
i yiB

are randomly signed, and typically lie in [−2 ·
√
n+ 1 log2 n ·B(`),+2 ·

√
n+ 1 log2 n ·B(`)]

due to a Chernoff bound. Then, we can appeal to Theorem 1.1 from [33], stating that the
determinant of any matrix M of dimension `, with entries chosen uniformly at randomly
from {−1,+1}, satisfies
√
`! · e−c

√
` log ` ≤ |det(M)| ≤

√
`! · `,
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with overwhelming probability. Here c > 0 is any constant. In this case, the determinant
will thus heuristically satisfy

|det(y ·A +
∑
i

yi ·Bi)| ≤ (2 ·B(`) ·
√
n+ 1 log2 n)`

√
`! · ` ≤ p.

Now, consider more general (non-binary) linear combinations (y0, y1, . . . , yn). If the `1
norm of the combination satisfies |y0|+

∑
i |yi| > t3, then it holds that

|det(y0A +
∑
i

yiBi)| ≥ p.

This overflow will hopefully help with security against attacks that evaluate the ADP
on non-binary inputs. We can again observe heuristically from theorem 1.1 in [33]. If
the weight is greater than t3, then typically we expect each entries of the matrix to be
randomly signed and having values larger than t1.4 ·B(`). Thus with high probability,

|det(y0A +
∑
i

yiBi)| ≥ (t1.4 ·B(`))`
√
`! · e−c

√
` log ` ≥ p.

We set t to be n2 to allow correct evaluation of boolean inputs. The above describes
that setting the modulus appropriately can protect against attacks that involves evaluating
programs on inputs of large (polynomial) weight. If the weight of the combination is bounded
by some polynomial t, we claim the following.

B Claim 21. Fix any ADP A,B1, ....,Bn of width ` with entries in {−1, 0, 1}. For any
x = (x0, ..., xn) ∈ Zn+1, Let L(x) = x0A +

∑
i xiBi, and let ADP′ = AddNoise(ADP). Let

Err0,Err1, . . . ,Errn be the matrices drawn during the real AddNoise procedure (with a super-
polynomial bound), and for x ∈ Zn+1, let Err(x) := x0 · 2Err0 +

∑
i xi · 2Erri. Then for any

x ∈ Zn+1 where ‖x‖1 < t,

Pr
[
|det(x0A′ +

∑
i
xiB′

i)| − |det(L(x)) mod 2 + det(Err(x))|
| det(Err(x))| ≤ negl(`)

]
≥ 1− negl(`).

where the probability is taken over the randomness of generating Err0,Err1, . . . ,Errn.

This also shows that if the error is chosen from a super-polynomially large error distri-
bution, then a distinguishing attack which only uses the magnitude of det(M(x)) will not
apply.

Proof. This follows from a result of Ipsen and Rehman [25] who showed that for any
non-singular matrices M1,M2 ∈ R`×`,

|det(M1 + M2)− det(M1)|/|det(M1)| ≤ ·
(
κ · ‖M2‖2

‖M1‖2
+ 1
)`
− 1,

were ‖M‖2 is the largest singular value of the matrix M and κ := ‖M1‖2 · ‖M−1
1 ‖2 (κ is

sometimes referred to as the condition number of M1). For a random matrix of size `× `, the
condition number is expected to be around O(`) [12]. Now, we can substitute M1 as Err(x),
M2 as L(x). Observe that the maximum singular value of Err(x) will be at least Ω(B(`)

√
`)

(see Excercise 14, [34]). Since branching programs have small entries, their singular values
are also bounded by ‖x‖1 ·O(`) = O(t · `). Thus, the right hand side of the previous equation
is (

κ · ‖L(x)‖2

‖Err(x)‖2
+ 1
)`
− 1 =

(
O(`) · O(t · `)

Ω(B(`) ·
√
`)

+ 1
)`
− 1.

≈ O(`2 · t ·B(`)−1)
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Since B(`) is super-polynomial in `, this concludes the argument. Although above we
talked about learning for any y ∈ Zn+1 determinants of the form det(y0A +

∑
i yiBi),

however, in Z branching programs, whenever y = 0 mod 2, then det(y0L0 +
∑
i yiLi) = 0

mod 2 and thus such combinations should not reveal anything useful. Heuristically, Claim 21
suggests that the magnitude of det(y0A +

∑
i yiBi) should only reveal information about

det((y0 mod 2)L0 +
∑
i(yi mod 2)Li). J

9.3 The Need for Random Local Substitutions
Consider any fixed branching program L(x) = A+

∑
i xiBi of width `. Suppose we obfuscate

L(x) but skip the random local substitution step. Let Err(0),Err(1), . . . ,Err(n) be the n+ 1
error matrices drawn by the AddNoise transformation. Write each Err(i)

j,k = 2e(i)
j,k. We can

recover the parity of each e(i)
j,k as follows. Let A′,B′1, . . . ,B′n be the ADP after obfuscation.

For any input x,

det(A′ +
∑
i

xiB′i) ≡ det(L(x)) +
∑
j,k

(
∑
i

xi2e(i)
j,k) det(L(x)(j,k)) mod 4,

where L(x)(j,k) is the (j, k) minor of L(x). Note that everything is known except the
parities of e(i)

j,k, so this gives a linear equation mod 2 over these (n+ 1)`2 parities. We have
an exponential number of equations of this form, and can eventually obtain (n+ 1)`2 linearly
independent equations.

This readily gives an attack on iO. To distinguish between two known and functionally
equivalent branching programs L1, L2, simply run the above attack assuming the underlying
BP is L1 and see if there exists a solution or not. Now, the random local substitution is
meant to randomize the underlying branching program L(x), so an attacker does not know
all of the L(x)(j,k) values. Without these, the attacker cannot set up and solve the above
system of linear equations.

10 Applications and Future Work

In future work, we aim to explore applications of optimized variants of our candidates.
We give some of the more promising directions below. Since our focus here is on concrete
efficiency, we make a heuristic leap of faith of treating our iO candidates as ideal obfuscation
schemes for the purpose of these applications.

Concretely Efficient Obfuscation for Circuits

If the safeguards described are secure, then in order to obfuscate a branching program of size
`, we need about O(`4+ε) bits for any ε > 0. In concrete terms, if the size of the branching
program exceeds 213 vertices, the size is already around 100 terabytes. This motivates the
study of efficient bootstrapping mechanisms and simple “obfuscation complete” families
of branching programs. In particular, we would like to understand if the SNARG-based
bootstrapping approach from [11] or the PRF-based approach from [24, 2] are practically
feasible for our candidates.

Obfuscating PRFs

Efficiently obfuscating PRFs and simple computations that employ them is a highly desirable
goal for both theoretical and practical applications. For instance, the bootstrapping theorems
of [24, 2] reduce the obfuscation of a circuit to multiple obfuscations of simple functions
that each use a constant number of PRF calls. This and other applications motivate PRF
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candidates that have small affine branching programs, which can be efficiently handled by
our construction. One such candidate could be based on the work of [10]. They propose
a weak PRF5 candidate based on Learning With Rounding (LWR) modulo a constant-size
composite, which can be computed by a linear-size deterministic branching program. They
also suggest a heuristic for converting a weak PRF into a strong one by evaluating the weak
PRF on a suitable encoding of the input; for this particular weak PRF candidate, a linear
encoding over a prime that does not divide the LWR modulus seems like a natural choice.
For instance, one could use a linear code over F2 and LWR modulo 15 or linear code over F3
and LWR modulo 10. This approach yields (strong) PRF candidates that can be evaluated
by a linear-size affine branching program.

Optimally-Succinct Non-Interactive Arguments

The ability to efficiently obfuscate a PRF would give several compelling applications. One
example, due to Sahai and Waters [32], is a succinct non-interactive argument (SNARG)
with proof length that is the best one could hope for; namely, an s-bit proof suffices to obtain
(roughly) 2−s soundness error.

To give slightly more detail, we briefly recall the obfuscation-based SNARG of [32]. Given
a PRF and relation circuit RL for language L, the crs consists of the obfuscations of two
programs CP and CV . CP takes as input an instance witness pair (x,w) and outputs PRFk(x)
(where k is a hard-coded PRF key) if and only if RL(x,w) = 1. CV , which has the same k
hard-coded, takes as input (x, π) and outputs 1 if and only if PRFk(x) = π. A prover wishing
to prove that x ∈ L simply evaluates Obf(CP) on (x,w) to obtain π = PRFk(x). The verifier
on input x and proof π runs Obf(CV) on (x, π) and accepts if the output is 1.

If the obfuscation is an ideal obfuscation, then forging a proof on x 6∈ L requires predicting
PRF(k, x). If the PRF is exponentially-secure, then the SNARG soundness error is (within
polynomial factors of) 2−s.
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