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Abstract
Say that we are given samples from a distribution ψ over an n-dimensional space. We expect
or desire ψ to behave like a product distribution (or a k-wise independent distribution over its
marginals for small k). We propose the problem of enumerating/list-decoding all large subcubes
where the distribution ψ deviates markedly from what we expect; we refer to such subcubes as skewed
subcubes. Skewed subcubes are certificates of dependencies between small subsets of variables in ψ.
We motivate this problem by showing that it arises naturally in the context of algorithmic fairness
and anomaly detection.

In this work we focus on the special but important case where the space is the Boolean hypercube,
and the expected marginals are uniform. We show that the obvious definition of skewed subcubes
can lead to intractable list sizes, and propose a better definition of a minimal skewed subcube, which
are subcubes whose skew cannot be attributed to a larger subcube that contains it. Our main
technical contribution is a list-size bound for this definition and an algorithm to efficiently find all
such subcubes. Both the bound and the algorithm rely on Fourier-analytic techniques, especially
the powerful hypercontractive inequality.

On the lower bounds side, we show that finding skewed subcubes is as hard as the sparse
noisy parity problem, and hence our algorithms cannot be improved on substantially without a
breakthrough on this problem which is believed to be intractable. Motivated by this, we study
alternate models allowing query access to ψ where finding skewed subcubes might be easier.
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1 Introduction

Assume that we observe samples from a distribution ψ over points in n-dimensional space Dn.
Our prior belief is that each attribute has a marginal distribution µi and that the various
attributes are nearly independent (or at least k-wise independent for small k), hence ψ is
close to the product distribution µ =

∏
i µi. Our goal is to find significant deviations between

our hypothesis µ and the observed distribution ψ, manifested as significant dependencies
between small sets of variables. The distribution µ might represent either a prior model for
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84:2 Finding Skewed Subcubes Under a Distribution

ψ, or it might be represent a target distribution that we wish ψ to be close to. This problem
arises naturally in several machine learning applications as we detail in Section 1.1, but first
we formulate the problem with more detail.

To formulate a precise statement, we first define the notion of subcubes. Assume that
D is ordered and bounded, the two canonical examples are Dn = {0, 1}n and Dn = [0, 1]n.
Let K ⊆ [n] be a set of k coordinates. For x ∈ Dn, xK denotes the projection of x onto
coordinates in K. For each j ∈ K, let Ij ( D be an interval in D. We call the set of points
C = {x ∈ Dn : xK ∈

∏
j∈K Ij} a subcube of codimension k. We have

µ(C) := Pr
x∼µ

[x ∈ C] =
∏
j∈K

Pr
xj∼µj

[xj ∈ Ij ] =
∏
j∈K

µj(Ij).

If we similarly define ψ(C) := Prx∼ψ[x ∈ C], then our goal is to find subcubes such that
|µ(C)− ψ(C)| ≥ γ. Motivated by our applications, we add two more desiderata to our
problem formulation (that will be justified shortly): we restrict to large subcubes, and we
want algorithms that enumerate all subcubes that satisfy our conditions.

One way to restrict to large subcubes is to only consider subcubes with µ(C) ≥ η for
some η ∈ [0, 1]. Alternately, we could bound the codimension by k. The advantage of the
latter is that we only need that µ is k-wise independent for the equality µ(C) =

∏
j∈K µj(Ij)

to hold. In the discrete case Dn = {0, 1}n, the two notions coincide since µ(C) = 2−k for
subcubes of codimension k.

Rather then phrasing this as an optimization question where the goal is to find the
subcube that maximizes the deviation γ, our goal will be to come up with a list-decoding style
algorithm that enumerates over all subcubes of codimension k such that |µ(C)− ψ(C)| ≥ γ.

In addition to being a natural algorithmic question in its own right, this problem comes
up in recent work in machine learning, on anomaly detection and fairness.

1.1 Motivation
Fairness in Machine Learning
Assume there is a base population P of individuals, each described by n attributes. We
naturally view P as inducing a distribution µ on the attribute space Dn. Suppose that
small subsets of the attributes are nearly independent, so that µ is close to being k-wise
independent for some k which is small compared to n. We are given a distribution ψ over
this population. Our goal is to discover significant biases in the distribution that are not
present in the original population P . For instance the population P might be the set of
students that apply to a university, and ψ might represent the set of successful applicants.
Or P might be the training data for a machine learning algorithm while ψ represents the
misclassified inputs. The latter setting has received a fair amount of attention in the context
of algorithmic bias and fairness in Machine learning, where the most commonly studied
notion is that of intersectionality bias [4]: we are interested in biases where we restrict the
values of some small subset of attributes, which are typically discrete. See for instance a
recent study showing that facial recognition software has higher error rates for women of
color [3]. Our motivation for considering subcubes is that it captures intersectionality in the
discrete setting.

Enumerating over all subcubes is more appropriate than optimization in this setting since
not all intersectionalities might be equally important. The fact that college applications
submitted during certain days of the week are less likely to be accepted might not be as
significant as the fact that certain zipcodes are less likely to be accepted; even if the deviation
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is lower in the latter case. We ask for algorithms that enumerate over all biased subcubes
and leave it to subject experts to decide how interesting these are, just as in list-decoding we
do not worry about how the receiver chooses from the list of possible codewords returned by
the decoder. Another reason to favor enumeration is that in real-world datasets, we may
not expect ψ to be truly k-wise independent; we might expect correlations between certain
sets of attributes. But even so, an exhaustive list of significant correlations might lead us
to discover interesting new properties of the distribution and refine our model for ψ. The
restriction to subcubes of bounded codimension is natural since intersectionalities of few
attributes are more interesting.

Anomaly Detection
Anomaly detection is a ubiquitous unsupervised learning problem [5]. Isolation based methods
for anomaly detection have proven to be extremely effective in practice [15, 7, 11]. Building
on this, the recent work of [10] proposes an approach to anomaly detection based on a
notion called Partial Identification. It assigns a score denoted PIDScore(x, P ) to each point
x ∈ P which measures how easy it is to distinguish x from other points in P . They give
a heuristic to compute PIDScore(x, P ), and show that the resulting anomaly detection
algorithm outperforms several popular anomaly detection methods, across a broad range of
benchmarks.

Formally, given a set of points P ⊆ Dn and a subcube C ∈ Dn, define the sparsity of C as

ρ(C) = vol(C)
|C ∩ P |

The PIDScore of a point x ∈ P is the maximum value of ρ(C) over all subcubes that
contain it.

PIDScore(x, P ) = max
C3x

ρ(C).

Anomalous points are those for which PIDScore(x, P ) ≥ t for some threshold t. Equivalently,
it suffices to find all C such that ρ(C) ≥ t, and then take all the points contained in them.

To relate this to our problem, let us take µ to be the uniform measure over Dn and ψ to
be the measure induced by P . Rescaling ρ by a factor of |P |/vol(Dn), we get

ρ′(C) = vol(C)
vol(Dn)

|P |
|C ∩ P |

≈ µ(C)
ψ(C) .

2

If we also scale the threshold t by the same factor, then the set of outliers stays the same.
But ρ′(C) ≥ t′ implies ψ(C) ≤ µ(C)/t′, hence

µ(C)− ψ(C)
µ(C) ≥ 1− 1

t′
.

Thus this is an instance of the problem that we consider, where our goal is to find non-empty
subcubes that are underrepresented in ψ, when compared to µ. Enumeration over all sparse
subcubes is natural in this setting, since we wish to list all points with high scores.

2 Actually |C ∩ P |/|P | = ψ(C) only in expectation, but since subcubes have small VC dimension, we get
tight concentration.

ITCS 2020
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2 Our Results

In this paper, we focus on the case when Dn = {±1}n and µ is the uniform distribution. We
believe that several of our techniques apply to more general product distributions. A subcube
of codimension k is obtained by restricting the values of some subset K of coordinates. For
subcubes C ⊆ D we refer to C as a child of D and D as a parent of C.

As a warm-up we first consider the following problem:

I Problem 1 (Finding skewed subcubes). Given sample access to a distribution ψ over {±1}n
and γ ∈ (0, 2k − 1] find all subcubes C with codimension j ≤ k such that∣∣∣∣Prx∼ψ[x ∈ C]− 2−j

2−j

∣∣∣∣ ≥ γ.
There is a trivial Õ(nk) algorithm that enumerates over all subcubes. To beat this naive

bound, we first need to bound the list-size of the output, or rather a bound on the number
of skewed subcubes. However, we show in Lemma 12 that there exist distributions where the
number of skewed subcubes is Ω((n/k)k), which is not far from the trivial upper bound.

The proof of Lemma 12 demonstrates that one source for the abundance of skewed
subcubes is that skew is easily inherited by children from their parents: if a subcube C of
codimension j is skewed, for every choice of k− j additional coordinates, by simple averaging,
there is at least one restriction that results in a skewed subcube. So even if we consider
the uniform distribution over points with x1 = 1, there are Ω(nk−1) skewed subcubes by
this definition, while really the only interesting subcube is the x1 = 1 subcube. Our first
contribution is a definition which captures only those subcubes that do not inherit their skew
from a parent.

I Problem 2 (Finding minimal skewed subcubes). Given sample access to a distribution ψ
over {±1}n, γ ∈ (0, 2k − 1] and ε ∈ (0, 1) find all subcubes C with codimension j ≤ k such
that∣∣∣∣Prx∼ψ[x ∈ C]− 2−j

2−j

∣∣∣∣ ≥ γ.
and for every parent C ′ ) C of codimension i,3∣∣∣∣Prx∼ψ[x ∈ C]− 2−i

2−i

∣∣∣∣ ≤ γ(1− ε).

We refer to such a subcube as a (γ, ε)-minimal skewed subcube. This notion is motivated
by our applications: if we already know that Prx∼ψ[(x1 = 1) ∧ (x2 = 1)] = 3/4 (rather than
1/4), then knowing that Prx∼ψ[(x1 = 1) ∧ (x2 = 1) ∧ (x3 = 1)] = 3/8 should not surprise us,
given our prior.

A natural question to ask is whether focusing in minimal skewed subcubes suffices to
make the problem (or at least the list size) more tractable. Our second contribution is a
bound on the number of minimal skewed subcubes which is independent of the dimension n.
Instead we have a dependence on the max norm of the probability distribution defined below.

3 The formal definition of minimal skewed subcubes (Definition 13) is a little more involved, we only care
about those parents of C which are skewed the same way as C.
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Given a distribution ψ on {±1}n, let ‖ψ‖∞ := 2n · maxx∈{±1}n Prx∼ψ[x = x]. The
parameter ‖ψ‖∞ lies in the range [1, 2n] and is a measure of how well-spread the distribution
is. It is referred to as the smoothness of a distribution in the literature on boosting, and is
closely related to min-entropy. The uniform distribution has t = 1, whereas t = 2n when the
entire distribution is concentrated on a single point.

I Theorem 1. For a distribution ψ on {±1}n, the number of (γ, ε)-minimal skewed subcubes
of codimension at most k is bounded by kO(k) (ln(e ‖ψ‖∞) poly(1/ε, 1/γ))k.

For constant ε, γ, the asymptotic dependence on n is never worse than O(nk), which
happens when ψ is concentrated on a point. But when ‖ψ‖∞ = O(1), the above bound is
Ok(1) and when ‖ψ‖∞ = poly(n), the bound is Ok(ln(n)k) improving substantially over the
O(nk) bound.

There are two key elements in the proof of Theorem 1. We first use a novel Fourier based
algorithm to reduce the problem to that of finding large, low-degree Fourier coefficients in a
series of restrictions of the distribution ψ to various subcubes. We then use the powerful
hypercontractive inequality to bound the number of such coefficients in any distribution in
terms of ‖ψ‖∞. This latter bound generalizes the level-k inequalities for indicators of small
sets in the Boolean hypercube [16, Chapter 9], and the proof follows similar lines. We also
construct distributions showing that for various values of ε, γ, the dependency of (ln(‖ψ‖∞))k
is optimal. The distributions are constructed using the Tribes function and BCH codes.

We now turn to the algorithmic problem of finding the list of minimal skewed subcubes.
We observe that even when the list-size is constant, there is a significant algorithmic barrier
to a no(k) algorithm, namely the k-sparse noisy parity problem [8, 18]. In this problem, we
are given points x and labels y which are the XOR of some k-subset S with random noise of
rate η added. There is a simple reduction from this problem to finding skewed subcubes,
if we consider the distribution of (x, y) ∈ {±1}n+1 the only skewed subcubes involve the
coordinates S ∪ {n+ 1}.

I Theorem 2. For η ∈ (0, 1/2), an algorithm that given a distribution ψ and k can find a
(1− 2η, 1)-minimal skewed subcube of co-dimension k in time T (n, k, η) can be used to solve
the k-sparse noisy parity problem with noise rate η in time T (n, k, η).

Given this reduction, there are two lower bounds on the running time of any list-decoder:
the list-size given in Theorem 1, and the running time of the best known algorithm for the
k-sparse noisy parity problem, which is O(n0.8k) due to [18]. We give an algorithm that
nearly gets the sum of these two bounds.

I Theorem 3. For any measure ψ on {±1}n, integer k ≤ n, and parameters 0 ≤ γ ≤ 2k − 1
and 0 ≤ ε ≤ 1, there are algorithms that return all (γ, ε)-minimal skewed subcubes of
codimension at most k in time

Õ
(
n0.8k)+ Õ

(
nk/3

)
· kO(k)

(εγ)4/λ+2k

(
ln
(
e ‖ψ‖∞
εγ

))k
Finally, to circumvent the noisy parity problem, we consider stronger models where we

have query access to the distribution ψ: in addition to random samples, we can also query
the value of ψ(x) for any x ∈ {±1}n. The noisy parity problem becomes trivial to solve once
one has query access. In this model, we are able to get an algorithm whose running time
is is poly(n, ‖ψ‖∞). Thus when ‖ψ‖∞ < nαk for some α > 0, this improves over the trivial
algorithm. We show some dependence on ‖ψ‖∞, possibly of the form ln(‖ψ‖∞)k is inherent
even in the query model, by constructing a distribution ψ (with large ‖ψ‖∞) where the query
model and random samples model are equivalent, and where finding skewed subcubes lets us
solve the k-sparse noisy parity problem.

ITCS 2020
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2.1 Related Work
In nearby work, [1] study the problem of testing whether a distribution is δ close in statistical
distance to (ε, k)-wise uniform. In our language, a distribution D is said to be (ε, k)-wise
uniform if all subcubes of codimension j ≤ k have skew no greater than 2jε. They provide a
sample complexity upper bound of O((k logn)/ε2δ2). They then provide evidence, based on
the conjectured hardness of finding planted cliques, that no polynomial in n time algorithm
for this problem exists (one can also base this hardness on sparse noisy parity, as we do here).
Indeed, their testing algorithm essentially reduces the problem to the optimization version:
find the subcube of codimension k such that the skew is maximized.

Fourier analytic techniques have found widespread use in a variety of supervised learning
problems under the uniform distribution [16]. Our work differs from this in that the problem
we consider is an unsupervised learning problem, and that we use Fourier analysis over the
uniform distribution to reason about the deviation from an arbitrary distribution. In this
aspect, our work is similar to the work of [1, 17].

Finally, there have been a line of recent results in machine learning which have a list-
decoding flavor to them, see for instance [6, 12].

Outline of the paper. Section 3 introduces definitions and notation. Section 4 contains
Fourier analytic results that are required for our results. Section 5 proves our main com-
binatorial bounds on the number of skewed subcubes, and gives examples that show these
bounds are tight. Section 6 describes the efficient algorithm for enumerating minimal skewed
subcubes. Section 7 gives lower bounds due to the reduction from the noisy parity problem.
Section 8 considers the problem in the membership query model. Some proofs are deferred
from the main body to the Appendix 9.

3 Definitions

In this section we present basic definitions and facts.

Distributions

We denote the n-dimensional Hamming cube by {±1}n. Given a probability distribution
ψ on {±1}n, it is convenient to identify it with the probability measure ψ : {±1}n → R≥0

which satisfies

E
x∼{±1}n

[ψ(x)] = 1.

We write x ∼ ψ to denote x is a random variable with the distribution

Pr
x∼ψ

[x = x] = ψ(x)
2n

Henceforth, we will interchangeably refer to ψ as a distribution and a measure. We will use
µ to denote the uniform distribution over {±1}n, where µ(x) = 1 for all x ∈ {±1}n. Given
functions f, g : {±1}n → R, we define their inner product by 〈f, g〉 := Ex∼µ[f(x)g(x)]. We
define ‖f‖p := Ex∼µ[f(x)p]1/p. For two probability measures ψ, θ, we have

〈ψ, θ〉 =
∑

x∈{±1}n

ψ(x)θ(x)
2n = E

x∼ψ
[θ(x)] = E

x∼θ
[ψ(x)].
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Let A ⊆ {±1}n and let α = |A|/2n denote its fractional density. We use µA to denote
the uniform distribution over A. The corresponding measure is defined as

µA(x) =
{

1
α if x ∈ A
0 otherwise

(1)

For a distribution ψ, we define

‖ψ‖∞ = max
x∈{±1}n

ψ(x)

It follows from the definition that

‖ψ‖∞ = 2n max
x∈{±1}n

Pr
x∼ψ

[x = x] = max
x∈{±1}n

Prx∼ψ[x = x]
Prx∼µ[x = x]

A bound on ‖ψ‖∞ implies that no point is too likely.

Subcubes

A subcube is a subset of {±1}n obtained by fixing some subset of bits to a particular value.
Formally, a subcube C ⊆ {±1}n is specified by a pair (K, y) where K ⊆ [n] and y ∈ {±1}K .
We have

C = {x ∈ {±1}n s.t. xi = yi ∀ i ∈ K}.

We refer to coordinates in K as the fixed coordinates of C, and to the rest as the free
coordinates of C. For C = (K, y) we define the codimension of C to be |K| and denote
it codim(C). We use C≤k to denote the set of all subcubes of codimension at most k. By
Equation (1), µC the uniform measure over C is given by

µC(x) =
{

2codim(C) if x ∈ C
0 if x 6∈ C

For subcubes C = (K, y), D = (L, z), we have D ⊂ C iff K ⊂ L and zi = yi for all i ∈ K.
We refer to D as a child of C and C as a parent of D.

I Definition 4 (Restriction). For a distribution ψ on {±1}n and a subcube C ⊆ {±1}n such
that ψ assigns non-zero probability to C we define ψ|C : C → R≥0, the restriction of ψ to C,
as

ψ|C (x) = ψ(x)
〈ψ, µC〉

.

Since 〈ψ, µC〉 = Ex∼µC [ψ(x)], ψ assings non-zero probaility to C iff 〈ψ, µC〉 > 0. The
restriction is itself a legal probability measure; it satisfies Ex∈C [ψ|C ] = 1. This definition
immediately implies the relationship:

I Fact 5. For a distribution ψ on {±1}n and a subcube C ⊂ {±1}n

‖ψ|C‖∞ =
‖ψ‖∞
〈ψ, µC〉

I Lemma 6. Given subcubes C and D such that D ⊆ C ⊆ {±1}n, and a density function
ψ, it holds that:

〈ψ, µD〉 = 〈ψ, µC〉 ·
〈
ψ|C , µD

∣∣
C

〉

ITCS 2020
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3.1 Skewed subcubes
I Definition 7 (Skew). We define the skew of a subcube C with respect to measure ψ as

Skewψ(C) = 〈ψ, µC〉 − 1

The next two lemmas state some simple facts about the skew of subcubes. First we
show the skew of a subcube measures the deviation of the measure on the subcube from the
uniform distribution.

I Lemma 8. Let codim(C) = k. We have

Skewψ(C) = 2k Pr
x∼ψ

[x ∈ C]− 1

= 1
Prx∼µ[x ∈ C]

(
Pr
x∼ψ

[x ∈ C]− Pr
x∼µ

[x ∈ C]
)
.

I Corollary 9. For any distribution ψ, Skewψ(C) lies in the range [−1, 2k − 1].

If Skewψ(C) < 0, we say that C is negatively skewed while if Skewψ(C) > 0 we say
that it is positively skewed. An averaging argument shows that the existence of negatively
skewed subcubes implies the existence of positively skewed subcubes and vice versa.

I Lemma 10. For any K ⊆ [n], we have∑
D=(K,w)
w∈{±1}K

Skew(D) = 0.

Given a cube C = (K, y) of codimension k, we can partition it into 2` subcubes of
codimension k + `, where we pick a set L of ` additional coordinates outside of K to fix and
enumerate over all settings of these coordinates.

I Lemma 11. If {C1, . . . , C2`} is a partition of C, then

Skewψ(C) = 1
2`

2`∑
i=1

Skewψ(Ci).

Having established basic properties of the skew function, we next turn to bounding the
number of subcubes with a given skew. We show that this number may be quite large in the
worst case.

I Lemma 12. Let γ = 2f − 1 for f ∈ {1, . . . , k}. There exists a distribution ψ such that
there are Ω((n/k)k) many subcubes of codimension k with Skew(C) ≥ γ.

Proof. Let C be the subcube where the first t ≥ f bits are fixed to 1, and let µC be the
uniform distribution over it. Consider any subcube D where we choose f indices from [t]
and k − f indices from [n] \ [t], and set them to 1. We have

〈µC , µD〉 = E
µC

[µD] = 2k Pr
x∼µC

[x ∈ D] = 2k 1
2k−f = 2f ≥ 1 + γ

since a point from µC lies in D iff the k − f bits from [n] \ [t] are all set to 1. We now
optimize the choice of t. Let α = f/k for α ≤ 1. We choose t = αn (ignoring floors and
ceilings which will not affect the asymptotics). The number of choices for D is given by(

t

f

)
·
(
n− t
k − f

)
=
(
αn

αk

)
·
(

(1− α)n
(1− α)k

)
≥
(n
k

)αk
·
(n
k

)(1−α)k
≥
(n
k

)k
. J
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While the above bound is proved for positive skew, Lemma 10 can be used to derive a
similar bound for negative skew. Given that this bound is not too far from the trivial upper
bound of

(
n
k

)
, we need to refine our notion of skew, and also to restrict the set of distributions

we consider.

3.2 Minimal skewed subcubes
Lemma 11 tells us that if there exists C = (J, y) such that |J | = j < k and Skew(C) ≥ γ,
then for any L ⊆ [n] \ J of size k − j, there exists some further restriction of bits in L such
that the resulting subcube D ⊆ C has Skew(D) ≥ γ. This suggests that we ought to ignore
subcubes such as D that can be viewed as inheriting skew from some parent C, and instead
focus on subcubes whose skew is larger than any parent. One technical issue is that we
now need to handle the case of positive and negative skew separately. This motivates the
following definitions.

I Definition 13. Let γ ∈ (0, 2k−1] and ε ∈ (0, 1]. A subcube C ⊆ {±1}n is a (γ, ε)-minimally
skewed subcube if Skew(C) ≥ γ and for all its parent subcubes D ) C, we have

Skewψ(D) ≤ (1− ε)γ. (2)

Let γ ∈ (0, 1] and ε ∈ (0, 1]. A subcube C ⊆ {±1}n is a (−γ, ε)-minimally skewed subcube if
Skew(C) ≤ −γ and for all its parent subcubes D ) C, we have

Skewψ(D) ≥ −(1− ε)γ. (3)

Note that our convention is to always use γ > 0 for the magnitude of the skew, and specify
its sign explicitly. Note that the allowable values of γ are different for the case of positive
and negative skew. We restrict ε ∈ (0, 1]. The case ε = 1 corresponds to the case where every
subcube of C has no skew.

The crux of this definition is that minimal skew cannot be inherited from a parent. Given
a minimal skewed subcube C, and a parent D ) C, we show that C has noticeable skew in
the restriction ψ|D.

I Lemma 14. If C is a (γ, ε)-minimal skewed subcube and D ⊇ C is a parent of C, then

Skewψ|D (C) ≥
ε
√
γ

2 .

If C is a (−γ, ε)-minimal skewed subcube and D ⊇ C is a parent of C, then

Skewψ|D (C) ≤ −εγ.

Proof. We first consider the case when γ > 0. By Lemma 6

〈ψ|D , µC |D〉 = 〈ψ, µC〉
〈ψ, µD〉

= 1 + Skewψ(C)
1 + Skewψ(D) ≥

1 + γ

1 + (1− ε)γ . (4)

We have

Skewψ|D (C) = 〈ψ|D , µC |D〉 − 1 ≥ εγ

1 + (1− ε)γ ≥
εγ

2
√

(1− ε)γ
≥
ε
√
γ

2

where the first inequality is by Equation (4) and the second is by the AM-GM inequality.

ITCS 2020



84:10 Finding Skewed Subcubes Under a Distribution

Next we consider the case where γ < 0. By Lemma 6

〈ψ|D , µC |D〉 = 〈ψ, µC〉
〈ψ, µD〉

= 1 + Skewψ(C)
1 + Skewψ(D) ≤

1− γ
1− (1− ε)γ .

Hence

Skewψ|D (C) = 〈ψ|D , µC |D〉 − 1 ≤ 1− γ
1− (1− ε)γ − 1 = εγ

1− (1− ε)γ ≤ −εγ. J

4 Fourier Analysis

Given S ⊆ [n], let χS : {±1}n → {±1} be given by χS(x) =
∏
i∈S xi. These functions form

a basis so we can write ψ =
∑
S ψ̂(S)χS , where the Fourier coefficients of ψ are given by

ψ̂(S) = E
x∼µ

[ψ(x)χS(x)] =
∑

x∈{±1}n

ψ(x)χS(x)
2n =

∑
x∈{±1}n

Pr
x∼ψ

[x = x]χS(x) = E
x∼ψ

[χS(x)]

which is simply the bias of χS under the distribution ψ. Thus we have

ψ(x) =
∑
S⊆[n]

ψ̂(S)χS(x)

where ψ̂(∅) = Ex∼ψ[ψ(x)] = 1. Given two distributions ψ and ω, their inner product is
given by

〈ψ, ω〉 = E
x∼{±1}n

[ψ(x)ω(x)] =
∑

x∈{±1}n

ψ(x)ω(x)
2n = 1 +

∑
∅6=S⊆[n]

ψ̂(S)ω̂(S)

Skew implies heavy low-degree coefficients
We show that large skew in the subcube (K, y) implies non-trivial Fourier mass on subsets
of K.

I Lemma 15. For C = (K, y),

Skewψ(C) =
∑
∅6=S⊆K

ψ̂(S)χS(y).

Proof. Given C = (K, y), µC the uniform measure over C is given by

µC(x) =
∏
i∈K

(1 + xiyi) = 1 +
∑
∅6=S⊆K

χS(y)χS(x).

Hence we have

〈ψ, µC〉 = 1 +
∑

∅6=S⊆[n]

ψ̂(S)µ̂A(S) = 1 +
∑
∅6=S⊆K

ψ̂(S)χS(y)

from which the claim follows. J

Given the above lemma, our approach is to reduce bounding the number of skewed
subcubes to bounding the number of large Fourier coefficients of ψ at level k.
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We define

W≤k(ψ) =
∑
S⊆[n]
|S|≤k

ψ̂(S)2.

A trivial bound is obtained from Parseval’s identity:

W≤k(ψ) ≤
∑
S⊆[n]

ψ̂(S)2 = E
x∼{±1}n

[ψ(x)2] ≤ ‖ψ‖∞ E
x∼{±1}n

[ψ(x)] = ‖ψ‖∞

If we restrict the summation to sets S of cardinality at most k, then a much stronger bound
of O(ln(‖ψ‖∞)k) holds, it is proved using the powerful HyperContractivity Theorem. These
bounds generalize the Level-k inequalities for the Fourier spectrum of small-sets, indeed the
proof is identical.

For a f : {±1}n → R and 0 ≤ ρ ≤ 1 set

Tρf =
∑
S

ρ|S|f̂(S)χS

Tρ is known as the noise operator. Recall that for p > 0 we have ‖f‖p = E[fp]1/p. The
hypercontractive inequality quantifies the extent to which the noise operater reduces the
norm of a function. See for instance. [16, Chapter 2] for a detailed exposition.

I Theorem 16. Let f : {±1}n → R and ρ ∈ [0, 1]. Then

‖Tρf‖2 ≤ ‖f‖1+ρ2 .

We use the hypercontractive inequality to bound the mass of the low level coefficients.

I Theorem 17. Let ψ be a distribution. Then

W≤k(ψ) ≤ e2(ln(e ‖ψ‖∞))k.

Proof. By Theorem 16, we have

‖Tρψ‖2 ≤ ‖ψ‖1+ρ2

=
(

E
x∼{±1}n

[ψ(x)ρ
2
ψ(x)]

)1/(1+ρ2)

≤ ‖ψ‖ρ
2/(1+ρ2)
∞ E

x∼{±1}n
[ψ(x)]1/(1+ρ2)

= exp
(

ln(‖ψ‖∞)ρ2

1 + ρ2

)
where we used Holder’s inequality with p =∞, q = 1. Taking ρ = min(1, 1/

√
ln(‖ψ‖∞)), we

have

‖Tρψ‖2 ≤ exp(1/(1 + ρ2)) ≤ e

But note that

‖Tρψ‖2 ≥ (ρ2kW≤k(ψ))1/2

Hence we conclude that

W≤k(ψ)) ≤ e2(1/ρ)2k = e2 max(1, ln ‖ψ‖∞)k ≤ e2(ln(e ‖ψ‖∞))k. J

ITCS 2020



84:12 Finding Skewed Subcubes Under a Distribution

We also need a bound for the Fourier mass at level k where we do not count coordinates
from some set J ⊆ [n] in the degree of a coefficient.

W≤k(ψ, J) =
∑
T⊆J

∑
S⊆[n]\J
|S|≤k

ψ̂(S ∪ T )2.

I Corollary 18. For J ⊆ [n] and a distribution ψ over {±1}n,

W≤k(ψ, J) ≤ 2|J|e2(ln(e ‖ψ‖∞))k.

Projection, Extension, Restriction
Given x ∈ {±1}n and a set of coordinates P ⊆ [n], let xP denote the projection of x onto
coordinates in P . Given a distribution ψ over {±1}n and a set of coordinates P ⊆ [n], let
ψP denote the marginal distribution over the set P . The Fourier expansion is especially
convenient for marginals, we simply restrict the sum to subsets of P .

I Lemma 19. For P ⊆ [n] and a distribution ψ over {±1}n, the restriction ψP is given by

ψP (y) =
∑
S⊆P

ψ̂(S)χS(y).

Coversely we can extend a distribution ψ′ defined on {±1}P for P ⊆ [n] to all of {±1}n
while preserving its important properties.

I Lemma 20. Let P ( [n]. Let ψ′ be a distribution on {±1}P . Define a distribution ψ on
{±1}n by ψ(x) = ψ′(xP ). Then
1. ψ is the product distribution of ψ′ with the uniform distribution on {±1}P̄ .
2. ‖ψ‖∞ = ‖ψ′‖∞.
3. C is a minimal skewed subcube under ψ iff it is a minimal skewed subcube under ψ′.

Finally, we derive an expression for the Fourier expansion of ψ|C in terms of the coefficients
of ψ.

I Lemma 21. Let C = (J, z). Then

ψ|C (x) =
∑

S⊆[n]\J

χS(x)
∑
T⊆J ψ̂(S ∪ T )χT (z)

〈ψ, µC〉
.

5 A Combinatorial Bound for minimal skewed subcubes

In this section, we show bounds on the number of minimal skewed subcubes that is dimension
independent.

I Theorem 22 (Combinatorial Bound for Positive Skew). For any measure ψ on {±1}n,
integer k ≤ n, and γ ∈ (0, 2k−1] and ε ∈ (0, 1], the number of (γ, ε)-minimal skewed subcubes
of codimension at most k is bounded by

kO(k)
(

1
ε2γ

ln(e ‖ψ‖∞)
)k

.
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I Theorem 23 (Combinatorial Bound for Negative Skew). For any measure ψ on {±1}n,
integer k ≤ n, and γ ∈ (0, 1] and ε ∈ (0, 1], the number of (−γ, ε)-minimal skewed subcubes
of codimension at most k is bounded by

kO(k)
(

1
ε2γ2 ln

(
e ‖ψ‖∞
εγ

))k
.

We now outline our approach for proving these bounds.
1. We give an algorithm to enumerate all minimal skewed subcubes, given the list of large,

low-degree Fourier coefficients in an adaptively chosen sequence of restrictions of the
original distribution ψ. The algorithm recursively “grows” skewed subcubes by finding
heavy Fourier coefficients and restricting the bits in that coefficient, and showing that
this algorithm discovers all minimal skewed subcubes.

2. We bound the number of large low-degree Fourier coefficients of ψ using Theorem 17.

The details of the algorithm in Step 1 are different for the cases of positive and negative
skew, so we present them in Subsections 5.1 and 5.2. To go from a combinatorial bound to
an efficient algorithm, we need to make Step 2 algorithmic. We will consider this problem
under different learning models in Sections 6 and 8.

5.1 Positive skew
We first present an algorithm FindSkew+ for enumerating minimal skewed subcubes where
the skew is positive.

To prove the combinatorial bound, we allow the algorithm to make certain guesses in
Lines 6 and 7. We think of the set of all possible outputs over all possible guesses as the
list that is returned by the algorithm. In Lemma 24, we will show that all minimal skewed
subcubes are contained in this list. We bound the list size in Lemma 26. Together, these
complete the proof of Theorem 22.

We start the recursion with R0 = ∅ and z0 = ∅ the null string. The routine either returns
FAIL or returns St ⊂ [n] and zt ∈ {±1}St such that (Rt, zt) is a γ-skewed subcube. The
algorithm also takes as inputs the input the distribution ψ, a bound k on the codimension,
and skew parameters γ ∈ (0, 2k−1] and ε ∈ (0, 1]. These stay constant through the recursion,
so we suppress the dependence on them. Consider the list of all possible choices returned by
the algorithm.

Algorithm 1 FindSkew+(Rt, yt).

1: Let Dt = (Rt, yt). Let ψt = ψ|Dt . Let kt = k − |Rt|.
2: if Skewψ(Dt) > γ(1− ε) then
3: return Dt

4: if 〈ψ, µDt〉 < (1 + γ) · 2−kt then
5: return FAIL
6: Pick St such that |St| ≤ kt and

|ψ̂t(St)| ≥
ε
√
γ

kt ·
(
kt
|St|
) . (5)

7: Pick zt ∈ {±1}St .
8: return FindSkew+(Rt ∪ St, yt ◦ zt).
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We need some notation for the analysis. Let the sequence of subcubes produced by the
algorithm be D0 ) D1 · · · ) D`. Let st = |St|.

I Lemma 24. For every (γ, ε)-minimal skewed subcube C with codim(C) ≤ k there are
sequences of choices of St and zt (in Lines 6 and 7) so that C is returned by FindSkew+.

Proof. For every C = (K∗, z∗) that is a (γ, ε)-minimal skewed subcube where codim(C) ≤ k,
we will show that for every t, if Dt ) C is parent of C, and is not equal to C there
is a choice of St, zt that leads to a parent Dt+1 of C with a larger codimension. Since
t ≤ codim(Dt) ≤ codim(C) ≤ k, in ` ≤ k steps we must have Dt = C, at which point we
return at Line 3. Thus the claim implies the lemma.

At t = 0, we have D0 = {±1}n so the parent condition holds trivially. Assume that we
have Dt ) C.

By the definition of a minimal skewed subcube, Skew(Dt) ≤ (1−ε)γ, hence the procedure
will not return at Line 3.

Next we show that 〈ψ, µDt〉 ≥ (1 + γ)2−kt , the algorithm will not return FAIL at Line 5:

〈ψ, µDt〉 = Pr
x∼ψ

[µDt(x)] = 2k−kt Pr
x∼ψ

[x ∈ Dt]

≥ 2k−kt Pr
x∼ψ

[x ∈ C]

≥ 2−kt 〈ψ, µCt〉
≥ (1 + γ)2−kt .

The first inequality holds because Dt ⊃ C, the second because codim(C) ≤ k and the last
because we assume that Skew(C) ≥ γ.

Recall that ψt = ψ|Dt , and let Kt = K \ St. By Lemma 15,

Skewψt(C) =
∑

∅6=S⊆Kt

ψ̂t(S)χS(y) =
∑
k′

∑
∅6=S⊆Kt
|S|=k′

ψ̂t(S)χS(y)

By Lemma 14, Skewψt(C) ≥ ε√γ/2 which implies that for some k′ ≤ kt, we have∑
∅6=S⊆Kt
|S|=k′

ψ̂t(S)χS(y) ≥ ε√γ/kt

which in turn implies that for at least one ∅ 6= St ⊆ Kt, we have

|ψ̂t(St)| ≥ ε
√
γ/

(
kt ·

(
kt
k′

))
.

Assume that we pick this St in Line 6 and zt = z∗|S in Line 7. This ensures that Dt+1 is a
parent of C of larger codimension. J

We next bound the number of all possible outputs of the algorithm. The crux of the
argument is to bound the number of large low-degree Fourier coefficients using Theorem 17.
This in turn requires a bound on the infinity norm of ψt which comes from passing the test
in Line 4.

I Lemma 25. The number of choices for St satisfying Equation (5) is bounded by

e2

ε2γ
(ln(2kte ‖ψ‖∞))stk4st+2

t .
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Proof. We bound ‖ψt‖∞ as

‖ψt‖∞ =
∥∥ψ|Dt∥∥∞ ≤ ‖ψ‖∞

〈ψ, µDt〉
≤

‖ψ‖∞
(1 + γ)2−kt ≤ ‖ψ‖∞ 2kt

where the first inequality is from Fact 5 and we have 〈ψ, µDt〉 ≥ (1 + γ)2−kt since we check
for this condition in Line 5. We now use Theorem 17 which gives

W≤st(ψ) ≤ e2(ln(e ‖ψ‖∞ · 2
kt))st .

Hence the number of choices for St satisfying (5) is bounded by

W≤st(ψt)
(
kt
(
kt
st

)
ε
√
γ

)2

≤ e2

ε2γ
(ln(2kte ‖ψ‖∞))stk4st+2

t . J

I Lemma 26. The total number of subcubes of codimension k output by FindSkew+ is at
most:

kO(k)
(

ln(e ‖ψ‖∞)
ε2γ

)k
.

Proof. Since
∑
t≤` st = k, the sequence {st}`t=1 is a partition of k, and there are at most

kk of them. Let us fix the sequence. The number of choices for St is bounded by Lemma
25. Since zt ∈ {±1}St , the number of choices for z is 2st . Taking the product over all t, the
number of possible outputs for FindSkew+ is bounded by

∏̀
t=1

e2

ε2γ
(ln(2kte ‖ψ‖∞))stk4st+2

t · 2st

We can bound∏̀
t=1

(ln(2kte ‖ψ‖∞))st ≤ ln(2ke ‖ψ‖∞)k ≤ (k + ln(e ‖ψ‖∞))k ≤ (2k)k(ln(e ‖ψ‖∞))k.

∏̀
t=1

k4st+2
t 2st ≤ k5k+2.

Including the kk choices for s1, . . . , st, the output list size is bounded by(
e2

ε2γ

)k
(ln(e ‖ψ‖∞))kk7k+2 = kO(k)

(
ln(e ‖ψ‖∞)

ε2γ

)k
. J

Together Lemma 24 and Lemma 26 complete the proof of Theorem 22.

5.2 Negative Skew
We now present an algorithm FindSkew− for the negative skewed case. The algorithm takes
as input γ ∈ (0, 1] and [ε ∈ (0, 1] and the goal is to list all (−γ, ε)-minimal negatively skewed
subcubes.

The main differences from FindSkew+ are that once the skew is less than −γ(1 − ε),
we can return. Thus we can combine the Return statement (Line 3, and the the check in
Line 5. Also, the bound on the coefficient size in Equation(6) now reflects the bound for the
negative skew case in Lemma 14.

We have the following claim about the correctness of FindSkew−.
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Algorithm 2 FindSkew−(Rt, yt).

1: Let Dt = (St, zt). Let ψt = ψ|Dt . Let kt = k − |St|.
2: if Skewψ(Dt) < −γ(1− ε) then
3: return Dt

4: Pick St such that |St| ≤ kt and

|ψ̂t(St)| ≥
εγ

kt ·
(
kt
|St|
) . (6)

5: Pick zt ∈ {±1}St .
6: return FindSkew−(Rt ∪ St, yt ◦ zt).

I Lemma 27. For every (γ, ε)-minimal skewed subcube C with codim(C) ≤ k there are
choices of subsets St and zt (in Lines 6 and 7) so that C is returned by FindSkew−.

We prove this by showing that for every t, if Dt ) C is parent of C, and is not equal to
C there is a choice of St, zt that gives a parent Dt+1 of C with a larger codimension. Indeed,
we know that for any parent of C, inner product 〈ψ, µDt〉 is large enough to pass the test in
Line 3. The rest of the proof is identical to that of Lemma 24 for the case of positive skew,
so we do not repeat it.

The crux of the proof is to bound the number of choices for St satisfying Equation (6).

I Lemma 28. The number of choices for St satisfying Equation (6) is bounded by

e2

ε2γ2

(
ln
(
e ‖ψ‖∞
εγ

))st
k2st+2.

Proof. To pass Line 3, it must hold that Skewψ(Dt) ≥ −γ(1− ε), hence

〈ψ, µDt〉 ≥ 1− γ(1− ε) ≥ εγ

since γ ≤ 1. So we bound ‖ψt‖∞ as

‖ψt‖∞ =
∥∥ψ|Dt∥∥∞ =

‖ψ‖∞
〈ψ, µDt〉

≤
‖ψ‖∞
γε

.

Using Theorem 17 gives

W≤st(ψt) ≤ e2
(

ln
(
e ‖ψ‖∞
εγ

))st
.

Hence the number of choices for St satisfying Equation (6) is bounded by

W≤st ·
(
kt ·

(
kt
|St|
))2

ε2γ2 ≤ e2
(

ln
(
e ‖ψ‖∞
εγ

))st (kt · ( kt|St|))2

ε2γ2

≤ e2

ε2γ2

(
ln
(
e ‖ψ‖∞
εγ

))st
k2st+2. J

We can now conclude as before.

I Lemma 29. The total number of subcubes of codimension k output by FindSkew− is
bounded by

kO(k)
(

1
ε2γ2 ln

(
e ‖ψ‖∞
εγ

))k
.
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Proof. Using Lemma 28 and the fact that there are are 2st choices for zt and kk choices of
the partition s1, . . . , st, the overall list size is bounded by

kk
∏̀
t=1

e2

ε2γ2

(
ln
(
e ‖ψ‖∞
εγ

))st
k2st+22st ≤ kO(k)

(
1

ε2γ2 ln
(
e ‖ψ‖∞
εγ

))k
. J

Combining Lemmas 27 and 29 completes the proof of Theorem 23.

5.3 Tightness of our bounds
We show that the dependence on ‖ψ‖∞ in Theorem 22 is nearly optimal. To simplify our
constructions, we will construct distributions on n variables where n = n(‖ψ‖∞ , k). But one
can then use Lemma 20 to extend the construction to all larger values of n.

I Theorem 30. There exists a distribution µC on {±1}n which has Ωk((ln(‖µC‖∞))k) many
(2k, 1/2)-minimal skewed subcubes of codimension k.

Proof. Let C be the subcube where all the bits are fixed to 1, and let µC be the uniform
distribution over it. It follows that ‖µC‖∞ = 2n hence ln(‖µC‖∞) = n. We claim that all(
n
k

)
subcubes where a k out of the first t bits are fixed to 1 are (2k − 1, 1/2)-minimal skewed

subcubes. Fix one such cube D. We have

SkewµC (D) = 2k Pr
x∼µC

[x ∈ D]− 1 = 2k − 1.

Since the maximum skew of any subcube of codimension k−1 is at most 2k−1−1, D satisfies
the definition of (γ, ε)-minimal skew for γ = 2k − 1 and ε such that γ(1− ε) ≥ 2k−1 − 1. In
particular, we can take ε = 1/2.

Thus the number of (2k − 1, 1/2)-minimal skewed subcubes is
(
n
k

)
= Ωk(nk). The only

dependence on n in Theorem 22 comes from the ‖µC‖∞ since ε is a constant and γ ≤ 2k.
Thus the number of cubes is Ω((ln(‖µC‖∞))k). J

For Theorem 23 dealing with negative skew, we show a similar bound, though with a
smaller value of ε = 1/k. The distribution we use is derived from the Tribes function.

I Theorem 31. There exists a distribution τ on {±1}n which has Ωk((ln(‖τ‖∞))k) many
(−1, 1/k)-minimal skewed subcubes of codimension k.

Proof. Let n = tk. We label the coordinates as {xi,j}i∈[k],j∈[t]. Consider the DNF formula

Tribes(x) =
k∨
i=1

t∧
j=1

xi,j

We now define a distribution τ where we pick a i∗ ∈ [k] at random, set xi∗,j = 1 for all
j ∈ [t] and set all the other variables randomly. Clearly the distribution τ is supported on
the satisfying assignments of Tribes(x). It is also easy to see that

‖τ‖∞ = τ(1tk) = 2tk
k∑
i=1

1
k

2−(k−1)t = 2t.

Now consider the set of minimal 0 certificates of Tribes, which are subcubes where we
pick a single variables from each term and set it to 0. There are tk such subcubes, fix one
such subcube C. Clearly Prx∼τ [x ∈ C] = 0, hence Skewτ (C) = −1. Now consider any
parent subcube D of C. Assume it has codimension ` < k, and let L ⊂ [k] denote the set of
terms that it sets to 0. For x ∼ τ to lie in L, two events need to happen:
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i∗ 6∈ L, which happens with probability 1− `/k.
The variables in L which are set to 0 in D are also set to 0 by the random assignment,
which happens with probability 2−`.

As these two events are independent, we have Prx∼τ [x ∈ D] = 2−`(1− `/k) hence

Skewτ (D) = 2` Pr
x∼τ

[x ∈ D]− 1 = − `
k
.

Thus the maximum skew of any parent D is −1 + 1/k. Hence C is (−1, 1/k)-minimally
skewed.

As before we note that γ = 1 and ε = 1/k, hence the only dependence on t comes from
log(‖τ‖∞) = t, which gives the claimed bound. J

Finally, we present a distribution that has a large number of (−1, 1) and (1, 1) minimally
skewed subcubes. Recall that ε = 1 means that every parent of the cube has skew 0.

The construction is based on (dual) BCH codes. We think of linear codes as subsets of
Fn2 where F2 = {0, 1} which we can identify with {±1}n via the usual mapping x→ (−1)x.
For x ∈ Fn2 let the weight of x denoted wt(x) be the number of 1s in x. Let supp(x) ⊆ [n]
denote the set of cordinates where x is non-zero. We will use the following fact about BCH
codes communicated to us by Sergey Yekhanin [19].

I Lemma 32 ([19]). Let d ≥ 2 be even and let n + 1 = 2l ≥ d. There exists a F2-linear
code CBCH ⊆ {0, 1}n with minimum distance d, which contains Ω(nd/2+1) minimum weight
codewords.

I Theorem 33. For any even k ≥ 2 and large enough n, there exists a distribution ψk on
{±1}n where the numbers of (−1, 1)-minimal skewed subcubes and (1, 1)-minimal skewed
subcubes of codimension k are both Ωk((log(‖ψk‖∞))k/2+1).

Proof. Set k = d, and take n as in Lemma 32. Let ψk be the uniform distribution on the
dual space to CBCH . Using standard facts about the Fourier expansion of a subspace, we
can write

ψk =
∑

c∈CBCH
S=supp(c)

χS(x). (7)

Since CBCH has minimum distance k, ψk is (k − 1)-wise independent, so for any subcube
C where codim(C) ≤ k− 1, we have Skewψk(C) = 0. This relies on a standard construction
of k-wise independent spaces from codes [2, Chapter 16], it can also be seen using Lemma 15
combined with Equation (7).

Fix S ⊂ [n] to be the support of a minimum weight codeword in CBCH . By Lemma 19
and Equation (7), the projection of ψk to coordinates in S is given by ψkS(x) = 1 + χS(x).
Hence it is uniform over the 2k−1 settings y ∈ {±1}S such that χS(y+) = 1.

For every such y and D+ = (S, y), we have Prx∼ψk [x ∈ D+] = 2−(k−1) hence

Skewψk(D+) = 2k Pr
x∼ψk

[x ∈ D+]− 1 = 1.

On the other hand, for every y ∈ {±1}S such that χS(y) = −1 and D− = (S, y), we have
Prx∼ψk [x ∈ D−] = 0 hence

Skewψk(D−) = 2k Pr
x∼ψk

[x ∈ D−]− 1 = −1.

Since every parent of D+ has 0 skew, every such D+ is a (1, 1)-minimal skewed subcube, and
similary for every D−.
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Trivially, we have
∥∥ψk∥∥∞ ≤ 2n, hence log(

∥∥ψk∥∥∞) ≤ n (in fact it equals n−O(log(n)).
Since the number of minimal weight codewords is Ωk(nk/2+1) by Lemma 32, and γ, ε are
both 1, the number of codewords is Ωk((log(

∥∥ψk∥∥∞))k/2+1). Hence the number of minimal
skewed subcubes is as claimed. J

6 Algorithms for Finding Skewed Subcubes

In this section, we present an algorithm that find skewed subcubes efficiently in the random
sample model, where we have access to random samples from ψ.

To make Algorithm 1 efficient, we need to replace the step of guessing S (Line 6 in
Algorithm 1, and Line 4 in Algorithm 2) with an algorithm to find large low degree Fourier
coefficients4. We restate the problem below:

I Problem 3 (Finding large low-degree biases). Given a distribution ψ on {±1}n, an integer
k and ρ ≥ 0, find all S ⊆ [n] such that |S| ≤ k and

ψ̂(S) := E
x∼ψ

[χS(x)] ≥ ρ.

Our main result is the following pair of theorems.

I Theorem 34 (Algorithm for Positive Skew). Given sample access to a distribution ψ on
{±1}n, integer k ≤ n, and parameters γ ∈ (0, 2k − 1], ε ∈ (0, 1] and λ ∈ [0, 1], there is an
algorithm that returns all (γ, ε)-minimal skewed subcubes of codimension at most k in time:

Õ
(
nk(

ω
3−λ )

)
+ kO(k) · (ln(e ‖ψ‖∞))k

(
Õ(nk/3)
(ε√γ)4/λ + poly(n)

(ε√γ)2k

)
where ω is the matrix multiplication exponent, and Õ hides poly logn factors.

I Theorem 35 (Algorithm for Negative Skew). Given sample access to a distribution ψ

on {±1}n, integer k ≤ n, and parameters γ ∈ (0, 1], ε ∈ (0, 1] and λ ∈ [0, 1], there is an
algorithm that returns all (−γ, ε)-minimal skewed subcubes of codimension at most k in time:

Õ
(
nk(

ω
3−λ )

)
+ kO(k) · (ln(e ‖ψ‖∞))k

(
Õ(nk/3)
(εγ)4/λ + poly(n)

(εγ)2k

)
where ω is the matrix multiplication exponent, and Õ hides poly logn factors.

Theorem 3 follows from using (a), setting λ = 0.01 and ω ≤ 2.38.
In both algorithms, we will find large low-degree biases using a breakthrough algorithm

of [18] for detecting pairs of vectors that are highly correlated from a set of weakly correlated
vectors. The algorithm was subsequently improved by [13]).

I Theorem 36 ([13]). Given two sets of vectors V1, V2 ⊆ {±1}n for which there are at most
q pairs (v1, v2) ∈ V1 × V2 with correlation larger than τ , and a parameter ρ ≥ τ1/λ (for
λ ∈ [0, 1]), there is an algorithm FindCorr(V1, V2, ρ, τ) that with high probability outputs
all pairs (v1, v2) ∈ V1 × V2 with correlation at least ρ. Furthermore, algorithm runs in time

Õ
(
n

2ω
3−λ + qdn

2(1−λ)
3−λ

)
.

4 We note that technically to implement the algorithm we also need to estimate 〈ψ, µC〉 for every C to
an additive accuracy of min(γ, 2−k). If done via sampling, these only incur 22kk logn/γ2 additional
cost per call, and will be absorbed into our runtime bounds anyway.
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The essence of the reduction is as follows. For each set S ⊆ [n] less than k/2 we associate
a vector yS , for which each coordinate is a random sample of χS(x) where x is drawn from
ψ. If Q,R ⊆ [n] are disjoint, the correlation coefficient E [yQ · yR] /d is precisely the value
of the Fourier coefficient ψ̂(Q ∪ R). Thus as long as the algorithm of [13] succeeds and is
not overwhelmed by sample error, every ρ correlated pair (yQ, yR) corresponds to a Fourier
coefficient ψ̂(Q ∪ R) of size less than k and absolute value ρ. We now describe this more
formally.

Algorithm 3 FindFourierCoefficients(ψ, k, ρ, λ).

1: S ← ∅
2: τ ← (ρ/2)1/λ

3: Draw a set of d = O(k logn/τ2) samples x1, . . . xd from ψ.
4: for T = O(k3/2 logn) rounds do
5: Randomly partition [n] into two subsets N1 and N2.
6: For every subset S ⊆ N1 of size ≤ dk/2e, form a vector yS ∈ [−1, 1]d for which the

ith bit is set to χS(xi). Call this set of vectors V1.
7: Do the same for N2 for sets of size ≤ bk/2c, and call the set of vectors V2.
8: Run FindCorr(V1, V2, ρ/2, τ) from [13] to find all pairs yQ and yR such that Q ⊆ N1,

R ⊆ N2, and yQ and yR are ρ/2 correlated. For each of these, add Q∪R to S.
9: return S.

We first prove some simple lemmas using standard concentration of measure results.

I Lemma 37. For every Q ∈ N1 and R ∈ N2, w.h.p.
∣∣∣〈yQ, yR〉 /d− ψ̂(Q ∪R)

∣∣∣ ≤ τ/2.
Proof. For a single x ∼ {±1}n and disjoint Q,R ⊆ N , we have E [χQ(x) · χR(x)] = ψ̂(Q∪R).
Applying the Hoeffding bound with our choice of d = 32k logn/τ2, we have that 〈yQ, yR〉 /d
is within τ/2 of ψ̂(Q ∪R) with probability at least 1− n−2k. By a union bound, this hold
for all O(nk) choices of pairs (Q,R) with probability 1− n−k. J

I Lemma 38. For every S ⊆ [n] with |S| ≤ k, w.h.p. in at least one round t ∈ [T ] there are
Q ⊆ N1, R ⊆ N2 with Q ∩R = ∅ such that Q ∪R = S.

Proof. Fix a set S of size `. For a random bipartition of [n], the probability S is perfectly
bisected is at least 1/(8

√
`) ≥ 1/(8

√
k). The probability it is never bisected over T =

16k3/2 logn rounds is upper bounded by(
1− 1

8
√
k

)T
≤ e−2k logn = n−2k.

By a union bound, every S of size ≤ k is bisected at least once with high probability. J

I Lemma 39. The algorithm FindFourierCoefficients(ψ, k, ρ, λ) returns all Fourier
coefficients of ψ of degree at most k of absolute value at least ρ in time

Õ
(
nkω/(3−λ)

)
+ Õ(nk/3)2O(k)(ln(e ‖ψ‖∞))kρ−4/λ.

Proof. Consider any set S ⊆ [n] of size ≤ k of magnitude at least ρ. By Lemma 38, w.h.p.
for some round t ∈ [T ], the algorithm will form two vectors yQ and yR such that Q ⊆ N1,
R ⊆ N2 and Q ∪R = S. Furthermore, by Lemma 37, we have 〈yQ, yR〉 /d ≥ ρ− τ ≥ ρ/2. In
turn, this means that FindCorr(V1, V2, ρ/2, τ) will detect these w.h.p.
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To bound the running time, we need a bound on the number q of pairs with correlation
higher than τ . By Lemma 37, we have 〈yQ, yR〉 /d ≥ τ implies ψ̂(Q∪R) ≥ τ/2. The number
of such coefficients is bounded by

W≤k(ψ)
(τ/2)2 ≤ 28 (ln(e ‖ψ‖∞))k ρ−2/λ.

For each such coefficient S, there are 2k ways to write it as S = Q ∪ R for disjoint Q,R.
Hence

q ≤ 2k+8(ln(e ‖ψ‖∞))kρ−2/λ.

Observe that logτ ρ ≥ λ by our choice of τ . By Theorem 36, [13] will find a list containing
all ρ/2 correlated pairs in time at most

Õ

((
nk/2

)2ω/(3−λ)
+ qd

(
nk/2

)(2−2λ)/(3−λ)
)

≤ Õ
(
nkω/(3−λ) + 2O(k)(ln(e ‖ψ‖∞))kρ−2/λk · log(n) · ρ−2/λnk(1−λ)/(3−λ)

)
≤ Õ

(
nkω/(3−λ)

)
+ Õ(nk/3)2O(k)(ln(e ‖ψ‖∞))kρ−4/λ. J

We relegate the remainder of the proofs of Theorem 34 to the appendix.

7 Reduction from Noisy Parity

Recall that given S ⊆ [n], a parity function χS : {±1}n → {±1} is given by χS(x) =
∏
i∈S xi.

A noisy parity is a parity function with random noise of rate η added to it. In other
words, we say f : {±1}n → {±1} is an η-noisy parity if Pr[f(x) = χS(x)] = 1 − η an
Pr[f(x) = −χS(x)] = η. In the sparse noisy parity problem, we are given access to samples
(x, f(x)) where x ∼ µ is sampled uniformly from {±1}n and f is noisy parity χS with |S| = k.
The goal is to recover the parity function, or equivalently the set S.

Given a set S′ ⊆ [n], we have

E
x∼µ

[f̂(S′)] =
{

0 if S′ 6= S

1− 2η if S′ = S

This leads to a naive enumeration algorithm that runs in time O(nk). The current best
algorithm due to [18] runs in time O(n0.8k) poly(1/(1 − 2η))). A series of reductions due
to [8] show that efficient algorithms for sparse noisy parity imply algorithms with similar
running times for learning k-juntas, decision trees and DNFs under the uniform distribution.
This suggests the following conjecture (which we consider to be folklore).

I Conjecture. There is no algorithm for the sparse noisy parity problem which runs in time
no(k).

We now prove Theorem 2 which we restate below.

I Theorem 2. For η ∈ (0, 1/2), an algorithm that given a distribution ψ and k can find a
(1− 2η, 1)-minimal skewed subcube of co-dimension k in time T (n, k, η) can be used to solve
the k-sparse noisy parity problem with noise rate η in time T (n, k, η).
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Proof. Finding a noisy parity reduces to finding a minimal skewed subcube. Given an instance
of sparse noisy parity, consider the distribution ψ on {±1}n+1 obtained by appending the
label to the sample. Thus ψ = (x, f(x))x∼µ. We show that all skewed subcubes must restrict
the set S ∪ {n+ 1}, hence they are all minimal, and finding any skewed subcube solves the
noisy parity problem.

For any z ∈ {±1}S , consider the subcube D+(z) given by xS = z, xn+1 = χS(z). We
have

Skew(D+(z)) = 2k+1
(

Pr
x′∼ψ

[x′ ∈ D]− Pr
x′∼µ

[x′ ∈ D]
)

= 2k+1
(

1− η
2k − 1

2k+1

)
= 1− 2η.

Similarly if we define D−(z) by xS = z and xn+1 = −χS(z), then

Skew(D−(z)) = 2k+1
(

Pr
x′∼ψ

[x′ ∈ D]− Pr
x′∼µ

[x′ ∈ D]
)

= 2k+1
(
η

2k −
1

2k+1

)
= −(1− 2η).

It is easy to verify that if the set of restricted variables is not S ∪ {n+ 1}, then the skew is 0,
which shows that the subcubes above all (±(1− 2η), 1)-minimal skewed subcubes. J

This shows the hardness of finding subcubes with skew (1 − 2η) < 1. The reduction
could be extended to show the hardness of finding subcubes with larger skew, simply by
concatenating ` different samples of ψ. Now an algorithm that finds a subcube of skew
(2(1− η))` − 1 and codimension k can be used to solve a k/`-sparse noisy parity problem.

8 The Membership Query Model

Theorem 2 suggests that a much better algorithm does not exist in the model where we only
get random samples from ψ. However, noisy parity becomes trivial when we are given query
access to f , by repeatedly querying the function at x and x · ei. This motivates us to consider
the query model where in addition to getting random samples from ψ, we are allowed to
query ψ(x) for points x of our choosing. As we will see, this does make finding skewed
subcubes easier for distributions where ‖ψ‖∞ is small. We first show how this improvement
arises, and then give evidence that queries do not add too much power over random samples
when ‖ψ‖∞ is large.

Algorthmically, all we need is a procedure to find all large low-degree Fourier coefficients
of ψ under the query model. Such a procedure is given by a classic result [14] of Kushilevitz
and Mansour, which uses the algorithm of Goldreich and Levin [9] to compute large Fourier
coefficients when given a query access to a function.

I Theorem 40 ([9]). Given query access to f : {±1}n → [−t, t] and a parameter ρ > 0,
there is an algorithm running in time poly(n, t/ρ) that with high probability outputs a list
containing all subsets S, such that f̂(S) ≥ τ . 5

If we apply it to ψ, then we get an algorithm whose running time is poly(n, ‖ψ‖∞ , ρ). Thus,
the algorithm is faster than the trivial exhaustive search algorithm only when ‖ψ‖∞ < nαk

for some α > 0. The polynomial dependence on ‖ψ‖∞ in the running time is inevitable
since the algorithm finds all ψ̂(S) ≥ ρ, and not just those with |S| ≤ k. The number of
such coefficients can be ‖ψ‖∞ /ρ2. In contrast, when we restrict to |S| ≤ k, the list-size only
grows as ln(e ‖ψ‖∞)k/ρ2. This raises the following natural open question:

5 The theorem is typically stated for functions with range {±1}, however a similar bound is true for the
range [−1, 1]. The version stated here follows by scaling the function by t so it lies in the range [−1, 1],
and replacing ρ by ρ/t.
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I Problem 4. Given query access to a probability measure, ψ such parameter ρ > 0, does
there exist an algorithm that can find all S such that |S| ≤ k and |ψ̂(S)| ≥ ρ in time
poly(n, 1/ρ, ln(‖ψ‖∞)k)?

We conclude by observing that some dependence on ‖ψ‖∞ (at least logarithmic) seems
inevitable, even in cases where the list-size is 1. This is seen by a reduction from sparse
noisy parity. A sample of size O(k logn/ε2) from an instance of noisy parity preserves all
correlations of sets of k variables up to an additive ε. Define ψ to be the uniform measure
of these samples alone. Finding S such that |S| ≤ k + 1 and ψ̂(S) ≥ 1− 2η will solve the
noisy parity problem. Note that for ψ the query model and the random samples model are
equivalent as we have the support explicitly. So if we believe that sparse noisy parity requires
time nΩ(k) time, then any algorithm for finding large low-degree Fourier coefficients in ψ must
require as much time. Since ‖ψ‖∞ = ε22n/k log(n), we have ln(‖ψ‖∞) = n − O(log(1/ε).
This is consistent with a dependence of ln(‖ψ‖∞)Ω(k).

References
1 Noga Alon, Alexandr Andoni, Tali Kaufman, Kevin Matulef, Ronitt Rubinfeld, and Ning Xie.

Testing k-wise and almost k-wise independence. In STOC, 2007.
2 Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley Publishing, 4th edition,

2016.
3 Joy Buolamwini and Timnit Gebru. Gender Shades: Intersectional Accuracy Disparities in

Commercial Gender Classification. In Conference on Fairness, Accountability and Transparency,
FAT 2018, 23-24 February 2018, New York, NY, USA, pages 77–91, 2018. URL: http:
//proceedings.mlr.press/v81/buolamwini18a.html.

4 Ángel Cabrera, Will Epperson, Fred Hohman, Minsuk Kahng, Jamie Morgenstern, and
Duen Horng Chau. FairVis: Visual Analytics for Discovering Intersectional Bias in Machine
Learning. IEEE Conference on Visual Analytics Science and Technology (VAST), 2019. URL:
https://poloclub.github.io/FairVis/.

5 Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM
Comput. Surv., 41(3):15:1–15:58, 2009. doi:10.1145/1541880.1541882.

6 Moses Charikar, Jacob Steinhardt, and Gregory Valiant. Learning from untrusted data. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017, pages 47–60, 2017.

7 Andrew F Emmott, Shubhomoy Das, Thomas Dietterich, Alan Fern, and Weng-Keen Wong.
Systematic construction of anomaly detection benchmarks from real data. In Proceedings of
the ACM SIGKDD workshop on outlier detection and description, pages 16–21. ACM, 2013.

8 Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami. On
Agnostic Learning of Parities, Monomials, and Halfspaces. SIAM J. Comput., 39(2):606–645,
2009. doi:10.1137/070684914.

9 Oded Goldreich and Leonid A. Levin. A Hard-Core Predicate for all One-Way Functions. In
Proceedings of the 21st Annual ACM Symposium on Theory of Computing, May 14-17, 1989,
Seattle, Washigton, USA, pages 25–32, 1989.

10 Parikshit Gopalan, Vatsal Sharan, and Udi Wieder. PIDForest: Anomaly detection via partial
identification. In Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, 2019.

11 Sudipto Guha, Nina Mishra, Gourav Roy, and Okke Schrijvers. Robust Random Cut Forest
Based Anomaly Detection on Streams. In Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pages 2712–2721,
2016.

12 Sushrut Karmalkar, Adam R. Klivans, and Pravesh K. Kothari. List-Decodable Linear
Regression. CoRR, abs/1905.05679, 2019. arXiv:1905.05679.

ITCS 2020

http://proceedings.mlr.press/v81/buolamwini18a.html
http://proceedings.mlr.press/v81/buolamwini18a.html
https://poloclub.github.io/FairVis/
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1137/070684914
http://arxiv.org/abs/1905.05679


84:24 Finding Skewed Subcubes Under a Distribution

13 Matti Karppa, Petteri Kaski, and Jukka Kohonen. A Faster Subquadratic Algorithm for
Finding Outlier Correlations. ACM Trans. Algorithms, 14(3):31:1–31:26, June 2018. doi:
10.1145/3174804.

14 Eyal Kushilevitz and Yishay Mansour. Learning Decision Trees Using the Fourier Spectrum.
SIAM J. Comput., 22(6):1331–1348, 1993. doi:10.1137/0222080.

15 Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation Forest. In Proceedings of the 8th
IEEE International Conference on Data Mining (ICDM 2008), December 15-19, 2008, Pisa,
Italy, pages 413–422, 2008.

16 Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.
17 Ryan O’Donnell and Yu Zhao. On Closeness to k-Wise Uniformity. In APPROX-RANDOM,

2018.
18 Gregory Valiant. Finding Correlations in Subquadratic Time, with Applications to Learning

Parities and the Closest Pair Problem. J. ACM, 62(2):13:1–13:45, May 2015. doi:10.1145/
2728167.

19 Sergey Yekhanin. Personal Communication, 2019.

9 Missing Proofs

I Lemma 6. Given subcubes C and D such that D ⊆ C ⊆ {±1}n, and a density function
ψ, it holds that:

〈ψ, µD〉 = 〈ψ, µC〉 ·
〈
ψ|C , µD

∣∣
C

〉
Proof. We have

〈ψ, µD〉 = 〈ψ, µC〉 ·
〈

ψ

〈ψ, µC〉
, µD

〉
= 〈ψ, µC〉 ·

〈
ψ|C , µD

∣∣
C

〉
J

where the second equality follows from D ⊆ C.

I Lemma 8. Let codim(C) = k. We have

Skewψ(C) = 2k Pr
x∼ψ

[x ∈ C]− 1

= 1
Prx∼µ[x ∈ C]

(
Pr
x∼ψ

[x ∈ C]− Pr
x∼µ

[x ∈ C]
)
.

Proof. We have

〈ψ, µC〉 = E
x∈µC

[ψ(x)]

=
∑
x∈C

ψ(x)
2n−k

= 2k
∑
x∈C

Pr
x∼ψ

[x = x]

= 2k Pr
x∼ψ

[x ∈ C].

Hence

〈ψ, µC〉 − 1 = 2k Pr
x∼ψ

[x ∈ C]− 1

= Prx∼ψ[x ∈ C]− 2−k

2−k .

Since Prx∼µ[x ∈ C] = 2−k, the claim follows. J

https://doi.org/10.1145/3174804
https://doi.org/10.1145/3174804
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https://doi.org/10.1145/2728167
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I Lemma 10. For any K ⊆ [n], we have∑
D=(K,w)
w∈{±1}K

Skew(D) = 0.

Proof. Consider the sum:∑
D=(K,w)
w∈{±1}K

Skew(D) =
∑

D=(K,w)
w∈{±1}K

2k
(

Pr
x∼ψ

[x ∈ D]− Pr
x∼µ

[x ∈ D]
)

= 0.

The first equality comes from Lemma 8, the second follows since the set of cubes D form a
partition of {±1}n. J

I Lemma 11. If {C1, . . . , C2`} is a partition of C, then

Skewψ(C) = 1
2`

2`∑
i=1

Skewψ(Ci).

Proof. We have

Skewψ(C) = 2k
(

Pr
x∼ψ

[x ∈ C]− 1
2k

)

= 2k+`

2`

 2`∑
i=1

(
Pr

x∼ψ
[x ∈ Ci]−

1
2k+`

)
= 1

2`

 2`∑
i=1

2k+`
(

Pr
x∼ψ

[x ∈ Ci]−
1

2k+`

)
= 1

2`
2`∑
i=1

Skewψ(Ci). J

I Corollary 18. For J ⊆ [n] and a distribution ψ over {±1}n,

W≤k(ψ, J) ≤ 2|J|e2(ln(e ‖ψ‖∞))k.

Proof. Recall that

W≤k(ψ, J) =
∑
T⊆J

∑
S⊆[n]\J
|S|≤k

ψ̂(S ∪ T )2

We will show that for any T ⊆ J , we have∑
S⊆[n]\J
|S|≤k

ψ̂(S ∪ T )2 ≤ e2(ln(e ‖ψ‖∞))k. (8)

The claim will then follow by summing over all 2|J| choices of T ⊆ J . To prove Equation (8),
we define ψ(T ) : {±1}[n]\J → R as

ψ(T )(x) = E
z∼{±1}J

[ψ(x ◦ z)χT (z)].
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Note that unlike ψ, ψ(T ) can be negative. By orthogonality of characters, we have

ψ(T )(x) =
∑

S⊆[n]\J

ψ̂(S ∪ T )χS(x).

Since ψ(T ) is a signed average of ψ which is non-negative, we have
∥∥ψT∥∥∞ ≤ ‖ψ‖∞ and

∥∥ψT∥∥1 = E
x∈{±1}[n]\J

[∣∣∣∣ E
z∼{±1}J

[ψ(x ◦ z)χT (z)]
∣∣∣∣]

≤ E
x∈{±1}[n]\J

[∣∣∣∣ E
z∼{±1}J

[|ψ(x ◦ z)|]
∣∣∣∣] = E

x∈{±1}n
[|ψ(x)|] = 1.

The proof of Theorem 17 only uses bounds on the 1 and ∞ norms of ψ. Hence we can repeat
the same proof with ψ(T ) to get an identical bound. This proves Equation (8). J

I Lemma 19. For P ⊆ [n] and a distribution ψ over {±1}n, the restriction ψP is given by

ψP (y) =
∑
S⊆P

ψ̂(S)χS(y).

Proof. Let |P | = p < n. For x ∈ {±1}P , we have

ψP (y) = 2p Pr
x∼ψ

[xP = y] =
∑

z∈{±1}P̄

ψ(y ◦ z)
2n−p = E

z∼µP̄
[ψ(y ◦ z)].

where the last expectation is over the bits z assigned to P̄ being chosen uniformly at random.
Using the Fourier expansion of ψ,

E
z∼µP̄

[ψ(y ◦ z)] =
∑
S⊆[n]

ψ̂(S) E
z∼µP̄

χS(y ◦ z) =
∑
S⊆P

ψ̂(S)χS(y). J

I Lemma 20. Let P ( [n]. Let ψ′ be a distribution on {±1}P . Define a distribution ψ on
{±1}n by ψ(x) = ψ′(xP ). Then
1. ψ is the product distribution of ψ′ with the uniform distribution on {±1}P̄ .
2. ‖ψ‖∞ = ‖ψ′‖∞.
3. C is a minimal skewed subcube under ψ iff it is a minimal skewed subcube under ψ′.

Proof. It follows that ψ is a distribution since it is non-negative and ‖ψ‖1 = 1. Since the
uniform distribution on {±1}(P̄ ) is given by µP̄ (y) = 1 for all y ∈ {±1}P̄ , it follows that
ψ = ψ′ × µP̄ is the product of ψ′ and µP̄ .

Claim (2) follows trivially from the definition of ψ.
For claim (3), we show that if C = (K, y) is a minimal skewed subcube under ψ, then

K ⊆ P . Indeed, suppose i ∈ K \P . Consider the parent subcube D ) C obtained by freeing
the coordinate i. Then Prx∈ψ[x ∈ C] = Prx∈ψ[x ∈ D]/2, whereas codim(C) = codim(D) + 1,
hence

Skewψ(C) = 2codim(C) Pr
x∈ψ

[x ∈ C]− 1 = Skewψ(D).

This violates the definition of minimality. In the other direction, it is easy to see that a
minimal skewed subcube under ψ′ is also a minimal skewed subcube under ψ. J
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I Lemma 21. Let C = (J, z). Then

ψ|C (x) =
∑

S⊆[n]\J

χS(x)
∑
T⊆J ψ̂(S ∪ T )χT (z)

〈ψ, µC〉
.

Proof. Recall that ψ|C (x) = ψ(x)/ 〈ψ, µC〉 for x ∈ C. For x ∈ {±1}[n]\J let x ◦ z denote
the string obtained by setting coordinates in J to z and those in [n] \ J to x. Then

ψ|C (x) = ψ(x ◦ z)
〈ψ, µC〉

= 1
〈ψ, µC〉

∑
S⊂[n]\J

∑
T⊂J

χS∪T (x ◦ z)ψ̂(S ∪ T )

= 1
〈ψ, µC〉

∑
S⊂[n]\J

∑
T⊂J

χS(x)χT (z)ψ̂(S ∪ T )

=
∑

S⊂[n]\J

χS(x)
∑
T⊂J χT (z)ψ̂(S ∪ T )

〈ψ, µC〉
J

I Lemma 32 ([19]). Let d ≥ 2 be even and let n + 1 = 2l ≥ d. There exists a F2-linear
code CBCH ⊆ {0, 1}n with minimum distance d, which contains Ω(nd/2+1) minimum weight
codewords.

Proof. Let d = 2e+ 2 for e ≥ 0. We use the fact that BCH codes are [n, n− el − 1, 2e+ 2)]
codes [2, Theorem 16.21]. We need to show that there are many minimum weight codewords.
For this, let us consider the parity check matrix H which has dimension (el + 1)× n so that
CBCH = {x ∈ Fn2 : Hx = 0}.

Now let us consider the mapping x→ Hx for all x : wt(x) = e+ 1. This maps each x to
a vector y ∈ {0, 1}el+1. For each y ∈ {0, 1}el+1, let by = |{x : wt(x) = e + 1, Hx = 0}| be
the number of vectors of weight e+ 1 mapped to y. Then we have

∑
y by =

(
n
e+1
)
, hence

∑
y

b2y ≥

(∑
y by

)2

2el+1 =
(
n
e+1
)2

2(n+ 1)e .

For x1 6= x2 both of weight e+ 1, if Hx1 = Hx2 then H(x1 + x2) = 0, hence x1 + x2 is a
non-zero codeword of weight at most 2e+ 2, hence it is in fact a minimum weight codeword.
Since there are

(2e+2
e+1

)
< 22e+2 ways to write each vector of weight 2e+ 2 as such as sum,

hence the number of vectors of codewords of weight 2e+ 2 is at least

1
22e+2

∑
y

(
by
2

)
= 1

22e+3

∑
y

(b2y − by) ≥ 1
22e+3

( (
n
e+1
)2

2(n+ 1)e −
(

n

e+ 1

))
= Ωe(ne+2). J

I Theorem 34 (Algorithm for Positive Skew). Given sample access to a distribution ψ on
{±1}n, integer k ≤ n, and parameters γ ∈ (0, 2k − 1], ε ∈ (0, 1] and λ ∈ [0, 1], there is an
algorithm that returns all (γ, ε)-minimal skewed subcubes of codimension at most k in time:

Õ
(
nk(

ω
3−λ )

)
+ kO(k) · (ln(e ‖ψ‖∞))k

(
Õ(nk/3)
(ε√γ)4/λ + poly(n)

(ε√γ)2k

)
where ω is the matrix multiplication exponent, and Õ hides poly logn factors.
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I Theorem 35 (Algorithm for Negative Skew). Given sample access to a distribution ψ

on {±1}n, integer k ≤ n, and parameters γ ∈ (0, 1], ε ∈ (0, 1] and λ ∈ [0, 1], there is an
algorithm that returns all (−γ, ε)-minimal skewed subcubes of codimension at most k in time:

Õ
(
nk(

ω
3−λ )

)
+ kO(k) · (ln(e ‖ψ‖∞))k

(
Õ(nk/3)
(εγ)4/λ + poly(n)

(εγ)2k

)
where ω is the matrix multiplication exponent, and Õ hides poly logn factors.

The algorithm is FindSkew+(∅, ∅) in the positive case and FindSkew−(∅, ∅) in the
negative case with the nondeterminism replaced. In the positive case, one could replace
the enumeration of Fourier coefficients (this is Line 6 in Algorithm 1 and Line 4 in Al-
gorithm 2) by a call to FindFourierCoefficients. However this would naively yield a
running time bound of O(n0.8k) · kO(k) (ln(e ‖ψ‖∞ /εγ))k /(εγ)2k+O(1). We show the stronger
bound claimed in the theorem by making the following modification. Instead of running
FindFourierCoefficients at every recursive call, we run it once at the top level to get
the list L of heavy coefficients for ψ, and “deduce” the heavy Fourier coefficients for each
restricted distribution ψ|C from the original list L. To do so efficiently, we require a data
structure which we now explain.

We preprocess L by creating a graph GL. Vertices of this graph are indexed by elements
of the power set 2[n]. For each coefficient S ∈ L, and each subset T ⊂ S, add the directed
edge T → S. Furthermore, each T stores k lists, where the ith list contains all sets S in the
out-neighborhood of T such that |S\T | = i. Since 2k|L| is a bound on both the total number
of edges and the total number of vertices in the graph, creating the graph takes O(2k|L|)
time. Creating the partitions of the out-neighborhoods also takes O(2k|L|) times since each
edge in the graph need only be processed once.

We summarize the algorithm below for reference.

Algorithm 4 PreprocessCoefficients(L).

1: V,E ← ∅
2: for S ∈ L do
3: for T ⊆ S do
4: V ← V ∪ {S, T}
5: E ← E ∪ {(T → S)}
6: for edge (T → S) ∈ E do
7: Let i = |S\T |, and add S to the ith list stored at T .
8: return GL = (V,E)

Next, given GL the preprocessed form of L, a target subcube C = (J, z) and a threshold
τ , we show how to output all Fourier coefficients ψ̂|C(S) such that ψ̂|C(S) ≥ τ .

I Lemma 41. Let L = {S ⊆ [n] : |S| ≤ k, |ψ̂(S)| ≥ τ/4k}, and GL be the output
of Preprocess(L). Then DeduceSubcubeCoefficients(GL, C, τ) returns the list of
Fourier coefficients of ψ|C of degree at most k and magnitude at least τ . Furthermore,
DeduceSubcubeCoefficients(GL, C, τ) runs in time

poly(n) ·O(|L′|) ≤ poly(n) · 2O(k) ·
(ln(e ‖ψ‖∞))k−|J|

τ2 .
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Algorithm 5 DeduceSubcubeCoefficients(GL, C, τ).

1: Let J be the coordinates fixed by C.
2: L′ ← ∅
3: for T ⊆ J do
4: for S out-neighbor of T in GL with |S\T | ≤ k − |J | do
5: Check by sampling if

∣∣∣ ψ̂|C(S\J)
∣∣∣ ≥ 3τ/4 to accuracy τ/4. If so, add S\J to L′.

6: return L′.

Proof. The output L′ consists only of sets S′ such that S′∪J ∈ L, S′∩J = ∅ and |S′| ≤ k−|J |.
Furthermore it contains all S′ meeting these criteria such that

∣∣∣ ψ̂|C(S′)
∣∣∣ ≥ τ , note that for

any set H ∈ L such that |H| ≤ k, if T is chosen to be H ∩ J , then |H\J | = |H\T | ≤ k − |J |
and thus the algorithm will add H\J to the output.

To obtain the claim of the lemma, we need to argue that for every Fourier coefficient
ψ̂|C(S) of absolute value at least τ , the set S must appear in L′. We need the following
consequence of Lemma 21: let ψ be a distribution on {±1}n and let C = (J, z) be a subcube.
Then

ψ̂|C(S) =
∑
T⊆J

χT (z)ψ̂(S ∪ T )
〈ψ, µC〉

.

It follows that every coefficient ψ̂|C(S) is the signed sum of at most 2k coefficients ψ̂(R) =
ψ̂(S ∪ T ), which is then scaled by 1/ 〈ψ, µC〉 (at most 2k). Furthermore, if |S| ≤ k − |J |,
then each such coefficient has |R| ≤ |S|+ |T | ≤ k. Thus if ψ̂|C(S) ≥ τ , there is at least one
R ⊆ J with |R| ≤ k such that |ψ̂(R)| ≥ τ/4k, which means that R ∈ L.

Finally, the running time claim follows from Corollary 18 and the fact that for every
S ∈ L we have ψ̂(S) ≥ τ/4k. J

We are now ready to prove our main theorem. We start with the positive case.

Proof of Theorem 34. We start by running FindFourierCoefficients(ψ, k, ρ+, λ) once,
with ρ+ = ε

√
γ/16k. This outputs a list L+ containing all S where |S| ≤ k and ψ̂(S) ≥

ε
√
γ/4k. Subsequently, we compute GL+ ← PreprocessCoefficients(L+) using the

output. This set up phase has running time R+ bounded by

R+ ≤ Õ
(
nk(

ω
3−λ )

)
+
kO(k)Õ

(
nk/3

)
ln(e ‖ψ‖∞)k

(ε√γ)4/λ .

Next we run FindSkew+(∅, ∅) but we replace the nondeterministic enumeration of Fourier
coefficients (this is Line 6 in Algorithm 1) by DeduceSubcubeCoefficients(GL+ , C, τ+)
where τ+ := ε

√
γ/
(
kt ·

(
kt
|St|
))

. We also replace the nondeterministic choice of z (Line 7
in Algorithm 1) by simple enumeration over all possible choices. Correctness follows from
Lemma 24 together with Lemmas 39 and 41 and it remains to show the running time bound.

By Lemma 41, at every subcube C the algorithm spends time at most

poly(n) · 2O(k) ·
(ln(e ‖ψ‖∞))k−|J|

(τ+)2 = poly(n) · 2O(k) ·
(ln(e ‖ψ‖∞))k−|J|

(ε√γ)2

to run DeduceSubcubeCoefficients.
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On the other hand, the proof of Lemma 26 requires that the branching factor of
FindSkew+ be bounded as in Lemma 25. Since this bound is at least (ln(e ‖ψ‖∞))k−|J|/(ε√γ)
(and we may assume WLOG that the branching factor is at least this threshold), we may
amortize the cost of each call to DeduceSubcubeCoefficients by charging to each child
call the average running time per child. The time spent per child is poly(n) · 2O(k), and we
argued in Lemma 26 that the total number of recursive calls to FindSkew+ is at most

kO(k)
(

ln(e ‖ψ‖∞)
ε2γ

)k
.

Thus we may bound the running time of FindSkew+(∅, ∅) by this expression as well.
To conclude, the final running time of the algorithm in the positive skew case is:

R+ + poly(n, kk) · kO(k)
(

ln(e ‖ψ‖∞)
ε2γ

)k
≤ Õ

(
nk(

ω
3−λ )

)
+
kO(k)Õ

(
nk/3

)
ln(e ‖ψ‖∞)k

(ε√γ)4/λ + poly(n, kk) · kO(k)
(

ln(e ‖ψ‖∞)
ε2γ

)k
≤ Õ

(
nk(

ω
3−λ )

)
+ kO(k) · (ln(e ‖ψ‖∞))k

(
Õ
(
nk/3

)
(ε√γ)4/λ + poly(n)

(ε√γ)2k

)
. J

The negative case is identical, but with a different setting of parameters.

Proof of Theorem 35. In this case we run FindFourierCoefficients(ψ, k, ρ−, λ) with
ρ− = εγ/16k. This outputs the list L−, and we set GL− ← PreprocessCoefficients(L−).
This all has running time R− bounded by

R− ≤ Õ
(
nk(

ω
3−λ )

)
+
kO(k)Õ

(
nk/3

)
ln(e ‖ψ‖∞)k

(εγ)4/λ .

Now we run FindSkew−(∅, ∅), with Fourier coefficient enumeration (Algorithm 2 in Al-
gorithm 2) replaced with DeduceSubcubeCoefficients(GL− , C, τ−), and we set τ− =
εγ/

(
kt ·

(
kt
|St|
))

. The analysis is identical to the positive case, and the final running time is:

Õ
(
nk(

ω
3−λ )

)
+ kO(k) · (ln(e ‖ψ‖∞))k

(
Õ
(
nk/3

)
(εγ)4/λ + poly(n)

(εγ)2k

)
. J
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