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Abstract
A regular path query (RPQ) is a regular expression q that returns all node pairs (u, v) from a graph
database that are connected by an arbitrary path labelled with a word from L(q). The obvious
algorithmic approach to RPQ evaluation (called PG-approach), i. e., constructing the product
graph between an NFA for q and the graph database, is appealing due to its simplicity and also
leads to efficient algorithms. However, it is unclear whether the PG-approach is optimal. We
address this question by thoroughly investigating which upper complexity bounds can be achieved
by the PG-approach, and we complement these with conditional lower bounds (in the sense of the
fine-grained complexity framework). A special focus is put on enumeration and delay bounds, as
well as the data complexity perspective. A main insight is that we can achieve optimal (or near
optimal) algorithms with the PG-approach, but the delay for enumeration is rather high (linear in
the database). We explore three successful approaches towards enumeration with sub-linear delay:
super-linear preprocessing, approximations of the solution sets, and restricted classes of RPQs.
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1 Introduction

An essential component of graph query languages (to be found both in academical prototypes
as well as in industrial solutions) are regular path queries (RPQs). Abstractly speaking,
a regular expression q over some alphabet Σ is interpreted as query that returns from a
Σ-edge-labelled, directed graph D (i. e., a graph database) the set q(D) of all node pairs (u, v)
that are connected by a q-path, i. e., a path labelled with a word from q’s language (and
possibly also a witness path per node pair, or even all such paths). This simple, yet relevant
concept has heavily been studied in database theory (the following list is somewhat biased
towards recent work): results on RPQs [26, 7, 35, 37, 40, 16], conjunctive RPQs [15, 43, 9] and
extensions thereof [34, 12, 34, 29], questions of static analysis [28, 11, 27, 31, 44], experimental
analyses [17, 19, 39], and surveys of this research area [10, 53, 5, 23].
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19:2 Fine-Grained Complexity of Regular Path Queries

In the simplest setting, where we are only interested in the node pairs (but no paths)
connected by arbitrary q-paths (instead of, e. g., simple paths), evaluation can be done
efficiently. Deviating from this simple setting, however, leads to intractability: if we ask for
nodes connected by simple paths (no repeated nodes), or connected by trails (no repeated
arcs), then RPQ evaluation is NP-hard even in data-complexity (see [41, 7, 38] and [37],
respectively). Note that the simple path and trail semantics are mostly motivated by the fact
that under these semantics there is only a finite number of q-paths per node pair. If we move
to conjunctions of RPQs (CRPQs) or even more powerful extensions motivated by practical
requirements, then also with the arbitrary path semantics evaluation becomes intractable in
combined complexity (i. e., they inherit hardness from relational conjunctive queries (CQs)).

In order to guide practical developments in the area of graph databases, the computational
hard cases of RPQ (and CRPQ) evaluation have been thoroughly investigated in database
theory. However, with respect to arbitrary q-paths, research seems to have stopped at the
conclusion that efficient evaluation is possible by the following simple PG-approach: given
graph database D = (VD, ED) and NFA Mq for q with state set Vq, construct the product
graph GD,q with nodes VD × Vq and an arc ((u, p), (v, p′)) iff, for some a ∈ Σ, D has an arc
(u, a, v) and Mq has an arc (p, a, p′), and then use simple graph-searching techniques on GD,q.

The PG-approach is explicitly defined in several papers, e. g., [41, 10, 38], and mainly used
to prove a worst-case upper bound (actually O(|q|| D |) for Boolean evaluation); in [38] it is
used for enumerating q-paths between two given nodes. But it is also very appealing from a
practical point of view due to its simplicity: we are just coupling well-understood algorithmic
concepts like finite automata and graph reachability algorithms. Arguably, implementing the
PG-approach is an exercise suitable for a first year programming course (making it feasible
and cost-efficient for industrial systems). As it seems, putting RPQ evaluation with arbitrary
path semantics and the respective PG-approach into the focus of a thorough theoretical
study has not yet been done. This paper is devoted to this task. In particular, we wish to
investigate the following two (somewhat overlapping) aspects:
1. Applicability of the PG-approach: the PG-approach is suited for solving simple evaluation

problems like checking q(D) = ∅ or (u, v) ∈ q(D) (for given u, v ∈ VD), but is it also
appropriate for more relevant tasks like computing, counting or enumerating q(D)?

2. Optimality of the PG-approach: Does the PG-approach lead to optimal algorithms, or
can it be beaten by conceptionally different techniques?

Answering these questions provides a better theoretical understanding of RPQ-evaluation
(which, as mentioned above, are at the heart of many graph query languages). But also
for the more powerful CRPQs and more practically motivated graph query languages, we
can derive valuable insights from our investigation. Let us mention two such examples (a
complete summary of our results follows further down). As noted in [10], we can reduce CRPQ
evaluation to the evaluation of relational CQs by first constructing all tables represented by
the single RPQs and then evaluating a CQ over this database. To do this, we first have to
compute the results of all RPQs, so it seems helpful to know the best algorithms for this
intermediate task. Moreover, if we want to benefit from the existing CQ evaluation techniques
(e. g., exploiting acyclicity etc.) we are more or less forced to this two-step approach. With
respect to enumerations of CQs, it is known that linear preprocessing and constant delay
enumeration is possible provided that the CQs satisfy certain acyclicity properties (see [8, 14],
or the surveys [13, 45]). Unfortunately, these techniques do not carry over to CRPQs since,
as we show, linear preprocessing and constant delay enumeration is not possible even for
single RPQs (conditional to some complexity assumptions).
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Table 1 All upper bounds can be achieved as running times of some algorithm, while the lower
bounds cannot be achieved as running time by any algorithm, unless the displayed hypothesis fails.
The exponent ω denotes the best known matrix multiplication exponent.

Non-enum. Results Boole, Test, Witness Eval Count
upper bounds O(| D ||q|) O(|VD|| D ||q|)

O((|VD||q|)2.37)
O(|VD|| D ||q|)
O((|VD||q|)ω)

lower
bounds

OV & com-BMM O((| D ||q|)1−ϵ) — —
OV — — Odc((|VD|| D |)1−ϵ)
SBMM — Odc(|q(D)|+ | D |) —
com-BMM — Odc((|VD|| D |)1−ϵ) —

Since the problem we investigate can be solved in polynomial time (also in combined
complexity), we cannot show lower bounds in terms of hardness results for complexity classes
like NP or PSPACE. Instead, we make use of the framework of fine-grained complexity, which
allows to prove lower bounds that are conditional on some algorithmic assumptions (see the
surveys [50, 22, 51]). In particular, fine-grained complexity is a rather successful toolbox
for giving evidence that the obvious algorithmic approach to some basic problem, is also
the optimal one. This is exactly our setting here, with respect to RPQ-evaluation and the
PG-approach. To the knowledge of the authors, such conditional lower bounds are not yet
a well-established technique in database theory (however, see Section [13, Section 6] for a
survey of conditional lower bounds in the context of CQ enumeration).

A main challenge is that fine-grained complexity is not exactly tailored to either the
data-complexity perspective or to enumeration problems. We will next outline our results.

1.1 Our Contribution
All investigated RPQ-evaluation problems are summarised on page 7. In the following,
D = (VD, ED) is the graph database, q is the RPQ, and ϵ > 0. With the notation Odc(·),
we hide factors f(|q|) for some function f (i. e., it is used for stating data-complexities).
All lower bounds mentioned in the following are conditional to some of the algorithmic
assumptions summarised in Section 4 (we encourage the reader less familiar with fine-grained
complexity hypotheses to have a look at this section first, which can be read independently).
For presentational reasons, we do not always explicitly mention this in the rest of the
introduction and when we say that a certain running time is “not possible”, this statements
is always conditional in this sense (see Tables 1 and 2 for the actual hypotheses). As common
in fine-grained complexity, we rule out true sub-linear (O(n1−ϵ)), sub-quadratic (O(n2−ϵ)),
or sub-cubic (O(n3−ϵ)) running times, but not possible improvements by logarithmic factors.

Non-Enumeration Variants

The following results are summarised in Table 1. For the simple problems Boole (checking
q(D) = ∅), Test (checking (u, v) ∈ q(D)) and Witness (computing some element from
q(D)), the PG-approach yields an upper bound of O(| D ||q|), which is optimal (since linear)
in data complexity, and we can show lower bounds demonstrating its optimality also in
combined complexity. For Eval (computing the set q(D)) the PG-approach yields a data
complexity upper bound of Odc(|VD|| D |), which cannot be improved by combinatorial
algorithms, although Odc(|VD|2.37) is possible by fast matrix multiplication (see Section 4 for
a discussion of the meaning of the term “combinatorial”). In addition, we can show that
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19:4 Fine-Grained Complexity of Regular Path Queries

Table 2 All upper bounds can be achieved as running times of some algorithm, while the lower
bounds cannot be achieved as running time by any algorithm, unless the displayed hypothesis fails.
The exponent ω denotes the best known matrix multiplication exponent.

Enum. Results Enum
preprocessing delay sorted updates

upper bound O(delay) O(| D ||q|) � O(1)

lower
bounds

OV & com-BMM O(delay) O((| D ||q|)1−ϵ) × ×
SBMM Odc(| D |) Odc(1) × ×
com-BMM Odc(| D |) Odc(|VD|1−ϵ) × ×
OMv arbitrary Odc(|VD|1−ϵ) × Odc(|VD|1−ϵ)
com-BMM Odc(| D |) Odc(|VD|2−ϵ) × Odc(|VD|2−ϵ)

linear time data complexity, i. e., Odc(|q(D)|+ | D |), is not possible even for non-combinatorial
algorithms. For Count (computing |q(D)|), we get Odc(|VD|| D |) as upper and lower bound,
not restricted to combinatorial algorithms.

Enumeration

Our results for RPQ-enumeration are summarised in Table 2. An entry “O(delay)” in column
“preprocessing” means that the preprocessing is bounded by the delay (which means that
no preprocessing is required). The column “sorted” indicates whether the enumeration is
produced lexicographically sorted.

In comparison to the non-enumeration problem variants, the picture is less clear and
deserves more explanation. The PG-approach yields a simple enumeration algorithm with
delay O(| D ||q|), that also trivially supports updates in constant time, since the preprocessing
fits into the delay bound. Our lower bounds for Boole also mean that this delay cannot
be improved in terms of combined complexity. While this lower bound was interesting for
problems like Boole etc., it now gives a correct answer to the wrong question. The main
goal now should be to find out whether we can remedy the linear dependency of the delay on
| D |, at the expense of spending more time in terms of |q|, or of losing the ability of handling
updates, or even of allowing a slightly super-linear preprocessing.

In this regard, the strongest result would be linear preprocessing O(| D |f(|q|)) and
constant delay O(f(|q|)). However, we can rule this out even for algorithms not capable of
handling updates. Then, the next question is which non-constant delays can be achieved that
are strictly better than linear. For example, none of our lower bounds for the non-enumeration
variants suggest that linear preprocessing and a delay bounded by, e. g., |VD| or the degree of
D, should not be possible. We are not able to answer this question in its general form (and
believe it to be very challenging), but we are able to provide several noteworthy insights.

For linear preprocessing, a delay of O(|VD|) (if possible at all) cannot be beaten by
combinatorial algorithms (even without updates). This can be strengthened considerably, if
we also require updates in some reasonable time: for general algorithms (i. e., not necessarily
combinatorial) delay and update time strictly better than Odc(|VD|) is not possible even with
arbitrary preprocessing, and for combinatorial algorithms with linear preprocessing even
delay and update time of O(| D |) cannot be beaten. This last result nicely complements the
upper bound at least for combinatorial algorithms and in the dynamic case.

In summary, for linear preprocessing, O(|VD|) is a lower bound for the delay and if we
can beat O(| D |), we should not be able to also support updates.
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Enumeration of Restricted Variants

Finally, we obtain restricted problem variants that can be solved with delay strictly better
than O(| D |) (in data complexity). We explore three different approaches: (1) by allowing
super-linear preprocessing of Odc(∆(D) log(∆(D))| D |) (where ∆(D) is the average degree of
D), we can achieve a delay of O(|VD|); (2) in linear preprocessing and constant delay, we can
enumerate a representative subset of q(D) instead of the whole set q(D); (3) for a subclass of
RPQs, we can solve RPQ-Enum with linear preprocessing and delay O(∆(D)) (where ∆(D)
is the maximum degree of D).
Due to space constraints, most proof details are omitted, although we give proof sketches for
some results; detailed proofs can be found in the preliminary full version of this paper [25].

2 Main Definitions

Let N = {1, 2, 3, . . .} and [n] = {1, 2, . . . , n} for n ∈ N. For a finite alphabet A, A+ denotes
the set of non-empty words over A and A∗ = A+ ∪ {ε} (where ε is the empty word). For
a word w ∈ A∗, |w| denotes its length;w1 = w and wk = wwk−1 for every k ≥ 2. For
L, K ⊆ A∗, let L · K = {w1 · w2 | w1 ∈ L, w2 ∈ K}, let L1 = L and Lk = L · Lk−1 for every
k ≥ 2, let L+ =

⋃
k≥1 Lk and L∗ = L+ ∪ {ε}.

2.1 Σ-Graphs
We now define the central graph model that is used to represent graph databases as well as
finite automata. Let Σ be a finite alphabet of constant size. A Σ-graph is a directed, edge
labelled multigraph G = (V, E), where V is the set of vertices (or nodes) and E ⊆ V × (Σ ∪
{ε}) × V is the set of edges (or arcs). For u ∈ V and x ∈ Σ ∪ {ε}, Ex(u) = {v | (u, x, v) ∈ E}
is the set of x-successors of u. A path from w0 ∈ V to wk ∈ V of length k ≥ 0 is a sequence
p = (w0, a1, w1, a2, w2 . . . , wk−1, ak, wk) with (wi−1, ai, wi) ∈ E for every i ∈ [k]. We say
that p is labelled with the word a1a2 . . . ak ∈ Σ∗. According to this definition, for every
v ∈ V , (v) is a path from v to v of length 0 that is labelled by ε. Hence, every node v of a
Σ-graph has an ε-labelled path to itself, even though there might not be an ε-arc from v to
v. Moreover, due to ε as a possible edge-label, paths of length k may be labelled with words
w with |w| < k. The size of G = (V, E) is |G| = max{|V |, |E|}.

For any Σ-graph G = (V, E), we call (V, {(u, v) | u ̸= v ∧ ∃x ∈ Σ ∪ {ε} : (u, x, v) ∈ E})
the underlying graph of G (note that the underlying graph is simple, non-labelled and has no
loops). In particular, by a slight abuse of notation, we denote by E∗ the reflexive-transitive
closure of the underlying graph of G. Since we always assume |Σ| to be a constant, we
have that |G| = Θ(max{|V |, |{(u, v) | u ̸= v ∧ ∃x ∈ Σ ∪ {ε} : (u, x, v) ∈ E}|}) (i. e., |G| is
asymptotically equal to the size of its underlying graph). For every u ∈ V , the degree of u is
∆(u) = |

⋃
x∈Σ∪{ε} Ex(u)| (so ∆(u) is actually the out-degree), and the maximum degree of

G is ∆(G) = max{| ∆(u)| | u ∈ V }. The average degree of G is ∆(G) = 1
|V |

∑
u∈V | ∆(u)|.

Obviously, ∆(G) ≤ ∆(G) ≤ |V |.
Since Σ-graphs are the central data structures for our algorithms, we have to discuss

implementational aspects of Σ-graphs in more detail. The set V of a Σ-graph G = (V, E) is
represented as a list, and, for every u ∈ V and for every x ∈ Σ ∪ {ε}, we store a list of all
x-successors of u, which is called the x-adjacency list for u. We assume that we can check in
constant time whether a list is empty and we can insert elements in constant time. However,
finding and deleting an element from a list requires linear time. Furthermore, we assume
that we always store together with a node a pointer to its adjacency list (thus, we can always
retrieve the x-adjacency list for a given node in constant time).

ICDT 2021



19:6 Fine-Grained Complexity of Regular Path Queries

▶ Remark 1. All lower bounds presented in this paper hold for any graph representation
that can be constructed in time linear in |G| = max{|V |, |E|}. For the upper bounds, we
chose the simple representation with adjacency lists as it emerged as the natural structure
for our enumeration approach; let us point out here that since we always store pointers
to the adjacency lists along with the nodes, we can perform a breadth-first search (BFS)
from any given start node u in time O(|G|). It is a plausible assumption that most specific
graph representations can be transformed into our list-based representation without much
effort. This ensures a certain generality of our upper complexity bounds in the sense that the
corresponding algorithms are, to a large extent, independent from implementational details.
Note also that the list-based structure only requires space linear in |G|.

In the adjacency list representation, we do not have random access to specific nodes in
the graph database, or to specific neighbours of a given node. Thus, we have to measure
a non-constant running-time for performing such operations. However, the algorithms for
our upper bounds are independent from this aspect, i. e., the total running times would not
change if we assume random access to nodes in constant time. Therefore, it is a stronger
statement that a conditional lower bound is matched by an algorithm that does not exploit
specific implementational aspects or advanced data structures, but works for basic graph
representations.

An exception to this is Theorem 20, for which we can obtain some small improvement by
applying the technique of lazy array initialization (see Remark 21).

2.2 Graph Databases and Regular Path Queries
A nondeterministic finite automaton (NFA for short) is a tuple M = (G, S, T ), where
G = (V, E) is a Σ-graph (the nodes q ∈ V are also called states), S ⊆ V with S ̸= ∅ is the
set of start states and T ⊆ V with T ̸= ∅ is the set of final states. The language L(M) of
an NFA M is the set of all labels of paths from some start state to some final state. For
a Σ-graph G = (V, E), any subsets S, T ⊆ V with S ̸= ∅ ≠ T induce the NFA (G, S, T ). If
S = {s} and T = {t} are singletons, then we also write (G, s, t) instead of (G, {s}, {t}).

The set REΣ of regular expressions (over Σ) is recursively defined as follows: a ∈ REΣ for
every a ∈ Σ ∪ {ε}; (α · β) ∈ REΣ, (α ∨ β) ∈ REΣ, and (α)+ ∈ REΣ, for every α, β ∈ REΣ. For
any α ∈ REΣ, let L(α) be the regular language described by the regular expression α defined
as usual: for every a ∈ Σ ∪ {ε}, L(a) = {a}, and for every α, β ∈ REΣ, L(α · β) = L(α) · L(β),
L(α ∨ β) = L(α) ∪ L(β) and L(α+) = L(α)+. We also use α∗ as short hand form for α+ ∨ ε.
By |α|, we denote the length of α represented as a string.

▶ Proposition 2. Every regular expression α can be transformed in time O(|α|) into an
equivalent NFA M = (G, p0, pf ) with |G| = O(|α|).

In the following, when we speak about an automaton (or an NFA) for a regular expression
α, we always mean an NFA equivalent to α with the properties asserted by Proposition 2.

A Σ-graph without ε-arcs is also called a graph database (over Σ); in the following, we
denote graph databases by D = (VD, ED). Since VD is represented as a list, any graph
database implicitly represents a linear order on VD (i. e., the order induced by the list that
represents VD), which we denote by ⪯D, or simply ⪯ if D is clear from the context. A graph
database D is sparse if |ED| = O(|VD|).

Regular expressions q (over alphabet Σ) are interpreted as regular path queries (RPQ) for
graph databases (over Σ). The result q(D) of an RPQ q on a graph database D = (VD, ED)
over Σ is the set q(D) = {(u, v) | u, v ∈ VD, L((D, u, v)) ∩ L(q) ̸= ∅}.
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If we interpret q as a Boolean RPQ, then the result is qB(D) = true if q(D) ̸= ∅ and
qB(D) = false otherwise. We consider the following RPQ evaluation problems (D is a graph
database, q an RPQ and u, v two nodes from D):

Name Input Task
RPQ-Boole D, q Decide whether qB(D) = true.
RPQ-Test D, q, u, v Decide whether (u, v) ∈ q(D).
RPQ-Witness D, q Compute a witness (u, v) ∈ q(D) or report that none exists.
RPQ-Eval D, q Compute the whole set q(D)
RPQ-Count D, q Compute |q(D)|.
RPQ-Enum D, q Enumerate the whole set q(D).

By sorted RPQ-Enum (or semi-sorted RPQ-Enum), we denote the variant of RPQ-Enum,
where the pairs of q(D) are to be enumerated in lexicographical order with respect to ⪯D (or
ordered only with respect to their left elements, while successive pairs with the same right
element can be ordered arbitrarily, respectively).
▶ Remark 3. If an order ⪯′ on VD is explicitly given as a bijection π : VD → {1, . . . , n}, then
we can modify D (in O(|VD|)) such that ⪯D = ⪯′. In this regard, sorted RPQ-Enum just
models the case where we wish the enumeration to be sorted according to some order. In
particular, by assuming the order ⪯D to be implicitly represented by D, we do not hide
the non-linear complexity of sorting n numbers (this would only be the case if we would
generally assume that VD ⊆ N and then require sorted enumeration with respect to ≤).

2.3 General Algorithmic Framework for RPQ Evaluation
We assume the RAM model with logarithmic word-size as our computational model. Let us
next discuss our algorithmic framework for RPQ evaluation. The input to our algorithms is
a graph database D = (VD, ED) and an RPQ q (and, for solving the problem RPQ-Test,
also a pair (u, v) ∈ VD).

In the case of RPQ-Enum, the algorithms have routines preprocess and enum. Initially,
preprocess performs some preliminary computations on the input or constructs some auxiliary
data structures; the performance of preprocess is measured in its running time depending on
the input size as usual (i. e., we treat preprocess as an individual algorithm). Then enum will
produce an enumeration (u1, v1), (u2, v2), . . . , (uℓ, vℓ) such that q(D) = {(ui, vi) | 1 ≤ i ≤ ℓ},
no element occurs twice, and the algorithm reports when the enumeration is done. We
measure the performance of enum in terms of its delay, which describes the time that (in
the worst-case) elapses between enumerating two consecutive elements, between the start
of the enumeration and the first element, and between the last element and the end of the
enumeration (or between start and end in case that q(D) = ∅). We say that (variants of)
RPQ-Enum can be solved with preprocessing p and delay d, where p and d are functions
bounding the preprocessing running time and the delay. In the case that p = O(d), the
preprocessing complexity is absorbed by the delay; in this case, we say that (variants of)
RPQ-Enum can be solved with delay d and do not mention any bound on the preprocessing.

We also consider RPQ-Enum in the dynamic setting, i. e., there is the possibility to
perform update operations on the input graph database D, which triggers a routine update.
After an update and termination of the update routine, invoking enum is supposed to
enumerate q(D′), where D′ is the updated graph database. The performance of an algorithm
for RPQ-Enum is then measured in the running times of routines preprocess (to be initially
carried out only once) and update, as well as the delay. We only consider the following types

ICDT 2021



19:8 Fine-Grained Complexity of Regular Path Queries

of individual updates: inserting a new arc between existing nodes, deleting an arc, adding a
new (isolated) node, deleting an (isolated) node. In particular, deleting or adding a single
non-isolated node u may require a non-constant number of updates.

3 The Product Graph Approach

The PG-approach has already been informally described in the introduction; for our fine-
grained perspective, we need to define it in detail. Let D = (VD, ED) be a graph database over
some alphabet Σ and let q be an RPQ over Σ. Furthermore, let (Gq, p0, pf ) with Gq = (Vq, Eq)
be an automaton for q. Recall that, according to Proposition 2, Gq can be obtained in time
O(|q|) and it has O(|q|) states and O(|q|) arcs. The product graph of D and Gq is the Σ-graph
G⊠(D, q) = (V⊠(D, q), E⊠(D, q)), where V⊠(D, q) = {(u, p) | u ∈ VD, p ∈ Vq} and

E⊠(D, q) = {((u, p), x, (v, p′)) | (u, x, v) ∈ ED, (p, x, p′) ∈ Eq} ∪
{((u, p), ε, (u, p′)) | u ∈ VD, (p, ε, p′) ∈ Eq} .

▶ Remark 4. The arc labels in G⊠(D, q) are superfluous in the sense that we only need the
underlying graph of G⊠(D, q) (see Lemma 6). We define it nevertheless as Σ-graph, since
then all our definitions and terminology for Σ-graphs introduced above apply as well.

▶ Lemma 5. |V⊠(D, q)| = O(|VD||q|), |E⊠(D, q)| = O(| D ||q|) and G⊠(D, q) can be computed
in time O(|G⊠(D, q)|) = O(| D ||q|).

The following lemma, which is an immediate consequence of the construction, shows
how G⊠(D, q) can be used for solving RPQ evaluation tasks (recall that E∗ is the reflexive-
transitive closure of the underlying unlabelled graph).

▶ Lemma 6. For every u, v ∈ VD, (u, v) ∈ q(D) if and only if ((u, p0), (v, pf )) ∈ (E⊠(D, q))∗.

4 Fine-grained Complexity and Conditional Lower Bounds

We now state several computational problems along with hypotheses regarding their com-
plexity, which are commonly used in the framework of fine-grained complexity to obtain
conditional lower bounds. We discuss some details and give background information later on.

Orthogonal Vectors (OV): Given sets A, B each containing n Boolean-vectors of dimen-
sion d, check whether there are vectors a⃗ ∈ A and b⃗ ∈ B that are orthogonal.
OV-Hypothesis: For every ϵ > 0 there is no algorithm solving OV in time O(n2−ϵ poly(d)).
Boolean Matrix Multiplication (BMM): Given Boolean n×n matrices A, B, compute A×B.
com-BMM-Hypothesis: For every ϵ > 0 there is no combinatorial algorithm that solves
BMM in time O(n3−ϵ).
Sparse Boolean Matrix Multiplication (SBMM): Like BMM, but all matrices are represen-
ted as sets {(i, j) | A[i, j] = 1} of 1-entries.
SBMM-Hypothesis: There is no algorithm that solves SBMM in time O(m) (where m

is the total number of 1-entries, i. e., m = |{(i, j) | A[i, j] = 1}| + |{(i, j) | B[i, j] =
1}| + |{(i, j) | (A × B)[i, j] = 1}|).
Online Matrix-Vector Multiplication (OMv): Given Boolean n×n-matrix M and a sequence
v⃗1, v⃗2, . . . , v⃗n of n-dimensional Boolean vectors, compute sequence Mv⃗1, Mv⃗2, . . . , Mv⃗n,
where Mv⃗i is produced as output before v⃗i+1 is received as input.
OMv-Hypothesis: For every ϵ > 0 there is no algorithm that solves OMv in time O(n3−ϵ).
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We will reduce these problems to variants of RPQ evaluation problems in such a way that
algorithms with certain running times for RPQ evaluation would break the corresponding
hypotheses mentioned above. Thus, we obtain lower bounds for RPQ enumeration that
are conditional to these hypotheses. In the following, we give a very brief overview of the
relevance of these problems and corresponding hypotheses in fine-grained complexity.

The problem OV can be solved by brute-force in time O(n2d) and the hypothesis that
there is no subquadratic algorithm is well-established. It exists in slightly different variants
and has been formulated in several different places in the literature (e. g., [21, 22, 50]). The
variant used here is sometimes referred to as moderate dimension OV-hypothesis in contrast to
low dimension variants, where d can be assumed to be rather small in comparison to n. The
relevance of the OV-hypothesis is due to the fact that it is implied by the Strong Exponential
Time Hypothesis (SETH) [46, 47], and therefore it is a convenient tool to prove SETH lower
bounds that has been applied in various contexts.

One of the most famous computational problems is BMM, which, unfortunately, is a
much less suitable basis for conditional lower bounds. The straightforward algorithm solves
it in time O(n3), but there are fast matrix multiplication algorithms that run in time
O(n2.373) [49, 30]. It is unclear how much further this exponent can be decreased and
there is even belief that BMM can be solved in time n2+o(1) (see [48] and Section 6 of [13]).
However, these theoretically fast algorithms cannot be considered efficient in a practical
sense, which motivates the mathematically informal notion of “combinatorial” algorithms
(see, e. g., [52]).1 So far, no truly subcubic combinatorial BMM-algorithm exists and it has
been shown in [52] that BMM is contained in a class of problems (including other prominent
examples like Triangle Finding (also mentioned below) and Context-Free Grammar Parsing)
which are all equivalent in the sense that if one such problem is solvable in truly subcubic
time by a combinatorial algorithm, then all of them are. Consequently, it is often possible
to argue that the existence of a certain combinatorial algorithm for some problem would
imply a major (and unlikely) algorithmic breakthrough with respect to BMM, Parsing,
Triangle Finding, etc. Despite the defect of relying on the vague notion of combinatorial
algorithms, this lower bound technique is a common approach in fine-grained complexity
(see, e. g., [52, 32, 2, 3, 1, 33]). Whenever we use the com-BMM-hypothesis, our reductions
will always be combinatorial, which is necessary; moreover, whenever we say that a certain
running time cannot be achieved unless the com-BMM-hypothesis fails, we mean, of course,
that it cannot be achieved by a combinatorial algorithm.

In order to make BMM suitable as base problem for conditional lower bounds (that does
not rely on combinatorial algorithms) one can formulate the weaker (i. e., more plausible)
hypothesis that BMM cannot be solved in time linear in the number of 1-entries of the
matrices (therefore called sparse BMM since matrices are represented in a sparse way);
see [4, 54]. Another approach is to require the output matrix A × B to be computed column
by column, i. e., formulating it as the online-version OMv. For OMv, subcubic algorithms are
not known and would yield several major algorithmic breakthroughs (see [32]).

A convenient tool to deal with BMM is the problem Triangle: check whether a given
undirected graph G has a triangle. This is due to the fact that these two problems are
subcubic equivalent with respect to combinatorial algorithms (see [52]), i. e., the com-BMM-
hypothesis fails if and only if Triangle can be solved by a combinatorial algorithm in time
O(n3−ϵ) for some ϵ > 0. Thus, for lower bounds conditional to the com-BMM-hypothesis, we

1 The term “combinatorial algorithm” is not well-defined, but intuitively such algorithms have running
times with low constants in the O-notation, and are feasibly implementable.
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can make use of both these problems. There is also a (non-combinatorial) Triangle-hypothesis
that states that Triangle cannot be solved in linear time in the number of edges, but we
were not able to apply it in the context of RPQ evaluation (see [2] for different variants of
Triangle).

5 Bounds for the Non-Enumeration Problem Variants

We now investigate how well the PG-approach performs with respect to the non-enumeration
variants of RPQ evaluation, and we give some evidence that, in most cases, it can be considered
optimal or almost optimal (subject to the algorithmic hypotheses of Section 4).

5.1 Boolean Evaluation, Testing and Computing a Witness
It is relatively straightforward to see that the problems RPQ-Test and RPQ-Boole
are equivalent and can both be reduced to RPQ-Witness. Hence, upper bounds for
RPQ-Witness and lower bounds for RPQ-Test or RPQ-Boole automatically apply to
all three problem variants, which simplifies the proofs for such bounds.

The PG-approach directly yields the following upper bound.

▶ Theorem 7. RPQ-Test, RPQ-Boole and RPQ-Witness can be solved in time
O(| D ||q|).

More interestingly, we can complement this upper bound with lower bounds as follows.

▶ Theorem 8. If any of the problems RPQ-Test, RPQ-Boole and RPQ-Witness can be
solved in time O(| D |2−ϵ + |q|2) or O(| D |2 + |q|2−ϵ) for some ϵ > 0, then the OV-hypothesis
fails. This lower bound also holds for the restriction to sparse graph databases.

Proof Sketch. The overall reduction is similar to the reduction from [6] used for proving con-
ditional lower bounds of regular expression matching: For an OV-instance A = {a⃗1, . . . , a⃗n}
and B = {⃗b1, . . . , b⃗n}, we define q = #(w1 ∨ w2 ∨ . . . ∨ wn)#, where wi is a bit-string repres-
enting vector b⃗i, and we create a graph database that, for every a⃗i, has a path whose jth arc
is labelled with 0 if a⃗i[j] = 1 and with both 0 and 1 if a⃗i[j] = 0. This yields a reduction that
rules out running times of the form O((| D ||q|)1−ϵ); the stronger statement of the theorem
can be obtained by carefully partitioning A or B depending on ϵ into several instances and
then using the above reduction (with a more careful running time analysis). ◀

Since (| D ||q|)1−ϵ ≤ ((max{| D |, |q|})2)1−ϵ = max{| D |2−2ϵ, |q|2−2ϵ} ≤ | D |2−ϵ + |q|2,
Theorem 8 also rules out running times of the form O((| D ||q|)1−ϵ) and O(max{| D |, |q|}2−ϵ),
but does not exclude a running time of O(| D |2−ϵ + f(|q|)) with f(|q|) = Ω(|q|2). However,
for ϵ < 1 this is super-linear in | D | (and therefore inferior to O(| D ||q|) under the assumption
|q| ≪ | D |), and for ϵ = 1, we would obtain O(| D | + f(|q|)), which, under the assumption
|q| ≪ | D |, is a small and arguably negligible asymptotic improvement over O(| D ||q|).

If the size of D is expressed in terms of |VD|, then Theorem 7 also gives an upper bound
of O(|VD|2|q|). In this regard, we can show the following lower bound.

▶ Theorem 9. If any of the problems RPQ-Test, RPQ-Boole and RPQ-Witness can
be solved in time O(|VD|3−ϵ + |q|3−ϵ) for some ϵ > 0, then the com-BMM-hypothesis fails.

Proof Sketch. We reduce from Triangle (see Section 4). For a given graph G = (V, E) with
V = {v1, v2, . . . , vn}, we create a graph database D by using 4 copies Vi = {(u, i) | u ∈ V },
i ∈ [4], of V and add all of G’s arcs between each Vi and Vi+1, i ∈ [3], i. e., there is an arc
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((u, i), a, (v, i + 1)) if and only if (u, v) ∈ E (a is a symbol). Now G contains a triangle if and
only if D has a length-3 path from (u, 1) to (v, 4) with u = v. The problem is how to query
paths that are synchronised in this way. To this end, we add a path s1, s2, . . . , sn (each arc
labelled with a) and, for every j ∈ [n], an a-labelled arc from sj to (vj , 1) ∈ V1; analogously,
we add a path t1, t2, . . . , tn with an arc from (vj , 4) to tj . Now there is an an+4-labelled path
from s1 to tn if and only if there is a length-3 path from (u, 1) to (u, 4) for some u ∈ V . ◀

Since O((| D ||q|)1−ϵ) ⊆ O((|VD|2|q|)1−ϵ) ⊆ O(|VD|3−ϵ + |q|3−ϵ), such running times are
also ruled out under the com-BMM-hypothesis. Especially, a combinatorial algorithm with
running time O((| D ||q|)1−ϵ) refutes both the OV- and the com-BMM-hypothesis; thus, such
an algorithm does not exist provided that at least one of these hypotheses is true (basing
lower bounds on several hypotheses is common in fine-grained complexity, see, e. g., [3]).

The lower bounds discussed above are only meaningful for combined complexity. However,
the upper bound of Theorem 7 already yields the optimum of linear data complexity.

5.2 Full Evaluation and Counting
The following upper bound is again a straightforward application of the PG-approach.

▶ Theorem 10. RPQ-Eval can be solved in time O(|VD|| D ||q|).

Instead of using graph-searching techniques on G⊠(D, q), we could also compute the
complete transitive closure of G⊠(D, q) with fast matrix multiplication.

▶ Theorem 11. If BMM can be solved in time O(nω) with ω ≥ 2, then RPQ-Eval can be
solved in time O(|VD|ω|q|ω).

We mention this theoretical upper bound for completeness, but stress the fact that our
main interest lies in combinatorial algorithms.

In addition to the practical limitations of fast matrix multiplication, we also observe that
the approach of Theorem 11 is only better if the graph database is not too sparse, i. e., only
if |VD|| D | = Ω(|VD|ω).

Next, we investigate the question whether O(|VD|| D ||q|) is optimal for RPQ-Eval at
least with respect to combinatorial algorithms. Since for RPQ-Eval the PG-approach does
not yield an algorithm that is linear in data complexity (like it was the case with respect to
the problems of Section 5.1), the question arises whether the |VD|| D | part can be improved
at the cost of spending more time in |q|. It seems necessary that respective data complexity
lower bounds need reductions that do not use q to represent a non-constant part of the
instance, as it was the case for both the OV and the Triangle reduction from Section 5.1.

It is not difficult to see that the product of two n × n Boolean matrices A and B can
be represented by node sets Vi = {(j, i) | j ∈ [n]}, i ∈ [3], with arcs ((j, 1), a, (k, 2)) iff
A[j, k] = 1, and ((k, 2), a, (ℓ, 3)) iff B[k, ℓ] = 1, and the RPQ q = aa, i. e., ((i, 1), (j, 3)) ∈ q(D)
iff (A × B)[i, j] = 1 (it is, of course, crucial that q has constant size). This shows that, for
combinatorial algorithms and subject to the com-BMM-hypothesis, O(|VD|| D |) is a tight
bound for the data complexity of RPQ-Eval.

▶ Theorem 12. If RPQ-Eval can be solved in time O((|VD|| D |)1−ϵf(|q|)) for some func-
tion f and some ϵ > 0, then the com-BMM-hypothesis fails.

If we drop the restriction to combinatorial algorithms, we can nevertheless show (with
more or less the same construction) that linear time in data complexity is impossible, unless
the SBMM-hypothesis fails. However, since the size of the output q(D) might be super-linear
in | D |, we should interpret linear as linear in | D | + |q(D)|.
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▶ Theorem 13. If RPQ-Eval can be solved in time O((|q(D)| + | D |)f(|q|)) for some
function f , then the SBMM-hypothesis fails.

Surprisingly, we can obtain a more complete picture for the problem RPQ-Count. First,
we observe that obviously all upper bounds carry over from RPQ-Eval to RPQ-Count.
On the other hand, a combinatorial O((|VD|| D |)1−ϵf(q)) algorithm or a general O((|q(D)| +
| D |)f(|q|)) algorithm for RPQ-Count does not seem to help for solving Boolean matrix
multiplication (and therefore, the lower bounds do not carry over). Fortunately, it turns
out that OV is a suitable problem to reduce to RPQ-Count, although by a rather different
reduction compared to the one used for Theorem 8.

▶ Theorem 14. If RPQ-Count can be solved in time O(| D |2−ϵf(|q|)) for some function f

and ϵ > 0, then the OV-hypothesis fails.

Proof Sketch. Let A = {a⃗1, a⃗2, . . . , a⃗n} and B = {⃗b1, b⃗2, . . . , b⃗n} be an OV-instance, and
let A′ be the Boolean matrix having rows a⃗1, a⃗2, . . . , a⃗n and let B′ be the Boolean matrix
having columns b⃗1, b⃗2, . . . , b⃗n. Then (A′ × B′)[i, j] = 0 if and only if a⃗i and b⃗j are orthogonal.
If we represent A′ × B′ as a graph database and a size-2 RPQ q (as sketched above), we have
that |q(D)| is the number of 1-entries in A′ × B′ and therefore we can solve the OV-instance
(A, B) by solving RPQ-Count for D and q. ◀

Since Theorem 14 also excludes running time O((|VD|| D |)1−ϵf(|q|)) for any function f

and ϵ > 0 (without restriction to combinatorial algorithms), it also shows that, subject to
the OV-hypothesis, O(|VD|| D |) is a tight bound for the data complexity of RPQ-Count.

6 Bounds for the Enumeration of RPQs

By using the PG-approach for enumeration, we can obtain the following upper bound.

▶ Theorem 15. Sorted RPQ-Enum can be solved with O(| D ||q|) delay and O(1) updates.

Proof Sketch. We store all nodes (u, p0) of G⊠(D, q) in an array S, all nodes (v, pf ) in
an array T , and the general idea is to perform an individual BFS from each node in S.
However, in order to bound the delay, we first have to determine the subset S′ ⊆ S of
nodes that can reach at least one node from T . To this end, we add a new node vsink
with incoming arcs from each node in T , and then we perform a BFS from vsink in reverse
direction. This concludes the preprocessing (and, with a bit of care, this can be done in time
O(|G⊠(D, q)|) = O(| D ||q|)). In the enumeration, we perform a BFS from each (u, p0) ∈ S′

and we consider these start nodes ordered by ⪯. In each individual BFS, we first collect in
an array all visited nodes (v1, pf ), (v2, pf ), . . . and then enumerate all pairs (u, vi) sorted by
their right element according to ⪯. Due to our preprocessing, we produce at least one pair
in each BFS, and each BFS can be done in time O(|G⊠(D, q)|) = O(| D ||q|), including the
time needed for enumerating the pairs. Updates can be maintained trivially, since the delay
bound allows to repeat the preprocessing with respect to the updated database. ◀

This enumeration algorithm is easy to implement and has some nice features like linear
preprocessing (in data complexity), sorted enumeration and constant updates. Unfortunately,
these features come more or less for free with the disappointing delay bound. Is the PG-
approach therefore the wrong tool for RPQ-enumeration? Or can we give evidence that linear
delay is a barrier we cannot break? The rest of this work is devoted to this question.
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Since running an algorithm for RPQ-Enum until we get the first element yields an
algorithm for RPQ-Boole (with preprocessing plus delay as running time), and since
running such an algorithm completely solves RPQ-Eval in time preprocessing plus |q(D)|
times delay, we can inherit several lower bounds directly from Section 5.

▶ Theorem 16. If, for some function f and ϵ ≥ 0, RPQ-Enum can be solved with
1. delay O(| D |2−ϵ + |q|2) or O(| D |2 + |q|2−ϵ), then the OV-conjecture fails.
2. delay O(|VD|3−ϵ + |q|3−ϵ), then the com-BMM-hypothesis fails.
3. preprocessing O(| D |f(|q|)) and delay O(f(|q|)), then the SBMM-hypothesis fails.
4. prep. O(|VD|3−ϵf(|q|)) and delay O(|VD|1−ϵf(|q|)), then the com-BMM-hypothesis fails.

The first two bounds only tell us that we might not be able to lower the delay O(| D ||q|)
in terms of combined complexity. While this point of view was justified for the problems
discussed in Section 5, it does not say anything regarding delays of the form O(| D |1−ϵf(|q|)).
The third bound, conditional to the SBMM-hypothesis, is much more relevant, since it
suggests that the optimum of linear preprocessing and constant delay is not reachable. For
combinatorial algorithms, the fourth bound at least answers our main question with | D |
replaced by |VD|: with linear preprocessing, we cannot get below a delay of O(|VD|).

These lower bounds can be improved significantly, if we also want to handle updates
(within some reasonable time bounds).

▶ Theorem 17. If RPQ-Enum can be solved with
1. arbitrary preprocessing, O(|VD|1−ϵf(|q|)) updates and O(|VD|1−ϵf(|q|)) delay for some

function f and ϵ ≥ 0, then the OMv-hypothesis fails.
2. O(|VD|3−ϵf(|q|)) preprocessing, O(|VD|2−ϵf(|q|)) updates and O(|VD|2−ϵf(|q|)) delay for

some function f and ϵ ≥ 0, then the com-BMM-hypothesis fails.

Proof Sketch. OMv-reduction: Let M , v⃗1, v⃗2, . . . , v⃗n be an OMv instance. We set q = aa
and start with an empty graph database, which, by O(n2) updates, is turned into DM,v⃗1 =
({ui, vi, w | 1 ≤ i ≤ n}, {(ui, a, vj) | M [i, j] = 1} ∪ {(vj , a, w) | v⃗1[j] = 1}). Enumerating
q(DM,v⃗1) gives {(ui, w) | (Mv⃗1)[i] = 1} which represent Mv⃗1. Analogously, we produce Mv⃗i

with q(DM,v⃗i) for each 2 ≤ i ≤ n, where DM,v⃗i can be obtained from DM,v⃗i−1 by n updates.
Triangle-reduction: The idea is similar to the reduction of Theorem 9. We transform a
graph G = (V, E) with V = {v1, v2, . . . , vn} into a graph database Dv1 with 4 copies
Vi = {(u, i) | u ∈ V }, i ∈ [4], of V and an arc ((u, i), a, (v, i + 1)) if and only if (u, v) ∈ E.
Instead of appending length n-paths at V1 and V4 (as done for Theorem 9), we only add arcs
(s, a, (v1, 1)), ((v1, 4), a, t) and set q = aaaaa. Now q(Dv1) = {(s, t)} if there is a triangle
that contains v1, and q(Dv1) = ∅ otherwise. For every 2 ≤ i ≤ n, we can obtain Dvi

from
Dvi−1 by performing a constant number of updates, and then enumerate q(Dvi). ◀

The first bound rules out that we can get below O(|VD|) for delay and update time,
regardless of the preprocessing; the second one analogously rules out anything below O(| D |)
(for combinatorial algorithms and linear preprocessing). While all these lower bounds suggest
that improving on the linear delay may be rather difficult, they leave the following case open.

▶ Question 18. Can RPQ-Enum be solved with O(| D |) preprocessing and O(|VD|) delay in
data complexity?

What is a reasonable conjecture with respect to this question? A combinatorial algorithm
that answers it in the positive does not seem to have any unlikely consequences. Indeed,
it would just entail an O(| D ||VD|) algorithm for RPQ-Eval (which exactly fits to The-
orem 10), an O(|V ||G|) algorithm for computing transitive closures and an O(n3) algorithm
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for multiplying Boolean n × n matrices, which is the state of the art for combinatorial
algorithms (this is due to the obvious reductions from these problems to RPQ-Enum).
However, since Question 18 is about enumeration, a positive answer also means that after
O(|G|) preprocessing, we can enumerate the transitive closure of a graph with delay O(|V |),
and that after O(n2) preprocessing, all 1-entries of the Boolean matrix multiplication can be
enumerated with delay O(n). Are such enumeration algorithms unlikely, so that we should
rather expect a negative answer to Question 18? In fact not, since for the simple RPQs
q = a∗ or q = aa, which are sufficient to encode transitive closures and Boolean matrix
multiplications (see also the sketch on page 11), linear preprocessing and delay O(|VD|) is
indeed possible, as we shall obtain as byproducts of the results in the next section.

We close this section by the following remark that points out some similarity (and
differences) of reductions used in Sections 5 and 6.

▶ Remark 19. As already mentioned in Section 5.1, the reduction used for the combined
complexity lower bounds of Theorems 8 (and therefore Point 1 of Theorem 16) is similar
to the reduction from [6] used for proving conditional lower bounds of regular expression
matching. Moreover, the OV-lower bound for RPQ-Count of Theorem 14 is similiar to
a lower bound on counting the results of certain conjunctive queries from [14], and the
OMv-lower bound from Point 1 of Theorem 17 is similiar to a lower bound on enumerating
certain conjunctive queries from [14].

The quite simple observation that Boolean matrix multiplication can be expressed as
querying a bipartite graph (with conjunctive queries) has also been used in [8] (see also [13,
Section 6]) and is also the base for the OMv-lower bound of [14]. In the context of this
paper, this connection has been used in the bounds of Theorems 12, 13 and Points 3 and 4 of
Theorem 16.

The obvious connection between evaluating (non-acyclic) conjunctive queries and finding
triangles (or larger cliques) has already been observed in [20] (see also [13, Section 6]).
However, the Triangle-lower bounds of this paper are quite different, since RPQs cannot
explicitly express the structure of a triangle (or a larger clique, for that matter) by using
conjunction. Therefore, our respective lower bounds (Theorems 9, Point 2 of Theorem 16,
and Point 2 of Theorem 17) need to encode this aspect in a different way. With respect to
Theorems 9 and Point 2 of Theorem 16 this is done by using non-constant queries (which
explains why the lower bounds are not for data complexity, in contrast to the case of
conjunctive queries), and with respect to Point 2 of Theorem 17, which does work for data
complexity, it is done by using updates. Moreover, our Triangle-lower bounds do not seem to
extend to larger cliques like it is the case for conjunctive queries (see [13, Section 6]).

Finally, we wish to point out that although some of the reductions used in this paper
are similar to reductions used in the context of conjunctive queries, due to the difference of
RPQs and CQs, none of the lower bounds directly carry over. Furthermore, note that the
lower bound reductions in [8, 14] have been used for obtaining dichotomies and therefore
have been stated in a much more general way.

7 Enumeration with Sub-Linear Delay

We now explore three different approaches towards enumeration of q(D) with delay strictly
better than O(| D |) (in data complexity): (1) allowing super-linear preprocessing, (2) enu-
merating a representative subset of q(D), and (3) restricting the RPQs.

Regarding the first approach, we can improve the delay from O(| D |) to O(|VD|) by
increasing the linear preprocessing by a factor of ∆(D) log(∆(D)) (in data complexity).
Recall that ∆(D) is the average degree of D.
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▶ Theorem 20. Sorted RPQ-Enum can be solved with O(|q|2 log(∆(D)|q|) ∆(D)| D |) pre-
processing and O(|VD|) delay.

Proof Sketch. The basic idea is to compute in the preprocessing for every u ∈ VD a set Au

of all or at most ∆(D)|q| nodes v such that (u, v) ∈ q(D). With this information, we can
then in the enumeration do the following for every u ∈ VD. If |Au| < ∆(D)|q|, then Au must
contain all nodes reachable by a q-path from u, which we can therefore enumerate with
constant delay. If |Au| = ∆(D)|q|, then, by producing every |VD| steps a pair (u, v) with
v ∈ Au, we can afford to run a whole BFS on the product graph without exceeding the delay
of |VD|, which allows us to compute all remaining nodes reachable by a q-path from u.

In order to compute these sets Au in the preprocessing, we first compute a DAG H

of the strongly connected components of G⊠(D, q). Then we move through the connected
components 1, 2, . . . , ℓ in a reverse topological sorting and compute for each component i a set
Bi of at most ∆(D)|q| nodes (v, pf ) (contained in earlier components 1, . . . , i − 1) reachable
from component i. This is done by initialising each Bi with the nodes (v, pf ) present in
component i and then copying these sets along the backward arcs when moving through the
reverse topological sorting. To avoid duplicates and to include only the smallest ∆(D)|q|
nodes in the sets Bi (the latter is required for sorted enumeration), we handle the sets by
binary search trees with insert, delete and look-up operations in time O(log(∆(D)|q|)). ◀

Obviously, in the worst case we can have ∆(D) = Ω(|VD|) and then the preprocessing of the
algorithm of Theorem 20 is Ω(|VD|| D |) (in data complexity) and therefore no improvement
over just computing the complete set q(D) in time O(|VD|| D |). However, for graph databases
with low average degree, we can decrease the delay significantly from O(| D |) to O(|VD|) at
the cost of a slightly super-linear preprocessing time. As another remark about Theorem 20,
we observe that the pre-computed information becomes worthless if D is updated. Finally,
we mention a minor modification of the algorithm of Theorem 20 which yields a slightly
different result that is interesting in its own right.
▶ Remark 21. At the cost of additional space (in O(|VD|2)) and giving up on sorted enumer-
ation, we can use the lazy array initialisation technique (see, e. g., the textbook [42]) in order
to reduce the preprocessing time in Theorem 20 by a factor log(∆(D)|q|) to O(|q|2 ∆(D)| D |).
More precisely, this can be achieved by implementing the sets Au by arrays with lazy
initialization instead of binary search trees.

Let us move on to the second approach. Evaluating an RPQ on a graph database D aims
to find for each node u all its q-successors, i. e., nodes reachable by a q-path. It is therefore a
natural restriction to ask for only at least one (if any) such successor. Likewise, we could also
ask for at least one (if any) q-predecessor for every node. More precisely, instead of the whole
set q(D), the task is to enumerate a q(D)-approximation, which is a set A ⊆ q(D) such that,
for every u, v ∈ VD, if (u, v) ∈ q(D), then also (u, v′), (u′, v) ∈ A for some u′, v′ ∈ VD. Such a
set is representative for q(D), since it contains for every node the information, whether it is
involved as a source and whether it is involved as a target in some reachable pair from q(D).
The problem of enumerating any q(D)-approximation for given D and q will be denoted by
App-RPQ-Enum.

▶ Theorem 22. App-RPQ-Enum can be solved with linear preprocessing and constant delay.

Proof Sketch. We store all nodes (u, p0) of G⊠(D, q) in an array S and all nodes (v, pf )
in an array T , and we add a new node vsource with an arc to each (u, p0) ∈ S. Then, we
compute an array S′, such that, for every (v, p) ∈ V⊠(D, q), if S′[(v, p)] = 0, then (v, p) is not
reachable from any (u, p0) ∈ S; if S′[(v, p)] ̸= 0, then S′[(v, p)] stores some u ∈ VD such that
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(v, p) is reachable from (u, p0) ∈ S. To compute S′ in time O(|G⊠(D, q)|) we first initialise
S′[(u, p0)] = u for every (u, p0) ∈ S, and then we perform a BFS from vsource and always
set S′[(u′, p′)] = S′[(u, p)] for every traversed arc ((u, p), (u′, p′)). By a BFS in the opposite
direction from a new node vsink connected to all (v, pf ) ∈ T , we can produce an analogous
array T ′ (storing for each node from V⊠(D, q) a reachable node from T ). With S′ and T ′,
we can now enumerate a q(D)-approximation with constant delay. ◀

Interestingly, it seems rather difficult to also support updates while keeping a low delay
(the following bounds are due to the same reductions used for Theorem 17, simply because
these reductions produce instances for which all q(D)-approximations are equal to q(D)).

▶ Theorem 23. If App-RPQ-Enum can be solved with
arbitrary preprocessing, O(|VD|1−ϵf(|q|)) updates and O(|VD|1−ϵf(|q|)) delay, then the
OMv-hypothesis fails.
O(|VD|3−ϵf(|q|)) preprocessing, O(|VD|2−ϵf(|q|)) updates and O(|VD|2−ϵf(|q|)) delay for
some function f and ϵ ≥ 0, then the com-BMM-hypothesis fails.

Finally, as our third approach, we show that for restricted RPQ, we can solve RPQ-Enum
with delay much smaller than O(| D |). We first need some definitions. For any class
Q ⊆ RPQ, we denote by Enum(Q) the problem RPQ-Enum where the input RPQ is
from Q. Moreover,

∨
(Q) is the set of all RPQs of the form (q1 ∨ . . . ∨ qm) with qi ∈ Q for

every i ∈ [m]. An RPQ q over Σ is a basic transitive RPQ (over Σ) if q = (x1 ∨ . . . ∨ xk)∗ or
q = (x1 ∨ . . . ∨ xk)+, where x1, . . . , xk ∈ Σ; and q is a short RPQ (over Σ) if q = (x1 ∨ . . . ∨ xk)
or q = (x1 ∨ . . . ∨ xk)(y1 ∨ . . . ∨ yk′), where x1, . . . , xk, y1, . . . , yk′ ∈ Σ. By BT-RPQ and
S-RPQ, we denote the class of basic transitive RPQ and the class of short RPQ, respectively.

We show that for the class
∨

(S-RPQ ∪ BT-RPQ) (which, e. g., contains RPQs of the form
q = (ab ∨ c∗ ∨ b(c ∨ d) ∨(a ∨ b ∨ d)+)), semi-sorted RPQ-Enum can be solved with linear
preprocessing and delay O(∆(D)) in data complexity (recall semi-sorted from Section 2).

▶ Theorem 24. Semi-sorted Enum(
∨

(S-RPQ ∪ BT-RPQ)) can be solved with preprocessing
O(|q|2| D |) and delay O(|q|2∆(D)).

Proof Sketch. Semi-sorted Enum(BT-RPQ): This reduces to enumerating the transitive
closure of a directed graph, which can be done by starting a BFS in each u ∈ VD (ordered
by ⪯): we only have to make sure that whenever we dequeue a node v, then we first visit
(and possibly enqueue) its neighbours before producing (u, v). (See also [24].)
Semi-sorted Enum(S-RPQ): Let q = (x1 ∨ . . . ∨ xk)(y1 ∨ . . . ∨ yk′) (the case q = (x1 ∨ . . . ∨ xk)
is trivial) and note that V⊠(D, q) is partitioned into node sets V1, V2 and V3 (i. e., by the
right elements of the nodes, since the NFA for q has three states) and we have to enumerate
all reachable pairs (u, v) from V1 × V3. In the preprocessing, we remove all nodes from V2
with in- or out-degree 0, and then we remove all isolated nodes from V1 and V3. In the
enumeration, we perform a BFS from each u ∈ V1 (ordered by ⪯), but we store the reached
nodes from V3 in a queue and produce (and remove from the queue) a pair whenever ∆(D)
steps are made by the BFS after the last output. It can be shown that the queue will not
run dry prematurely and therefore the delay is bounded by ∆(D).
Semi-sorted Enum(

∨
(S-RPQ ∪ BT-RPQ)): We show a general meta-result: if for some

Q ⊆ RPQ we can solve semi-sorted Enum(Q) with preprocessing p and delay d, then we can
solve semi-sorted Enum(

∨
(Q)) with preprocessing O(|q|p) and delay O(|q|d). With the results

from above, this directly implies the statement of the theorem. Let q = (q1 ∨ . . . ∨ qm) ∈
∨

(Q)
with enumeration algorithms Aj for qj . The idea is to initially perform the preprocessings for
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all Aj and then run their enumerations in parallel in phases 1, 2, . . . , |VD|, where in phase i

we get from each Aj exactly the pairs with left element i (for simplicity, assume VD = [n]
and ⪯ = ≤). This is only possible since all Aj are semi-sorted. In phase i, we request the
next elements from Aj , we discard those already produced as output and store all others as
potential outputs. After we have done this, we output one of our potential outputs and then
request the next elements until all Aj have finished their phase i. Since we cannot assume
that we always have a new element among the m elements received next from the Aj , we
have to show that we always have at least one potential output left when needed. ◀

Since q = aa ∈ S-RPQ is sufficient to express BMM as RPQ evaluation (see also page 11),
Theorem 24 implies that enumerating (the 1-entries of) Boolean matrix products can be
solved with linear preprocessing and O(n) delay, but, on the other hand, this also immediately
implies a matching data complexity lower bound for the upper bound of Theorem 24.

▶ Theorem 25. If RPQ-Enum(S-RPQ) can be solved with prep. O(|VD|3−ϵf(|q|)) and delay
O(| ∆(D)|1−ϵf(|q|)) for some function f and ϵ ≥ 0, then the com-BMM-hypothesis fails.

Compared to the full class of RPQs, the class
∨

(S-RPQ ∪ BT-RPQ) is quite restricted.
However, comprehensive experimental analyses of query logs suggest that quite restricted
RPQs are still practically relevant: in the corpus of more than 50 million RPQs analysed
in [18, Table 4], roughly 50% of the RPQs are from BT-RPQ and another 25% are of the
form q = x1x2 . . . xk, many of which with k ≤ 2 making them S-RPQs [36].
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