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Abstract
A graph G on n nodes is an Orthogonal Vectors (OV) graph of dimension d if there are vectors
v1, . . . , vn ∈ {0, 1}d such that nodes i and j are adjacent in G if and only if 〈vi, vj〉 = 0 over Z. In
this paper, we study a number of basic graph algorithm problems, except where one is given as input
the vectors defining an OV graph instead of a general graph. We show that for each of the following
problems, an algorithm solving it faster on such OV graphs G of dimension only d = O(logn) than
in the general case would refute a plausible conjecture about the time required to solve sparse
MAX-k-SAT instances:

Determining whether G contains a triangle.
More generally, determining whether G contains a directed k-cycle for any k ≥ 3.
Computing the square of the adjacency matrix of G over Z or F2.
Maintaining the shortest distance between two fixed nodes of G, or whether G has a perfect
matching, when G is a dynamically updating OV graph.

We also prove some complementary results about OV graphs. We show that any problem which is
NP-hard on constant-degree graphs is also NP-hard on OV graphs of dimension O(logn), and we
give two problems which can be solved faster on OV graphs than in general: Maximum Clique, and
Online Matrix-Vector Multiplication.
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1 Introduction

Two of the most studied conjectures in fine-grained complexity are the Strong Exponential
Time Hypothesis (SETH), and the Orthogonal Vectors Conjecture (OVC). SETH was
introduced by Impagliazzo, Paturi and Zane [17] regarding the complexity of k-SAT:

I Hypothesis 1 (Strong Exponential Time Hypothesis). For every ε > 0, there is an integer
k ≥ 3 such that k-SAT on n variables cannot be solved in O(2(1−ε)n) (randomized) time.

OVC concerns the Orthogonal Vectors (OV) problem: Given as input a set A ⊆ {0, 1}d of
|A| = n vectors, determine whether there are a, b ∈ A such that 〈a, b〉 = 0 (all inner products
in this paper, including this one, are taken over Z unless stated otherwise).
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I Hypothesis 2 (Orthogonal Vectors Conjecture). For every ε > 0, there is a c > 0 such that
OV in dimension d = c logn cannot be solved in O(n2−ε) (randomized) time.

Williams [28] showed that SETH implies OVC. Most of the known fine-grained implications
of SETH use this result and are actually proved assuming OVC instead; see [27] for a survey
of the many applications of OVC to graph algorithms, string algorithms, nearest neighbors
problems, and more.

In this paper, we study a mathematical object inspired by OVC which we call an OV graph:
a graph G on n nodes is an OV graph of dimension d if there are n vectors v1, . . . , vn ∈ {0, 1}d
such that nodes i and j are adjacent in G if and only if 〈vi, vj〉 = 0. Given as input the
vectors v1, . . . , vn ∈ {0, 1}d defining G, there are a number of natural algorithmic questions
one might ask, including:

OV: does G have any edges?
OV∆: does G contain any triangles?
OV-DIR-k-CYCLE: given a partition of the nodes of G into k parts, is there a k-cycle
containing one node from each part?

Detecting triangles and more generally, k-cycles are among the most basic algorithmic
questions one can ask about graphs. OV graphs of low dimension d� n make up a small
fraction of all graphs: there are only 2O(nd) such graphs on n nodes, compared to 2Θ(n2)

total graphs on n nodes. However, in this paper we will show that solving these problems on
OV graphs of dimension only d = O(logn) may be just as hard as solving them in general
graphs. Somewhat analogously to how Williams showed that faster algorithms for OV in
dimension O(logn) would lead to breakthroughs in solving k-SAT, we will show that faster
algorithms for OV∆ or OV-DIR-k-CYCLE on OV graphs of dimension O(logn) would lead to
breakthroughs in solving MAX-k-SAT.

MAX-k-SAT

In the MAX-k-SAT problem for an integer k ≥ 2, given as input a k-CNF formula φ, the
goal is to determine the maximum number of clauses of φ which can be satisfied by a single
assignment.

MAX-k-SAT on n variables and m clauses can be solved in O(2nm) time by exhaustive
search. Williams [28, 29] showed that MAX-2-SAT has a much faster, 2ωn/3poly(n) time
algorithm, where ω < 2.373 is the exponent of matrix multiplication [26, 13]. This running
time for MAX-2-SAT has remained unchallenged for over 15 years. It is an interesting open
problem whether a faster algorithm exists.

Williams’ techniques for MAX-2-SAT do not carry over to MAX-k-SAT for k ≥ 3 (see [19]
for a discussion), and there is no known O((2− ε)n) time algorithm for MAX-k-SAT for any
k ≥ 3 and ε > 0.

Unlike with k-SAT [16], there is no known sparsification lemma for MAX-k-SAT, so that
in principle MAX-k-SAT on formulas with O(n) clauses might be easier than the general
case of MAX-k-SAT that might have nk clauses. This has led researchers to investigate the
complexity of such sparse instances of MAX-k-SAT (e.g. [11, 9, 3]).

The fastest known algorithms for MAX-k-SAT on n variables and cn clauses for constant
c run in time 2n(1−1/O(log2 c))poly(n) when k ≤ 4, or in time 2n(1−1/O(c1/3))poly(n) when
k > 4 [3]. Unfortunately, as c grows, these running times go to 2n, the brute force running
time. Thus the following hypothesis is fully consistent with the state-of-the art of MAX-k-SAT
algorithms:
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I Hypothesis 3 (Sparse MAX-3-SAT Hypothesis). For every ε > 0, there exists a c > 0 so
that n variable MAX-3-SAT on cn clauses cannot be solved in time O(2n(1−ε)).

The hypothesis above strengthens an earlier hypothesis that MAX-3-SAT requires 2n(1−o(1))

time (see e.g. [27, 19]); it would be equivalent to that hypothesis if a sparsification lemma for
MAX-3-SAT can be proven. We will base some of our hardness results on our strengthened
hypothesis. We will also use an analogous hypothesis for Sparse MAX-2-SAT:

I Hypothesis 4 (Sparse MAX-2-SAT Hypothesis). For every ε > 0, there exists a c > 0 so
that n variable MAX-2-SAT on cn clauses cannot be solved in time O(2n(ω/3−ε)).

1.1 Our Results
Triangle Finding and Matrix Multiplication

The best known algorithm for finding a triangle in a graph on n nodes runs in time nω+o(1),
where ω ≤ 2.373 is the matrix multiplication exponent [26, 13]. Our first result is that if
there is a faster algorithm that finds triangles in OV graphs, then Hypothesis 4 would be
violated and sparse MAX-2-SAT would have faster algorithms.

I Theorem 5. Suppose OV∆ in OV graphs with n nodes and dimension O(logn) can be solved
in time nω−ε+o(1) for some constant ε > 0. Then, for any constants a, δ > 0, MAX-2-SAT
on n variables and a · n clauses can be solved in time 2(ω/3−ε/3+δ)n.

The best known algorithm for triangle finding in a general graph G works by reducing to
the Boolean matrix multiplication of two copies of the adjacency matrix of G. In Boolean
matrix multiplication, given as input two matrices A,B ∈ {0, 1}n×n, the goal is to compute
their product over the (AND,OR) semiring, i.e. the matrix C ∈ {0, 1}n×n given by C[i, j] =∨n
k=1A[i, k] ∧B[k, j]. This can be solved in time nω+o(1) using a simple reduction to matrix

multiplication over either F2 or Z.
Similarly, OV∆ in OV graphs with n nodes and dimension d has a simple linear-time

reduction to Boolean matrix multiplication of n×n matrices which are the adjacency matrices
of OV graphs of dimension d. In other words, these are matrices A ∈ {0, 1}n×n for which
there are vectors v1, . . . , vn ∈ {0, 1}d such that A[i, j] = 1 if and only if 〈vi, vj〉 = 0. If such
matrices for d = O(logn) can be multiplied in nω−ε+o(1) time for some constant ε > 0, it
would lead to a corresponding speedup for MAX-2-SAT on n variables and O(n) clauses as
well. In other words, this small set of only O(2nd) = O(2n logn) matrices with such efficient
descriptions may be just as difficult to multiply as arbitrary {0, 1} matrices (of which there
are 2Θ(n2)).

Consequences of the nω hardness of OV∆ for dynamic algorithms

Because of its simplicity, triangle detection has been reduced to many other problems. For
instance, Abboud and Vassilevska Williams [1] present several clean reductions from triangle
detection to a variety of dynamic problems. We next show that, as a consequence of the
hardness of OV∆, many of the triangle-based lower bounds in [1] also hold for OV graphs
with O(logn) dimension.

Typically, in dynamic graph algorithms one supports edge insertions and deletions. In
OV graphs, however, the edge relation is captured by the labels on the vertices of the graph.
Thus, in dynamic OV graphs, we instead support vertex label updates as above. One could
also consider an alternate model where the updates may only change one bit of a vertex
label, but update times in these two models differ by at most a fairly negligible O(d) factor.

ITCS 2020
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Although changing a vertex label can change all the incident edges to the vertex, our
lower bounds apply even when each update changes at most a single edge. Hence the lower
bounds would also apply in the standard dynamic graph algorithms model if one maintains
the OV graph as a graph, rather than as a set of vectors.

Assuming that OV∆ requires nω−o(1) time (as follows from Hypothesis 4), we obtain the
following conditional lower bounds:

Dynamic s-t OV Shortest Paths, maintaining the distance between two fixed vertices
s and t in an n node OV graph with dimension O(logn) under vertex relabel updates
(change the vector representing a node) requires either nω−o(1) preprocessing time, or
nω−1−o(1) amortized update time; the lower bound holds even if the updates insert or
delete at most a single edge. The same lower bounds hold for 5/3− ε-approximating the
s-t distance when arbitrary label updates are allowed, even when the preprocessing time
can be arbitrary.
Dynamic bipartite perfect matching in OV graphs on n nodes and dimension O(logn)
under vertex relabel updates requires either nω−o(1) preprocessing time, or nω−1−o(1)

amortized update time. The lower bound holds even if the updates insert or delete at
most a single edge. If the updates can be arbitrary, the lower bound holds for arbitrary
preprocessing time.

In the full version of the paper we present more such reductions. Because of the structure
of our reductions, the lower bounds we prove in which the relabelings change only a single
edge also hold for incremental algorithms (where edges are only inserted), but the lower
bound is only for worst case update time.

Directed k-Cycle

The fastest known algorithm for finding a k-cycle for any constant k ≥ 3 in a general directed
n-node graph runs in nω+o(1) time via color-coding and matrix multiplication [6]. Our next
result is that under Hypothesis 4, this running time is essentially tight even in OV graphs:

I Theorem 6. Let k ≥ 3 be any constant. Suppose that k-Cycle in directed OV graphs with
n nodes and dimension O(logn) can be solved in time nω−ε+o(1) for some constant ε > 0.
Then, for any constants a, δ > 0, MAX-2-SAT on n variables and a · n clauses can be solved
in time 2(ω/3−ε/3+δ)n.

As our MAX-3-SAT Hypothesis 3 is potentially more believable than our MAX-2-SAT
Hypothesis 4, we further investigate what it implies for k-Cycle detection. We show that
unless Hypothesis 3 fails, there is no constant k for which k-cycle in an n node OV graph
with dimension O(logn) can be found in O(n3/2−ε) time for any ε > 0. The statement of
our directed k-cycle results under Hypothesis 3 are strongest for k = 4:

I Theorem 7. Suppose that OV-DIR-4CYCLE in OV graphs with n nodes and dimension
O(logn) can be solved in time n2−ε+o(1) for some constant ε > 0. Then, for any constants
a, δ > 0, MAX-3-SAT on n variables and a · n clauses can be solved in time 2(1−ε/2+δ)n, and
Hypothesis 3 fails.

If ω = 2, the above would give an essentially tight lower bound under a better hypothesis.
While the lower bounds we obtain under Hypothesis 3 are not nearly as strong as the
tight results we get under Hypothesis 4, they are conditioned on a slightly more believable
hypothesis. Moreover, the techniques seem to be slightly more flexible, so that there might
be hope that a similar result might hold for k-cycle in undirected graphs. When k is odd,
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our hardness results already hold for k-cycle in undirected OV graphs, but when k is even,
k-cycle in general undirected graphs can be solved in O(n2) time regardless of k [30]. Hence
our nω−o(1) lower bound from Hypothesis 4 may not extend to undirected graphs if ω > 2.
A strengthening of our MAX-3-SAT-based reductions to undirected graphs might still be
possible, and would be significant as it would be tight, at least for 4-cycles.

Constant Degree Graphs have low OV dimension

Next, we study the complexity of various NP-hard graph problems when they are restricted
to graphs on n nodes with OV dimension O(logn). We begin with problems which are
known to be NP-hard on constant-degree graphs, including Hamiltonian Path and Minimum
Vertex Cover. It follows from prior work [5] that constant-degree graphs have OV dimension
O(logn). However, the proof of this is nonconstructive, and uses the probabilistic method.
We nonetheless show how to derandomize this proof, giving a deterministic polynomial-time
algorithm for finding a representation of a constant-degree graph as an OV graph of dimension
O(logn). We hence show:

I Theorem 8. Any problem which is NP-hard on graphs of constant maximum degree is also
NP-hard on OV graphs of dimension O(logn).

We also show that at least one NP-hard problem, the Max Clique problem, seems to
become easier on OV graphs of dimension d� n, by reducing to a set packing problem:

I Theorem 9. Given as input vectors V = {v1, . . . , vn} ⊆ {0, 1}d defining a dimension d

OV graph GV , a maximum size clique in GV can be found in time 2d · nO(1).

Online Matrix-Vector Multiplication

Finally, we study the Online Matrix-Vector Multiplication (OMV) problem: preprocess a
matrix M ∈ Fn×n2 so that, given as input a query vector v ∈ Fn2 , one can quickly return the
product M · v. The best known algorithms in general answer queries in time n2−o(1) [18].
We show that faster algorithms are possible when the matrix M is the adjacency matrix of a
graph with OV dimension c logn:

I Theorem 10. For c > 0, we can preprocess vectors u1, . . . , un, v1, . . . , vn ∈ {0, 1}c logn,
which define a matrix M ∈ Fn×n2 as M [i, j] = 1 if and only if 〈ui, vj〉 = 0, in preprocessing
time Õ(n2) with high probability, such that given as input a vector v ∈ Fn2 , we can compute
the product M · v in time n2−1/O(log c).

Data structures for OMV have many applications. For instance, by multiplying the
adjacency matrix of a graph G by an indicator vector for a subset S ⊆ {1, 2, . . . , n} of the
nodes of G, one gets the neighborhood of S. Similar to [18, Corollary 1.1], our Theorem 10
thus yields a data structure with Õ(n2) preprocessing time for OV graphs G of dimension
c · logn which, given as a query a subset S of the nodes of G, can answer whether S is
independent, dominating, or a vertex cover, in time n2−1/O(log c).

Our data structure for Theorem 10 works by expressing the matrix M as the sum of a
matrix of rank n0.1 and a sparse matrix with n2−1/O(log c) nonzero entries. It does this by
combining the algorithm for OV by Abboud et al. [2], which makes use of the “polynomial
method in algorithm design”, together with known techniques for converting polynomial
method constructions into “matrix rigidity” upper bounds [4].

ITCS 2020
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1.2 Other Related Work
OV graphs have been studied in a number of other settings in mathematics and computer
science.

The Edge Clique Cover Number (ECCN) of a graph G is the minimum number of
cliques needed to cover the edges of G. We can see that a graph G is an OV graph of
dimension d if and only if the ECCN of the complement of G is d. A line of work in the
combinatorics community has shown that a number of simple classes of graphs have low
ECCN; see e.g. [12, 5, 15, 24, 23].

The complexity of determining the ECCN of an input graph has also been studied. The
problem is known to be NP-hard in general, but Gramm et al. [14] gave a parameterized
algorithm running in time 22O(k) · poly(n) on an n node graph with ECCN k. Such a doubly-
exponential dependence on k may be optimal: Cygan et al. [10] showed that a 22o(k) · poly(n)
time algorithm would refute the Exponential Time Hypothesis (a weak version of SETH).

Representations of graphs by the orthogonality relations of vectors have also been studied
in other areas. For instance, Lovász [20] describes “orthonormal representations” where each
node must be assigned a unit vector in Euclidean space, and the vectors corresponding to
nonadjacent vertices must be orthogonal. In this language, if G is a graph with low OV
dimension, then the complement of G has low {0, 1}-faithful orthogonality dimension; see
e.g. [22, 21].

2 Preliminaries

2.1 Notation
For a positive integer d, write 0d for the all-zeroes vector of dimension d. Write || to denote
concatenation of vectors.

Define AND : {0, 1}d×{0, 1}d → {0, 1}d, the bit-wise AND function by, for x, y ∈ {0, 1}d
and ` ∈ {1, . . . , d}, AND(x, y)[`] = x[`] · y[`].

2.2 OV Graphs
IDefinition 11 (OV Graph). For positive integers n, d and vectors V = {v1, . . . , vn} ⊆ {0, 1}d,
the OV graph GV is the graph on n nodes where nodes i and j are adjacent if and only
if 〈vi, vj〉 = 0, where the inner product is over Z. The OV dimension of a graph G is the
smallest nonnegative integer d such that G can be written as the OV graph of vectors in
{0, 1}d.

I Definition 12 (Generalized Inner Product). For any positive integers n, d and vectors
v1, . . . , vn ∈ Zd, we define the generalized inner product

IP({v1, . . . , vn}) = 〈v1, . . . , vn〉 =
d∑
`=1

v1[`] · v2[`] · · · vn[`].

The sum (as well as all inner products in this paper) is taken over Z.

I Definition 13 (k-Uniform OV Hypergraph). For positive integers n, d and vectors V =
{v1, . . . , vn} ⊆ {0, 1}d, the k-uniform OV hypergraph GV,k is the k-uniform hypergraph on n
nodes where, for distinct nodes i1, i2, . . . , ik, the hyperedge (i1, . . . , ik) is in GV,k if and only
if 〈vi1 , vi2 , . . . , vik〉 = 0.
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I Definition 14 (OV dimension of a matrix). The OV dimension of a matrix M ∈ {0, 1}n×n
is the smallest nonnegative integer d such that there are 2n vectors u1, . . . , un, v1, . . . , vn ∈
{0, 1}d with the property that, for any i, j ∈ {1, 2, . . . , n}, we have M [i, j] = 1 if and only if
〈ui, vj〉 = 0. Equivalently, the OV dimension of M is the rank of M̄ (the all 1s matrix minus
M) over the OR, AND (Boolean) semiring.

I Remark 15. The adjacency matrix of an OV graph of dimension d is a matrix of OV
dimension d.

2.3 Algorithmic Problems

I Definition 16. We define some problems. For positive integers n, d:
OVn,d: Given A,B ⊆ {0, 1}d with |A| = |B| = n, determine whether there is an (a, b) ∈
A×B with 〈a, b〉 = 0.
EXACT-IPn,d: Given A,B ⊆ {0, 1}d with |A| = |B| = n, and an integer 0 ≤ m ≤ d,
determine whether there is an (a, b) ∈ A×B with 〈a, b〉 = m.
OV∆n,d: Given V ⊆ {0, 1}d with |V | = n, determine whether there are distinct a, b, c ∈ V
with 〈a, b〉 = 〈b, c〉 = 〈c, a〉 = 0.
EXACT-IP∆n,d: Given A,B,C ⊆ {0, 1}d with |A| = |B| = |C| = n, and three integers
0 ≤ mAB ,mBC ,mCA ≤ d, determine whether there is a (a, b, c) ∈ A × B × C with
〈a, b〉 = mAB, 〈b, c〉 = mBC , and 〈c, a〉 = mCA.
OV-HYPERGRAPHn,d,`,k (for ` > k ≥ 2): Given V ⊆ {0, 1}d with |V | = n, determine
whether there is a T ⊆ V of size |T | = ` such that for all S ⊆ T of size |S| = k we have
IP(S) = 0.
DIRECTED-CYCLEn,d,k: Given V1, . . . , Vk ⊆ {0, 1}d with |V1| = · · · = |Vk| = n, determine
whether there is a vi ∈ Vi for each i ∈ {1, 2, . . . , k} such that 〈vi, vi+1〉 = 0 for all such i
(with vk+1 = v1).
MAX-k-SATn,m: Given a k-CNF formula φ on n variables and m clauses, determine the
maximum number of clauses of φ which can be satisfied by an assignment.

3 Reduction from MAX-2SAT to Finding Triangles in OV Graphs

I Lemma 17. There is a polynomial-time reduction from MAX-2-SATn,m to O(m3) instances
of EXACT-IP∆3·2dn/3e,m.

Proof. Partition the input variables into three groups X,Y, Z of n/3 variables each. Let S
be the set of clauses of φ. Partition S into six sets SX , SY , SZ , S′X , S′Y , S′Z such that:

S′X contains the clauses which consist only of literals of variables from X, and S′Y and
S′Z are defined similarly.
SX ⊆ S \ (S′X ∪ S′Y ∪ S′Z) contains the clauses which contain one literal from Y and one
from Z, and SY and SZ are defined similarly.

For each of the O(m3) choices of 0 ≤ mX ,mY ,mZ ≤ m, we will determine whether it is
possible to find an assignment to φ which satisfies all but mX clauses of S′Y ∪ SZ , all but
mY clauses of S′Z ∪ SX , and all but mZ clauses of S′X ∪ SY . From this we can compute the
desired answer.

ITCS 2020
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For any assignment α : X → {0, 1}n/3, define the vector vα ∈ {0, 1}m, whose entries are
indexed by clauses c in S, by

vα[c] =


0 if c ∈ S′X ∪ SY ∪ SZ and α satisfies a literal in c,
0 if c ∈ S′Z ∪ SX ,
1 otherwise.

Similarly, for any assignment β : Y → {0, 1}, define vβ ∈ {0, 1}m by

vβ [c] =


0 if c ∈ SX ∪ S′Y ∪ SZ and α satisfies a literal in c,
0 if c ∈ S′X ∪ SY ,
1 otherwise.

and for any assignment γ : Z → {0, 1}, define vγ ∈ {0, 1}m by

vγ [c] =


0 if c ∈ SX ∪ SY ∪ S′Z and α satisfies a literal in c,
0 if c ∈ S′Y ∪ SZ ,
1 otherwise.

Note that for any assignment s to all the variables, letting α = s|X , β = s|Y , and γ = s|Z ,
we have that 〈vα, vβ〉 counts the number of clauses in S′Y ∪ SZ which are unsatisfied by s,
〈vβ , vγ〉 counts the number of clauses in S′Z ∪ SX which are unsatisfied by s, and 〈vγ , vα〉
counts the number of clauses in S′X ∪ SY which are unsatisfied by s. In other words, our
goal is to determine whether there is an α : X → {0, 1}, β : Y → {0, 1}, and γ : Z → {0, 1}
with 〈vα, vβ〉 = mX , 〈vβ , vγ〉 = mY , and 〈vγ , vα〉 = mZ . This is exactly an instance of
EXACT-IP∆3·2dn/3e,m, as desired. J

I Theorem 18 (Reduction from EXACT-IP to OV implicit in [8, Proof of Lemma 4.2]). For
any positive integer n, and any c, ε > 0, set s := nε log(c/ε) and d := O(2c/ε logn). There is a
pair of maps

r1, r2 : {0, 1}c logn × {1, 2, . . . , s} × {0, 1, . . . , c logn} → {0, 1}d

which can be computed in deterministic time O(s · 2c/ε logn) such that for any x, y ∈
{0, 1}c logn, and any m ∈ {0, 1, . . . , c logn}, we have 〈x, y〉 = m if and only if there is an
i ∈ {1, 2, . . . , s} such that 〈r1(x, i,m), r2(y, i,m)〉 = 0 (over Z).

I Lemma 19. For every c, ε > 0, there is a reduction from an EXACT-IP∆n,c logn instance to
n3ε log(c/ε) many instances of OV∆n,O(2c/ε logn). The EXACT-IP∆ instance is a yes instance
if and only if at least one of the OV∆ instances is a yes instance. The reduction takes time
2O(ε log(c/ε) logn+c/ε).

Proof. In our EXACT-IP∆n,c logn instance, we are given A,B,C ⊆ {0, 1}c logn with |A| =
|B| = |C| = n and three nonnegative integers mAB ,mBC ,mCA, and our goal is to determine
whether there is a (a, b, c) ∈ A × B × C such that 〈a, b〉 = mAB, 〈b, c〉 = mBC , and
〈c, a〉 = mCA.

Set s := nε log(c/ε) and d := O(2c/ε logn), and let r1, r2 be the maps from Theorem 18.
Then, our goal is equivalently to determine whether there is a choice of (a, b, c) ∈ A ×
B × C and iAB , iBC , iCA ∈ {1, 2, . . . , s} such that 〈r1(a, iAB ,mAB), r2(b, iAB ,mAB)〉 =
〈r1(b, iBC ,mBC), r2(c, iBC ,mBC)〉 = 〈r1(c, iCA,mCA), r2(a, iCA,mCA)〉 = 0.
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For each fixed choice of iAB , iBC , iCA ∈ {1, 2, . . . , s}, this is very nearly an instance of
OV∆n,d, which would complete the proof. To convert it into an instance of OV∆n,3d, simply
map:

a→ r1(a, iAB ,mAB)||0d||r2(a, iCA,mCA),

b→ r2(b, iAB ,mAB)||r1(b, iBC ,mBC)||0d,

c→ 0d||r2(c, iBC ,mBC)||r1(c, iCA,mCA),

for each a ∈ A, b ∈ B, c ∈ C, where || denotes concatenation of vectors, and 0d is the all-0s
vector of length d. J

I Theorem 20. Suppose that OV∆N,c logN can be solved in (deterministic) time Nτ+o(1) for
some constant τ ≥ 0 and all constants c > 0. Then, for any constant a > 0, MAX-2-SATn,an
can be solved in (deterministic) time O(2(τ/3+δ)n) for every δ > 0.

Proof. Let ε > 0 be a small constant to be set later. Lemma 17 gives a reduction from
MAX-2-SATn,an to O(n3) instances of EXACT-IP∆O(2n/3),an. Lemma 19 then reduces each
of those to 2O(nε log(a/ε)) instances of OV∆O(2n/3),O(n·23a/ε). The total time for computing
all these reductions is 2O(nε log(a/ε)+a/ε).

For any δ > 0, we can pick a sufficiently small ε > 0 so that the combination is a reduction
from MAX-2-SATn,an to 2δn/2 instances of OV∆O(2n/3),O(n), which can be computed in 2δ/2
time. Each of those instances can be solved in time 2τn/3+o(n) using the given algorithm
with N = O(2n/3), as desired. J

Finally, we can extend Theorem 20 from showing hardness just for OV∆n,O(logn) to
showing hardness for DIRECTED-CYCLEn,O(logn),k for any integer k ≥ 3 (the two problems
coincide when k = 3) via a simple reduction:

I Lemma 21. For any integer k ≥ 3, there is a linear-time reduction from OV∆n,O(logn) to
DIRECTED-CYCLEn,O(logn),k.

Proof. OV∆n,O(logn) reduces to DIRECTED-CYCLEn,O(logn),3 by simply repeating the given
input set three times (unless it contains the all-zeroes vector, in which case we include it in
only one of the three sets). We next show how to reduce from DIRECTED-CYCLEn,O(logn),k−1
to DIRECTED-CYCLEn,O(logn),k for any k ≥ 4, which will complete the proof.

We are given as input k − 1 sets V1, . . . , Vk−1 ⊆ {0, 1}d for d = O(logn) and |Vi| = n for
all i ∈ {1, 2, . . . , k − 1}. For each i write Vi = {vi,j}j∈{1,...,n}.

Next, for a sufficiently large d′ = O(logn), pick 2n vectors α1, . . . , αn, β1, . . . , βn ∈ {0, 1}d
′

such that, for i, j ∈ {1, 2, . . . , n} we have

〈αi, βj〉 =
{

0 if i = j

≥ 1 otherwise.

This can be done, for instance, by picking each αi to be a different vector with exactly half
its entries 1, and picking βi to be ᾱi (i.e. the all 1s vector minus αi). We thus can pick the
smallest d′ = O(logn) such that

(
d′

d′/2
)
≥ n.

We will now pick sets V ′1 , . . . , V ′k ⊆ {0, 1}2d+d′ for our DIRECTED-CYCLEn,O(logn),k
instance. We will pick V ′i = {v′i,j}j∈{1,2,...,n}, where the v′i,j vectors are defined as follows:
If i ∈ {1, 2, . . . , k − 2} then set v′i,j = vi,j ||vi,j ||0d

′ . Then, set v′k−1,j = 0d||vk−1,j ||αj and
v′k,j = vk−1,j ||0d||βj .
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We can see with these choices that the vectors (v1,j1 , v2,j2 , . . . , vk−1,jk−1) formed a k − 1
cycle in the original instance of DIRECTED-CYCLEn,O(logn),k−1 if and only if the k vec-
tors (v′1,j1

, v′2,j2
, . . . , v′k−1,jk−1

, v′k,jk−1
) form a k cycle in the new instance we created of

DIRECTED-CYCLEn,O(logn),k. Moreover, 〈v′k−1,j , v
′
k,j′〉 = 0 if and only if j = j′, so these are

the only possible k cycles in the new instance, as desired. J

I Corollary 22. Suppose for any k ≥ 3 that DIRECTED-CYCLEn,O(logn),k can be solved
in (deterministic) time Nτ+o(1) for some constant τ ≥ 0. Then, for any constant a > 0,
MAX-2-SATn,an can be solved in (deterministic) time O(2(τ/3+δ)n) for every δ > 0.

4 Hypercliques in OV Hypergraphs and Directed Cycles

A straightforward generalization of the above argument shows:

I Theorem 23. Suppose, for integers ` > k ≥ 2, that OV-HYPERGRAPHN,O(logN),`,k can
be solved in (deterministic) time Nτ+o(1) for some constant τ ≥ 0. Then, for any constant
a > 0, MAX-k-SATn,an can be solved in (deterministic) time O(2(τ/`+δ)n) for every δ > 0.

Following the reduction from finding hypercliques in hypergraphs to finding directed
cycles of [19], we can also reduce to finding directed cycles in OV graphs, with some care to
ensure that the OV dimension does not increase too much:

I Theorem 24. Let k ≥ 4 be a constant integer. There is a Õ(d ·nk−dk/3e) time deterministic
reduction from OV-HYPERGRAPHn,d,k,3 to DIRECTED-CYCLEnk−dk/3e,d+O(logn),k.

The proof of the theorem is a bit technical, so we first present the special case for k = 4
and then highlight some changes.

I Theorem 25 (k = 4 case of Theorem 24). There is a O(d · n2 logn) time deterministic
reduction from OV-HYPERGRAPHn,d,4,3 to DIRECTED-CYCLE(n2),d+O(logn),4.

Proof. In OV-HYPERGRAPHn,d,4,3, we are given as input a size-n set V = {v1, . . . , vn} ⊆
{0, 1}d, and we want to determine whether there is a T ⊆ V of size |T | = 4 such that, for all
S ⊆ T of size |S| = 3, we have IP(S) = 0.

We first give some definitions. Define AND : {0, 1}d × {0, 1}d → {0, 1}d by, for x, y ∈
{0, 1}d and ` ∈ {1, . . . , d}, AND(x, y)[`] = x[`] · y[`]. Next, similar to Lemma 21, for a
sufficiently large d′ = O(logn), pick 2n vectors α1, . . . , αn, β1, . . . , βn ∈ {0, 1}d

′ such that,
for i, j ∈ {1, 2, . . . , n} we have

〈αi, βj〉 =
{

0 if i = j

≥ 1 otherwise.

As before, we can pick the smallest d′ = O(logn) such that
(
d′

d′/2
)
≥ n. Finally, define

χ : {1, 2, 3, 4}2 × {1, 2, . . . , n}2 → {0, 1}d′ by

χ(p, q, i, j) =


αj if p = q

βi if p = q + 1 (mod 4)
0d′ otherwise.

Our reduction constructs sets V1, V2, V3, V4 ⊆ {0, 1}d+4d′ , each of size
(
n
2
)
, as follows. For

each p ∈ {1, 2, 3}, and 1 ≤ i < j ≤ n, put into set Vp the vector
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vi,j,p := AND(vi, vj)||χ(p, 1, i, j)||χ(p, 2, i, j)||χ(p, 3, i, j)||χ(p, 4, i, j),

where || denotes vector concatenation. Finally, for each 1 ≤ i < j ≤ n, put into V4 the vector

vj,i,4 := AND(vi, vj)||χ(4, 1, j, i)||χ(4, 2, j, i)||χ(4, 3, j, i)||χ(4, 4, j, i).

We picked the function χ so that, for a, b, c, d ∈ {1, 2, . . . , n},
for p ∈ {1, 2, 3}, we have 〈va,b,p, vc,d,p+1〉 = 0 if and only if a < b = c < d and

〈AND(via , vib), AND(vib , vid)〉 = 〈via , vib , vid〉 = 0.

For p = 4, we have 〈va,b,4, vc,d,1〉 = 0 if and only if a > b = c < d and 〈via , vib , vid〉 = 0.
In other words, there are a, b, c, d ∈ {1, 2, . . . , n} such that 〈va,b,1, vb,c,2〉 = 〈vb,c,2, vc,d,3〉 =
〈vc,d,3, vd,a,4〉 = 〈vd,a,4, va,b,1〉 = 0 if and only if 1 ≤ a < b < c < d ≤ n and, for every
S ⊆ {via , vib , vic , vid} of size |S| = 3 we have IP(S) = 3. In other words, the sets V1, V2, V3, V4
form the desired instance of DIRECTED-CYCLE(n2),d+4d′,4. J

Now we highlight the main changes to the above proof needed to obtain Theorem 24.

Sketch of the proof of Theorem 24. We start with OV-HYPERGRAPHn,d,k,3 where we are
given as input a size-n set V = {v1, . . . , vn} ⊆ {0, 1}d, and we want to determine whether
there is a T ⊆ V of size |T | = k such that, for all S ⊆ T of size |S| = 3, we have IP(S) = 0.

Let γ = k − dk/3e.
The reduction from k-hyperclique in 3-uniform hypergraphs to k-hypercycle in 3-uniform

hypergraphs from [19] carries over to our case and we see (details in the full version) that
OV-HYPERGRAPHn,d,k,3 reduces to the following OV Hypercycle problem: given k sets of
vectors W1, . . . ,Wk where Wi ⊆ {0, 1}d with |Qi| = n, are there a1 ∈ W1, . . . , ak ∈ Qk so
that for every j ∈ {1, . . . , k}, we have that 〈aj , aj+1, . . . , aj+γ〉 = 0, where indices are taken
mod k.

We now take this hypercycle problem with generalized inner product over (γ + 1)-tuples
and reduce it to k-cycle in a graph with roughly nγ vertices extending our construction for
4-cycle.

We extend the definition of AND to take the bitwise AND of a γ-tuple of d length bit
vectors. We then select for sufficiently high d′, 2nγ−1 vectors α1, . . . , αnγ−1 , β1, . . . , βnγ−1 ∈
{0, 1}d′ such that, for i, j ∈ {1, 2, . . . , n}γ−1 we have

〈αi, βj〉 =
{

0 if i = j

≥ 1 otherwise.

This can be done as before by picking each αi to be a different vector with exactly half its
entries 1, and picking βi to be ᾱi. Then we get d′ = O(logn) by picking the smallest d′ with(
d′

d′/2
)
≥ nγ−1. We define χ : {1, 2, . . . , k}2 × {1, 2, . . . , n}γ → {0, 1}d′ by the below, where

i1, . . . , iγ ∈ {1, . . . , n}:

χ(p, q, i1, . . . , iγ) =


αi2,...,iγ if p = q

βi1,...,iγ−1 if p = q + 1 (mod k)
0d′ otherwise.
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Our reduction constructs sets V1, V2, . . . , Vk ⊆ {0, 1}d+kd′ , each of size roughly nγ , as
follows. For each p ∈ {1, 2, . . . , k}, and each γ-tuple i1, . . . , iγ ∈ {1, . . . , n} put into set Vp
the vector

vi1,...,iγ ,p := AND(vp
i1
, . . . , vp

iγ
)||χ(p, 1, vp

i1
, . . . , vp

iγ
)||χ(p, 2, vp

i1
, . . . , vp

iγ
)|| . . . ||χ(p, k, vp

i1
, . . . , vp

iγ
),

where || denotes vector concatenation and vpj is the jth node of Wp from the hypercycle
instance.

We picked the function χ so that,

〈vi1,...,iγ ,p, vj1,...,jγ ,p+1〉 = 0

if and only if (vpi2 , . . . , v
p
iγ

) = (vp+1
i1

, . . . , vp+1
iγ−1

) and

〈AND(vpi1 , . . . , v
p
iγ

), (vp+1
j1

, . . . , vp+1
jγ

)〉 = 〈vp1 , v
p
2 , . . . , v

p
γ , v

p+1
γ 〉 = 0.

In other words, there is an OV k-cycle if and only if there was an OV k-hypercycle. J

We obtain the following corollary:

I Corollary 26. Suppose that there is some ε > 0 so that DIRECTED-CYCLEn,O(logn),k can
be solved in

O(n3/2−ε) time for some k ≥ 6 divisible by 3, or
O(n3/2+1/(2`)−ε) time for some k = 3`+ 1 ≥ 4, or
O(n3/2+1/(4`+2)−ε) time for some k = 3`+ 2 ≥ 5.

Then, for any constant a > 0, MAX-3-SATn,an can be solved in (deterministic) time
O(2(1−ε/4+δ)n) for every δ > 0.

In particular, if DIRECTED-CYCLEn,O(logn),4 can be solved in time n2−ε time for some
ε > 0, then MAX-3-SATn,an has a faster algorithm.

5 Consequences for dynamic problems

In this section we will give two reductions that show that under Hypothesis 4, dynamic graph
problems are hard even in OV graphs. We will need two tools to prove our theorems.

The first is from the previous section. It says that for any n we can construct 2n Boolean
vectors of length O(logn), α1, . . . , αn, β1, . . . , βn so that 〈αi, βj〉 = 0 if and only if i = j.

The second tool is a way to make an OV graph “layered”.

B Claim 27. For any ` ≥ 2, there exist ` nonzero Boolean vectors a1, . . . , a` of length
2 + (`− 2)(`− 1)/2 so that for each i, j, 〈ai, aj〉 = 0 if and only if j = i+ 1 or i = j + 1.

Proof. We proceed by induction. For ` = 2, the vectors are [1, 0] and [0, 1]. Suppose the
vectors for ` are a1, . . . , a` and have length L, then for every j < `, replace aj with aj
concatenated with the length `− 1 bit vector that is all 0 except in position j in which it is
1. Replace a` with a` concatenated with the length `− 1 all 0s vector. Finally set a`+1 to be
the length L all 0s vector concatenated with the length `− 1 all 1s vector.

After the vector replacement, 〈aj , a`+1〉 > 0 for all j < `, and 〈ai, aj〉 is the same as
before the replacement for i, j ≤ `, and 〈a`, a`+1〉 = 0. The length of the vectors goes up by
`− 1. If we assume inductively that L = 2 + (`− 2)(`− 1)/2, adding `− 1, we complete the
proof as (`− 2)(`− 1)/2 + (`− 1) = (`− 1)`/2. C
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I Remark 28. In fact, we will see in Theorem 32 below that the bound 2 + (`− 2)(`− 1)/2 in
Claim 27 can be replaced by only O(log `). However, such an improvement is unimportant
for the results in this section, in which we will always pick ` to be a constant.

First let us consider the dynamic s-t OV Shortest Paths which asks to maintain the
distance between two fixed vertices s and t in an n node OV graph with dimension O(logn)
under vertex relabel updates (change the vector representing a node).

I Theorem 29. Under Hypothesis 4, dynamic s-t OV Shortest Paths with vertex label
updates that change at most one edge at a time requires either nω−o(1) preprocessing time,
or nω−1−o(1) amortized update time. If arbitrary vertex label updates are supported, then
5/3− ε-approximating the s-t distance requires nω−1−o(1) amortized update time even when
starting with an empty graph (all vectors are all 1s).

Proof. Suppose we are given an instance of OV∆ with n vectors V of dimension d = O(logn).
We will start with the proof for vertex label updates that change at most a single edge.
Let us create 4 sets of vectors V1, V2, V3, V4, using the vectors a1, a2, . . . , a6 from Claim 27:

for each i ∈ {1, . . . , 4} and for every v ∈ V , put in Vj the vector vj that concatenates v
with aj+1. In addition, create two new vectors, s and t, where s is the d-length all 1s vector
concatenated with a1 and t is the d-length all 1s vector concatenated with a6.

By construction, s and t are non-orthogonal with all other vectors, and a vector vj ∈ Vj
and a vector uk ∈ Vk for j ≤ k are orthogonal if and only if k = j + 1 and u and v are
orthogonal in the original OV∆ instance.

We will use the length d′ = O(logn) vectors α1, . . . , αn, β1, . . . , βn from our first tool.
For every vector vj ∈ V j for j ∈ {2, 3}, we concatenate the length d′ all 0s vector to its end.
For a vector vjq ∈ V j for j ∈ {1, 4} (where vq is the qth vector of V ) we concatenate βq to
the end of it. This does not change the orthogonality of the vectors. We also concatenate
the length d′ all zeros vector to the ends of both s and t.

This completes the preprocessing stage.
Now, the updates are as follows. We have n stages, one for each vector vq ∈ V . In the

stage for vq, we replace the last d′ bits of s and t with αq and the first d bits with the all
0 vector. This has the effect of inserting the edges (s, v1

q) and (v4
q , t) and leaving all other

edges unchanged.
Then, the distance between s and t in the new OV graph is 5 if and only if there are

vectors a, b ∈ V such that 〈vq, a〉 = 〈a, b〉 = 〈b, vq〉 = 0. At the end of the stage for vq, we
undo the relabeling of s and t and we move on to the next vector in V . This effectively
deletes the two edges that were inserted.

The number of stages is n, and so if the preprocessing time is O(nω−ε) for ε > 0, then
the total time of all n update stages needs to be nω−o(1) under our Hypothesis, and hence
the amortized time per update is nω−1−o(1).

Now we present a simpler proof where the updates are arbitrary relabelings. In the
previous proof since the edges in the initial graph would be too expensive to insert one by
one using single edge updates, we needed preprocessing. Here there will be no need for
preprocessing since we can simply label all vertices as needed one by one.

Create just two sets of vectors V1, V2, using the vectors a1, a2, a3, a4 from Claim 27: for
each i ∈ {1, 2} and for every v ∈ V , put in Vj the vector vj that concatenates v with aj+1. In
addition, create two new vectors, s and t, where s is the d-length all 1s vector concatenated
with a1 and t is the d-length all 1s vector concatenated with a4. Then we will have n stages
one for each vector vq ∈ V in which we will change s and t as follows. In the stage for vq, we
replace the first d bits of s and t with vq. Now, s will only be orthogonal to the vectors in V1
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corresponding to original vectors that are orthogonal to vq and t will be orthogonal to the
vectors in V2 corresponding to original vectors that are orthogonal to vq. Thus the distance
between s and t is 3 if there is a triangle in the OV graph, and it is at least 5 otherwise. J

The second dynamic problem we will prove hardness for is dynamic bipartite perfect
matching in OV graphs: given an OV graph maintain whether it has a perfect matching,
under vertex relabel updates.

I Theorem 30. Dynamic bipartite perfect matching in OV graphs on n nodes and dimension
O(logn) under vertex relabel updates that change only a single edge at a time requires either
nω−o(1) preprocessing time, or nω−1−o(1) amortized update time. If arbitrary vertex relabelings
are supported, the same lower bound holds but with arbitrary preprocessing.

Proof. The proof is similar to the proof of the previous theorem.
We start with an instance of OV∆, and make it layered with 10 layers, s, V 1,1, V 1,2, V 2,1,

V 2,2, V 3,1, V 3,2, V 4,1, V 4,2, t. Here s and t are vertices and the rest contain vectors corres-
ponding to the vectors in V . The layering is accomplished using Claim 27 as in the previous
theorem. This adds a constant number of coordinates to the vectors.

For a particular j, the edges between V j,1 and V j,2 are just a matching between the
vectors vj,1q and vj,2q corresponding to a vector vq ∈ V . This is accomplished using the vectors
αi and βi from our first tool.

The edges between V j,2 and V j+1,1 are between vectors vj,2q and vj+1,1
r that correspond

to vq, vr ∈ V that are orthogonal.
The above two tasks are accomplished as follows. Let L = O(1) be the length of the

vectors aj for j ∈ {1, . . . , 12} from Claim 27 . Let d = O(logn) be the length of the
vectors from the original OV∆ instance and let d′ = O(logn) be the length of the vectors
α1, . . . , αn, β1, . . . , βn from our first tool. Let 0t denote the length-t all 0s vector. Each of
the vectors vj,bq for j ∈ {1, 2, 3, 4}, b ∈ {1, 2} is of length L + 2d′ + 2d as follows. If j is
odd, a vector vj,1q is the concatenation of a2j+2, 0d′ , αq, vq and 0d, and a vector vj,2q is the
concatenation of a2j+3, 0d′ , βq, 0d and vq. On the other hand, if j is even, a vector vj,1q is
the concatenation of a2j+2, αq,0d′ , 0d and vq, and a vector vj,2q is the concatenation of a2j+3,
βq, 0d′ , vq and 0d.

We make s and t orthogonal to each other but not to anything else. This can be done by
letting s be a1 followed by 02d′+2d and t be a2 followed by 02d′+2d. Since all other vectors
start with ak for k ≥ 4, s and t are not orthogonal to any of the other vectors but are
orthogonal to each other.

This completes the preprocessing stage. At this point there is a perfect matching consisting
of (s, t) and the perfect matchings between V j,1 and V j,2 for j ∈ {1, 2, 3, 4}.

There is a stage for each vq ∈ V . In the stage for vq, we make s be in layer 1 and only
orthogonal to v1,1

q , and t be in layer 10 and only orthogonal to v4,2
q . This effectively deletes

the edge (s, t) and inserts edges (s, v1,1
q ) and (v4,2

q , t). (These updates are undone at the end
of the stage.)

Since v1,1
q is the concatenation of a4, αq, 0d′ , 0d, vq and v4,2

q is the concatenation of
a11, βq, 0d′ , vq, 0d, we only need to set s to be the concatenation of a3, βq, 0d′ , 0d, 0d and t to
be the concatenation of a12, αq, 0d′ , 0d, 0d.

Now the only way that for there to be a perfect matching is if there are va, vb ∈ V so
that vq, va, vb form a triangle in the original OV graph. The number of updates is O(n), and
hence we get the same conditional lower bound as in the previous theorem. J
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6 Problems still NP-hard on OV graphs

We begin by recalling Alon’s original proof that graphs with low maximum degree can be
written as OV graphs of low dimension:

I Lemma 31 ([5, Lemma 3.2]). For any graph G with n nodes and maximum degree d, there
are n vectors in {0, 1}O(d2 logn) whose OV graph is G.

Proof. (We give here the original proof of [5].) Let k = d2e2(d + 1)2 lnne. We begin
by picking n vectors v1, . . . , vn ∈ {0, 1}k at random: for each i ∈ {1, 2, . . . , n} and each
` ∈ {1, 2, . . . , k} we set vi[`] = 1 independently with probability 1/(d + 1), and vi[`] = 0
otherwise. Next, we perform a “correction”: for each i, j ∈ {1, 2, . . . , n} which are adjacent
nodes in G, and each ` ∈ {1, 2, . . . , k} such that vi[`] = vj [`] = 1, we set both vi[`] and vj [`] to
0. After this correction, every edge in G is also an edge in the OV graph for V = {v1, . . . , vn}.

Now, consider any i, j ∈ {1, 2, . . . , n} which are not adjacent in G. They are also
not adjacent in the OV graph of V so long as there is an ` ∈ {1, 2, . . . , k} such that (1)
vi[`] = vj [`] = 1 before the correction phase, and (2) for every i′ ∈ {1, 2, . . . , n} \ {i, j} which
is adjacent to i or j (there are at most 2d such i′s), vi′ [`] = 0 before the correction phase.
For a fixed ` ∈ {1, 2, . . . , k}, this happens with probability

1
(d+ 1)2

(
1− 1

d+ 1

)2d
≥ 1
e2(d+ 1)2 .

Thus, for a fixed pair i, j ∈ {1, 2, . . . , n} which are not adjacent in G, the probability that
they are adjacent in the OV graph of V is at most(

1− 1
e2(d+ 1)2

)k
≤ e−k/e

2(d+1)2
≤ 1
n2 .

It follows that the expected number of i, j ∈ {1, 2, . . . , n} which are not adjacent in G but
are adjacent in the OV graph of V is at most

(
n
2
)
· n−2 < 1/2. Hence, by the probabilistic

method, there is a choice of randomness for which there are no such i, j, and hence the OV
graph of V is exactly our graph G, as desired. J

I Theorem 32. Given a graph G with n nodes and maximum degree d, there is a deterministic
algorithm running in time nO(d2) to find n vectors in {0, 1}O(d2 logn) whose OV graph is G.

Proof. We will derandomize the construction from Lemma 31. We first note that, for a
fixed `, when picking vi[`] for all i before the correction phase, it is sufficient to pick them
(2d+ 2)-wise independently, rather than fully independently as we did in the original proof.
Indeed, in the proof that any i, j ∈ {1, 2, . . . , n} which are not adjacent in G are also not
adjacent in the OV graph of V , we only needed to consider vi′ [`] for (2d + 2) choices of
i′. For a fixed `, we can thus draw the required vi[`] before the correction phase for all
i, (2d + 2)-wise independently, to be 1 with probability 1/(d + 1), and 0 otherwise, using
O(d logn) random bits via standard constructions.

Next, rather than independently sample such a vector for each `, we use the standard
derandomization trick of using a random walk on a constant-degree expander graph (see
e.g. [25, Section 4.2]). We saw above that for a given i, j ∈ {1, 2, . . . , n} which are not adjacent
in G, the required vector entries for a particular ` can be drawn with O(d logn) random bits,
and will cause them to be not adjacent in the OV graph of V with probability 1/O(d2). Hence,
using an expander random walk, we can draw the vector entries for t = O(d2 logn) different
`s using O(t+ d logn) = O(d2 logn) random bits. As before, there is a choice of randomness
for which the resulting OV graph is G. We can iterate over all 2O(d2 logn) = nO(d2) choices of
randomness to find such an OV graph as desired. J
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This immediately gives a polynomial-time reduction from algorithmic problems on sparse
graphs to algorithmic problems on OV graphs of dimension O(logn). For instance:

I Corollary 33. Any problem which is NP-hard on graphs of constant maximum degree is
also NP-hard on OV graphs of dimension O(logn).

Finally, we note that some NP-hard graph problems do become easier on OV graphs:

I Theorem 34. Given as input vectors V = {v1, . . . , vn} ⊆ {0, 1}d defining a dimension d
OV graph GV , a maximum size clique in GV can be found in time 2d · nO(1).

Proof. A clique in GV of size s corresponds to a subset S ⊆ V of size |S| = s such that, for
each i ∈ {1, 2, . . . , d}, there is at most one v ∈ V such that v[i] = 1. Equivalently, if we view
each v ∈ V as a subset of U := {1, 2, . . . , d} (i.e. i ∈ v if and only if v[i] = 1), then S ⊆ V

is a clique if and only if it is a collection of disjoint subsets of U . Finding the maximum
size clique is hence the set packing problem in a universe of size d, which can be solved in
2d · nO(1) time [7]. J

7 OV Matrices and Online Matrix-Vector Multiplication

I Theorem 35. For any real numbers a, c with c > 2a > 0, and any matrix M ∈ Fn×n2
of OV dimension c · logn, we can write M = L · R + S where L,RT ∈ Fn×r2 for r =
na log(c/a)+o(1), and S ∈ Fn×n2 has at most O(n2−a) entries equal to 1. Moreover, given the
vectors u1, . . . , un, v1, . . . , vn ∈ {0, 1}c logn such that M [i, j] = 1 if and only if 〈ui, vj〉 = 0
(over Z), we can compute L,R and S in randomized time Õ(n2) with high probability.

Proof. We use the polynomial method similar to [2, Theorem 1.1]. Let d = c logn. For every
subset S ⊆ {1, 2, . . . , d}, define the polynomial pS : Fd2 → F2 by pS(x) =

∑
`∈S x[`]. Notice

that, when x = 0d, then pS(x) = 0 for all S, and when x 6= 0d, then pS(x) = 1 for half of all
S.

Let m = a logn. We begin by picking m independent, uniformly random subsets
S1, . . . , Sm ⊆ {1, 2, . . . , d}. We then compute the set E of all pairs (i, j) ∈ {1, . . . , n}2
such that AND(ui, vj) 6= 0d but pSt(AND(ui, vj)) = 0 for all t ∈ {1, . . . ,m}. This can be
computed in O(n2md) = Õ(n2) time. From the above discussion, a given (i, j) will be in
E with probability 2−m = n−a, and so the expected size of E is n2−a. Hence, by Markov’s
inequality, |E| ≤ 100 · n2−a with probability at least 0.99; if this is not the case, repeat
independently until it is.

Now, consider the polynomial p : Fd2 → F2 given by, for z ∈ Fd2, p(z) = 1+
∏m
t=1(1+pSt(z)).

Since p is over F2, with x2 = x for all x ∈ F2, we can assume that p is multilinear by reducing
any exponent larger than 1 to 1. Hence, we can expand p into a sum of multilinear monomials,
and the number r of monomials will be at most1

r ≤
m∑
g=0

(
d

g

)
≤ O

(
d

m

)m
= O

(
c logn
a logn

)a logn
≤ na log(c/a)+o(1).

1 Here we use the fact, from Stirling’s inequality, that for any 1 ≤ k ≤ n we have
(

n
k

)
≤ nk

k! ≤
(

e·n
k

)k ≤
O(n/k)k.
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In particular, since for x, y ∈ Fd2 the vector AND(x, y) consists of a single monomial in
terms of x and y in each entry, i.e. AND(x, y)[`] = x[`] · y[`], we can write

p(AND(x, y)) =
r∑

w=1

∏
`∈Tw

x[`] · y[`]

for some subsets T1, . . . , Tr ⊆ {1, 2, . . . , d}. Define the map V : Fd2 → Fr2 by V (x)[w] =∏
`∈Tw x[`]. Hence, p(AND(x, y)) = 〈V (x), V (y)〉 (where the inner product is over F2).
Finally, we can define our matrices L,R, S as follows: L ∈ Fn×r2 is the matrix whose

ith row is V (ui), R ∈ Fr×n2 is the matrix whose jth column is V (vj), and S ∈ Fn×n2
is the matrix whose entry S[i, j] is 1 if and only if (i, j) ∈ E. Hence, we can see that
(L · R)[i, j] = p(AND(ui, vj)), and we have defined E so that S[i, j] = 1 if and only if
p(AND(ui, vj)) 6= M [i, j]. J

I Corollary 36. For c > 0, given vectors u1, . . . , un, v1, . . . , vn ∈ {0, 1}c logn which define
a matrix M ∈ Fn×n2 of OV dimension c logn, we can compute matrices L ∈ Fn×n

0.1

2 ,
R ∈ Fn

0.1×n
2 and S ∈ Fn×n2 in time Õ(n2) with high probability such that S has at most

n2−1/O(log c) nonzero entries and M = L ·R+ S.

Proof. Apply Theorem 35 with a = 1/O(log c) so that a log(c/a) < 0.1. J

I Corollary 37. For c > 0, we can preprocess vectors u1, . . . , un, v1, . . . , vn ∈ {0, 1}c logn

which define a matrix M ∈ Fn×n2 of OV dimension c logn, in preprocessing time Õ(n2) with
high probability, such that given as input a vector v ∈ Fn2 , we can compute the product M · v
in time n2−1/O(log c).

Proof. In preprocessing we compute the matrices L,R, S from Corollary 36. Then, on
input v, we compute L · (R · v) in O(n1.2) time and S · v in n2−1/O(log c) time, and sum the
results. J
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