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Abstract

We prove new results on the polarizing random walk framework introduced in recent works of
Chattopadhyay et al. [4, 6] that exploit L1 Fourier tail bounds for classes of Boolean functions to
construct pseudorandom generators (PRGs). We show that given a bound on the k-th level of the
Fourier spectrum, one can construct a PRG with a seed length whose quality scales with k. This
interpolates previous works, which either require Fourier bounds on all levels [4], or have polynomial
dependence on the error parameter in the seed length [6], and thus answers an open question in [6].
As an example, we show that for polynomial error, Fourier bounds on the first O(log n) levels is
sufficient to recover the seed length in [4], which requires bounds on the entire tail.

We obtain our results by an alternate analysis of fractional PRGs using Taylor’s theorem
and bounding the degree-k Lagrange remainder term using multilinearity and random restrictions.
Interestingly, our analysis relies only on the level-k unsigned Fourier sum, which is potentially a much
smaller quantity than the L1 notion in previous works. By generalizing a connection established
in [5], we give a new reduction from constructing PRGs to proving correlation bounds. Finally, using
these improvements we show how to obtain a PRG for F2 polynomials with seed length close to the
state-of-the-art construction due to Viola [26].
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10:2 Fractional Pseudorandom Generators from Any Fourier Level

1 Introduction

A central pursuit in complexity theory is to understand the need of randomness in efficient
computation. Indeed there are important conjectures (such as P = BPP) in complexity
theory which state that one can completely remove the use of randomness without losing
much in efficiency. While we are quite far from proving such results, a rich line of work has
focused on derandomizing simpler models of computation (see [25] for a survey of prior work
on derandomization). A key tool for proving such derandomization results is through the
notion of a pseudorandom generator defined as follows.

▶ Definition 1. Let F be a class of n-variate Boolean functions. A pseudorandom generator
(PRG) for F with error ε > 0 is a random variable X ∈ {−1, 1}n such that for all f ∈ F ,∣∣EX[f(X)] − EUn

[f(Un)]
∣∣ ≤ ε,

where Un is the uniform distribution on {−1, 1}n. We also say that X fools F with error ε.
If X = G(Us) for some explicit function G : {−1, 1}s → {−1, 1}n, then X has seed length s.

There is a long line of research on explicit constructions of PRGs for various classes of
Boolean functions in the literature and it is well beyond our scope to survey prior work
here. We focus on a recent line of works initiated by Chattopadhyay et al. [4, 6] that
provide a framework for constructing pseudorandom generators for any Boolean function
classes that exhibit Fourier tail bounds (we will define and discuss this in more details in
the next subsection; see Section 2.1 for a brief introduction to Fourier analysis of Boolean
functions). This provides a unified PRG for several well-studied function classes such as
small-depth circuits, low-sensitivity functions, and read-once branching programs that exhibit
such Fourier tails.

We now briefly discuss this new framework, and then in Section 1.2 we present our new
results, which significantly generalize this approach.

1.1 The Polarizing Random Walk Framework
The polarizing random walk framework was introduced by Chattopadhyay, Hatami, Hosseini,
and Lovett [4]. The authors showed that for any class of n-variate Boolean functions that
is closed under restrictions, one can flexibly construct pseudorandom generators via the
following local-to-global principle: it suffices to construct fractional pseudorandom generators
(fractional PRGs), a notion that generalizes PRGs to allow the random variable X (in
Definition 1) to be supported on the solid cube [−1, 1]n instead of {−1, 1}n, while still
requiring that X fools (the multilinear extension) of each Boolean function in the class.
Ideally, the variance of each coordinate of X should be as large as possible. Towards this,
we define a fractional PRG X to be p-noticeable if the variance in each of its coordinates is
least p (See Definition 13 for a formal definition of a fractional PRG).

To obtain a genuine pseudorandom generator from a fractional PRG, the authors give
a random walk gadget that composes together independent copies of the fractional PRG
in a random walk that polarizes X quickly to take values from the Boolean hypercube
{−1, 1}n. The analysis for how the error accumulates in this process relies on interpreting
the intermediate points of X in this random walk as an average of random restrictions of
the original Boolean function. As the fractional PRG locally fools the class by definition,
this analysis shows that the random walk does not incur much additional error at each
intermediate step and the rapid polarization shows that it does not take too many steps.
Taken together, these two facts imply that the final random variable (supported on {−1, 1}n)
successfully fools the class.
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Through this construction, the design of pseudorandom generators reduces to the easier
task of designing fractional pseudorandom generators. It is easier as such random variables
need not be Boolean-valued. The authors further construct such fractional pseudorandom
generators for any class of functions satisfying Fourier tail bounds, that is, every function
in the class is such that the L1 Fourier mass at each level 1 ≤ k ≤ n is at most bk for
some fixed b ≥ 1. For error ε, their fractional pseudorandom generators have seed length
O(log log n + log(1/ε)) and variance Θ(b−2) in each coordinate. Combining this fractional
pseudorandom generator with their random walk gadget yields a pseudorandom generator
with seed length b2 · polylog(n/ε) for any class with such Fourier tail bounds.

As a result, if one can show that a function class admits nontrivial Fourier tail bounds (and
is closed under restriction), then the construction in [4] immediately implies a pseudorandom
generator for this class. Some examples of Boolean functions that exhibit such tail bounds
include AC0 circuits with the parameter b = poly(log n) [13, 23], constant width read-once
branching programs with b = poly(log n) [7], s-sensitive functions with b = O(s) [11, 10], and
product tests [12]. Using these tail bounds, [4] immediately gave PRGs for these function
classes. It was also conjectured in [4] that the class of n-variate degree-d polynomials over
F2 satisfy such tail bounds. We discuss this in more detail in Section 1.2.

A natural question is whether the complete control on the entire Fourier tail of a class is
necessary to obtain a PRG in this framework. In the subsequent work by Chattopadhyay,
Hatami, Lovett, and Tal [6], the authors show how to construct fractional pseudorandom
generators using different pseudorandom primitives whose seed length depends on just the
second Fourier level of the class. They construct their fractional PRGs by derandomizing the
celebrated work of Raz and Tal [18], which establishes an oracle separation of BQP and PH.
Raz and Tal show that classes of multilinear functions with small level-two Fourier mass
cannot significantly distinguish between a suitable variant of the Forrelation distribution and
the uniform distribution.1 However, this construction incurs exponentially worse dependence
on the error parameter in each fractional step to sample sufficiently good approximations to
Gaussian random variables. The final seed length given by this construction has the form
O((b2/ε)2+o(1)polylog(n)), where b2 is the level-two Fourier mass of the class. This yields
exponentially worse dependence on the error compared to the generator of [4], as well as
quadratically worse dependence on the level-two mass (though without assumptions on the
rest of the Fourier levels).

1.2 Our Contribution
In this paper, we address several open questions in this framework by leveraging a novel
connection between polarizing random walk and the classical theory of polynomial approxim-
ation. Given these prior works, a very natural question (also explicitly asked in [6]) is whether
it is possible to interpolate between these previous constructions by assuming Fourier bounds
on an intermediate level. Concretely, can this framework still succeed if one has Fourier
control at just level k? If the class further has such Fourier bounds up to and including
level k, can one interpolate between the seed lengths of [4] and [6]? Given Fourier bounds
from level 1 up to level k, what range of error ε > 0 can the resulting PRG tolerate while
maintaining polylogarithmic dependence on 1/ε in the seed length (or equivalently, given a
desired error ε > 0, how many levels of Fourier bounds are sufficient to ensure that the seed
length remains polylogarithmic in 1/ε)?

1 It turns out that this fact can be interpreted via Itô’s Lemma, which shows that the local behavior of a
smooth function of Brownian motion is essentially determined by the first two derivatives [28].

CCC 2021
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Moreover, it was previously not known whether L1 control of Fourier tails is really
necessary for this framework to yield effective PRGs, or whether weaker Fourier quantities
would suffice. To this end, define

L1,k(f) ≜
∑

S⊆[n]:|S|=k

|f̂(S)|

to be the level-k L1 Fourier mass of f , and

Mk(f) ≜ max
x∈[−1,1]n

∣∣∣∣ ∑
S⊆[n]:|S|=k

f̂(S)xS

∣∣∣∣ = max
x∈{−1,1}n

∣∣∣∣ ∑
S⊆[n]:|S|=k

f̂(S)xS

∣∣∣∣.
to be the level-k absolute Fourier sum of f . For a function class F , we define L1,k(F) and
Mk(F) as the maximum of L1,k(f) and Mk(f) taken over f ∈ F . The recent work by
Chattopadhyay, Hatami, Hosseini, Lovett, and Zuckerman [5] considers the weaker quantity
of the level-two unsigned Fourier sum, defined as the absolute value of the sum of the Fourier
coefficients rather than the sum of their absolute values that is considered in [4, 6]. The
authors show that the problem of bounding the level-two unsigned Fourier sum corresponds
to the problem of bounding the covariance of the function class and the XOR of shifted
majority functions. For a class that is closed under negations of the variables, the level-two
unsigned Fourier sum is precisely the quantity M2(F). In particular, using this connection to
this weaker object, the authors explicitly ask whether bounding the weaker Fourier quantity
M2(F) (or more generally, Mk(F)) yields pseudorandom generators.

In this work, we positively resolve all of these questions. To do so, we establish novel
connections between the polarizing random walk framework and the classical theory of
polynomial approximations of Boolean functions. We show that the seed length of a
fractional PRG for a given class of functions F is intimately connected to the uniform error
of low-degree approximations of functions on subcubes of the form [−c, c]n for some c < 1.

Our main technical result provides an upper bound on this quantity in terms of Mk(F) for
every function f in a class F that is closed under restrictions. For any multilinear polynomial
f : {−1, 1}n → R, define f≥k to be component of f with monomials of degree at least k.
Then our main result asserts the following bound:

▶ Theorem 2. Let f ∈ F with F closed under restrictions. Then for all c ∈ (0, 1), we have

max
x∈[−c,c]n

|f≥k(x)| ≤
(

c

1 − c

)k

Mk(F).

For intuition, recall that by Parseval’s identity in Fourier analysis the low-degree Fourier
expansion of any Boolean function f is provably the best ℓ2-approximator on {−1, 1}n.
Conversely, from elementary analysis, one can show that the best uniform (i.e. ℓ∞) low-
degree approximators of f converge, coefficient-by-coefficient, to the low-degree expansion of
f as the domain converges to 0. Our main result shows that one can strongly quantify the
ℓ∞ error of the low-degree approximator of Boolean functions on subcubes so long as c is
not too close to 1 (compare this bound to when f has degree exactly k).

We complement this result with a corresponding lower bound on the best attainable
uniform error for any low-degree approximation on these subcubes that will be comparable
for sufficiently small values of c (see Theorem 23). These results combined together imply
that the low-order expansion of a Boolean function is a reasonable uniform approximation
for small domains. Note that the properties of low-degree approximations on subcubes with
c ≪ 1 can be quite different than for c = 1; for instance the PARITY function on n bits is
well-known to be inapproximable on {−1, 1}n to constant error unless the approximating
polynomial has degree Ω(n), but is trivially approximable for any c bounded away from 1.
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From this main result, we can positively resolve the above open questions in the polarizing
random walk framework as a nearly immediate corollary. To do so, we provide a new analysis
of the fractional pseudorandom generator of [4] that views fractional pseudorandom generators
as fooling a low-degree part of a function on [−c, c]n for some c < 1, where the high-degree
part has small ℓ∞ norm on [−c, c]n. Recall that the seed length of the final generator depends
on the variance of the constituent fractional generator; the connection to the above result
is that for a given error ε, the largest subcube on which the above approximation holds
can be lower-bounded using just the weaker Mk(F) quantity. Leveraging this insight, our
main result in the polarizing random walk framework is the following analysis of a fractional
pseudorandom generator:

▶ Theorem 3. Let F be any class of n-variate Boolean functions that is closed under
restrictions. Suppose Mk(F) ≤ bk for some b ≥ 1 and k ≥ 1. Then for any ε > 0, there
exists an explicit Ω(ε2/k/b2)-noticeable fractional PRG for F with error ε and seed length
O(k · log n).2

Further, if it holds that L1,i(F) ≤ bi for all 1 ≤ i < k, then the seed length can be
improved to O(log log n + log k + log(1/ε)).

Using the fractional pseudorandom generator from Theorem 3, we obtain the following
consequences almost immediately from the random walk gadget of [4] (see Theorem 14):
1. Pseudorandom Generators from Fourier Bounds at Level k: From our fractional

pseudorandom generator, we show that the random walk framework yields nontrivial
pseudorandom generators assuming Fourier bounds just at level k of the associated class,
with improvements if we assume bounds from level 1 up to level k. The informal statement
is the following:
▶ Theorem 4. Let F be any class of n-variate Boolean functions that is closed under
restrictions. Suppose that F satisfies Mk(F) ≤ bk for some b ≥ 1 and k ≥ 3. Then
there exists an explicit pseudorandom generator for F for error ε with seed length k ·
b2+4/(k−2)polylog(n/ε)/ε2/(k−2). The seed length can be improved if L1,i(F) ≤ bi for all
levels i ≤ k.
See Theorem 27 for the precise statement. One immediate consequence is that if one has
a non-trivial bound on M3(F), then the seed length of our PRG has the same dependence
on the error ε as the one in [6]. Further, given M4(F) ≤ b4, one obtains better seed length
than [6]; in particular it has quadratically better dependence on 1/ε in the seed length
(as well as polylogarithmic factors in n/ε). More generally, given an appropriate Fourier
bound of bk on just some level k ≤ polylog(n), one obtains a pseudorandom generator
with error ε with seed length O(b2+4/(k−2)polylog(n/ε)/ε2/(k−2)).
We note that the fractional PRG from Theorem 3 cannot be converted into a PRG for
k = 1, 2. Informally, this is because of the following reason: the number of steps one
needs to take in the random walk gadget of [4] (with each step using an independent copy
of the fractional PRG) scales roughly with the variance of the fractional PRG, and the
error adds up in each step. As is clear from Theorem 3, for the variance of the fractional
PRG to scale sublinearly with the error, one requires k > 2. See Remark 28 for more
discussion.

2 We remark that at this level of generality, this linear dependence on k is essentially necessary. Indeed,
any Boolean function on n-variables has L1 level-n mass at most 1, but one cannot hope to generically
fool all Boolean functions simultaneously without using n bits.

CCC 2021
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2. Pseudorandom Generators with Polylogarithmic Error Dependence from Up-
to-level-k Bounds: A simple corollary of our fractional pseudorandom generator is that
one can recover the polylogarithmic dependence on 1/ε from [4] if ε ≥ b · log n · 2−O(k)

and we have Fourier bounds up to level k.
▶ Corollary 5. Let F be any class of n-variate Boolean functions that is closed under
restrictions. Suppose that for some level k ≥ 3 and b ≥ 1, we have Mk(F) ≤ bk and
L1,i(F) ≤ bi for i < k. Then, for any ε ≥ b · log n · 2−O(k), there exists an explicit
pseudorandom generator for F with error ε and seed length O(b2polylog(n/ε)).
This actually subsumes the analysis of [4] without requiring anything on the full Fourier
tail, and addresses an open question of [6] asking how many levels of Fourier bounds one
needs control of to regain polylogarithmic dependence on ε. In particular, if one requires
error ε = 1/poly(n), then it suffices to have Fourier bounds up to level Θ(log n) to get
the same dependence.

We view this work as a proof of concept that it is indeed possible to interpolate between the
two extremes of [4, 6] in the polarizing random walk framework and obtain better results using
weakened Fourier assumptions. We prove Theorem 3 in Section 4, from which Theorem 4
and Corollary 5 follow without much difficulty using the existing random walk gadget of [4].

Note that for some Boolean classes of great interest such as the class of low-degree
F2-polynomials, Fourier tail bounds as required by [4] are not yet known and thus Theorem 3
allows us to leverage potentially much weaker bounds proved in [4] to construct a PRG with
polylogarithmic dependence on n/ε in the seed length (see Theorem 6). This almost matches
the best known PRG due to Viola [26]. In particular, we show the following:

▶ Theorem 6. Let F be the class of degree-d polynomials over F2 on n variables. Then there
exists an explicit pseudorandom generator for F with error ε and seed length 2O(d)polylog(n/ε).

We present the proof of Theorem 6 in Section 5. While this result does not quite match
the current state-of-the-art PRG for this class due to Viola [26] (and therefore fails to give
anything nontrivial for d = Ω(log n)), we view this as a conceptual contribution that the
random walk framework can yield an explicit pseudorandom generator with seed length
that is polylogarithmic in n/ε, which was not known from previous works [4, 6]. As we
discuss below, the results in [4, 6] do not give a PRG for the class of F2-polynomials with
polylogarithmic error dependence using known Fourier tail bounds.

As a concrete application of this approach which would dramatically improve the state-
of-the-art PRGs for F2-polynomials, both [4] and [6] conjecture Fourier bounds on the L1
mass of the class of degree-d F2 polynomials. The former conjectures that this class satisfies
a tail bound of the form ck

d for some constant cd at all levels 1 ≤ k ≤ n (so as to apply
their approach), while the latter conjectures just that the level-two L1 mass is O(d2). While
neither conjecture seems close to being resolved, our work shows that one can instead prove
bounds for the smaller quantities Mk(F) for any k ≥ 3. If one could prove such bounds
of the form (poly(d, log n))k for some level k = Ω(1), or even more optimistically, for some
k = Ω(log n), this would immediately imply a breakthrough pseudorandom generator for
AC0[⊕] using the results of Razborov [19] and Smolensky [21, 22] (see the discussion in [6]).

To our knowledge, our application of Mk(F) bounds is new to the pseudorandomness
literature. There are several advantages to proving Mk(F) bounds over L1,k(F) bounds. For
one, from the definition we clearly have Mk(F) ≤ L1,k(F) for any class F . This improvement
alone potentially gives smaller seed length for any class. From an analytical perspective,
we believe that the quantity Mk(F) is easier to estimate. Specifically, for a class F that is
closed under negation of input variables, Mk(F) is precisely an unsigned Fourier sum and
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can be bounded via the recent connections established by Chattopadhyay et al. [5], which
reduces M2(F) bounds to proving correlation bounds against certain resilient functions. We
straightforwardly generalize their reduction to Mk(F) bounds in Section 6.

1.3 Overview of Our Approach
To prove Theorem 2, we rely on Taylor’s theorem, as well as multilinearity and the random
restriction trick of [4]. Recall that Taylor’s theorem, when applied to a sufficiently smooth
function h : [−1, 1] → R, asserts that the Taylor expansion at 0 can be expressed in terms
of its first (k − 1)-th order derivatives at 0 along with a Lagrange error term that depends
on its k-th order derivatives at some intermediate point in our domain. In doing so, the
higher-order components of the function “collapse” down to the k-th order term. While
Taylor’s theorem has been extensively applied in the construction of pseudorandom generators,
often in tandem with invariance principles, we somewhat counterintuitively apply it to the
multilinear expansion of the Boolean functions themselves.

To apply Taylor’s theorem here, we consider one-dimensional restrictions of (the multilinear
extension) of a Boolean function f : {−1, 1}n → {−1, 1}. While the full Taylor expansion
of a polynomial is trivially the same polynomial, the Lagrange error term eliminates the
dependence on the high order Fourier coefficients (corresponding to the terms of degree > k).
Moreover, the low-order terms of the Taylor expansion of f at 0 are precisely the original
low-degree part of its Fourier expansion. However, the Lagrange error term requires the
derivatives to be evaluated at a point away from 0. While the derivatives of f at a nonzero
point are related to the biased Fourier coefficients of f , it is not clear how to estimate these
quantities. To overcome this difficulty, recall that we are interested in bounds on |f≥k(x)| for
x ∈ {−c, c}n where c < 1. In Lemma 22, we show that by “recentering” x using the random
restriction technique of [4], we can write the error term as an average of the k-th order
derivatives at 0 of some random restrictions of our original function f , up to a multiplicative
factor depending on c.3 We can then apply multilinearity to bound these error terms using
Mk(F) to obtain Theorem 17.

While Theorem 17 shows that the low-order Taylor expansion of a Boolean function is a
decent uniform approximator on subcubes [−c, c]n for some sufficiently small c that depends
on the class F , it is natural to wonder if one can obtain a better low-order approximation.
Using our upper bound along with Chebyshev polynomials on the univariate restrictions, we
give a lower bound showing that no low-order approximator can give significantly smaller
error over [−c, c]n for any c less than some quantity depending on the ratio Mk(F)/Mk+1(F)
for some k. This quantifies the intuition that the low-degree Fourier expansion is a near
optimal uniform approximator of f over small enough neighborhoods of 0. These arguments
are formally carried out in Section 3.

To prove our results in the polarizing random walk framework, we rely on an alternate,
simple analysis of fractional pseudorandom generators. The original analysis in [4] assumes
control of L1,k(F) at all levels of the Fourier spectrum. We now explain how these assumptions
can be weakened using Theorem 17. Consider a candidate fractional PRG X ∈ [−1, 1]n. We
first decompose the multilinear (Fourier) expansion of f ∈ F in the same manner as [4]:

∣∣EX[f(X)] − EU[f(U)]
∣∣ ≤

k−1∑
i=1

∑
S⊆[n]:|S|=i

∣∣f̂(S)
∣∣∣∣EX[XS ]

∣∣
︸ ︷︷ ︸

low-order terms

+
∣∣EX[f≥k(X)]

∣∣
︸ ︷︷ ︸
high-order term

. (1)

3 We note that similar ideas for the k = 1 case also appeared in [1] (attributed to Avishay Tal).

CCC 2021
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[4] requires bounding L1,ℓ(F) for all ℓ ≥ k to give a uniform bound on the high-order term.
Using Theorem 17, we can obtain small error in the high-order term so long as we choose
X ∈ [−c, c]n for sufficiently small c depending on ε and Mk(F). To handle the low-order
terms, we consider two cases: if we further have L1,ℓ(F) bounds for ℓ < k, then we may choose
X to be a scaled (k − 1)-wise δ-biased distribution to nearly fool each of the low-order terms
as in [4]. Otherwise, we may choose X to be a scaled (k − 1)-wise independent distribution
to incur zero error from the low-order terms. Note that the latter pseudorandom primitives
are more expensive in terms of seed length. Finally, to obtain pseudorandom generators, we
then simply apply the random walk gadget of [4] to our fractional PRGs as a blackbox. We
refer the reader to Section 4 for formal proofs of the ideas in this section.

We immediately leverage this newfound flexibility to construct new pseudorandom gener-
ators for F2-polynomials of degree d = O(log n). We do this using known L1,k(F) bounds
derived in [4]. Previously these bounds were not sufficient to give PRGs with polylogarithmic
error dependence as their analysis of fractional PRGs either required control of the entire
Fourier tail or could not leverage higher Fourier levels, but they can be employed here due
to our more flexible analysis. This result is given in Section 5. Finally, we show how Mk(F)
bounds can be obtained using correlation bounds with shifted majority functions in Section 6.
This is done by straightforwardly generalizing the analysis of [5], which shows how such
correlation bounds can be used to bound the bulk of the terms in the definition of Mk(F).

1.4 Other Related Work

To our knowledge, our use of Mk(F) bounds is new to the derandomization literature. As
mentioned earlier, the stronger and better-known L1,k(F) notion has been extensively studied
in recent years. In addition to derandomization, a recent line of work [24, 3, 20] has used
L1,k bounds for decision trees to obtain an optimal separation of quantum and classical
query complexity. Among these works, the work of Bansal and Sinha [3] generalizes the
results of Raz and Tal [18] by considering a k-generalization of their Forrelation distribution
and bounding the distinguishing advantage of any function with small L1,ℓ bounds for
ℓ = 1, . . . , k. Much as how the results of Chattopadhyay et al. [6] derandomize the result of
Raz and Tal, we believe that their construction can be derandomized for pseudorandomness
purposes, but appears to give significantly worse seed length, nor obtains bounds in terms
of Mk(F). A related work by Girish, Raz, and Zhan [9] establishes a similar result with a
different generalization of the Forrelation distribution, but we do not know how to use their
construction for pseudorandom generators.

The relationship between Mk(F) and L1,k(F) has been of intense study in the mathematics
literature due to renewed interest in Bohnenblust–Hille inequalities (see, for instance, the
breakthrough work of Defant, Frerick, Ortega-Cerdà, Ounaïes, and Seip [8]). The optimal
constant Cn,k satisfying L1,k(f) ≤ Cn,kMk(f) for any polynomial f : Cn → C is known as the
Sidon constant. It is known that Cn,k is, up to small exponential factors in k, proportional
to roughly n

k−1
2 , and its tightness is witnessed by a random function with high probability.

The quantity Mk(F) also has applications in other areas in theoretical computer science,
such as quantum information theory (see for instance the survey of Montanaro [14]) and
Boolean function analysis [2].

Subsequent to our work, Viola [27] observed that Mk(F) bounds imply correlation bounds
between F and an explicit function.
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2 Preliminaries

As in [4] and [6], we study PRGs for classes F of n-variate Boolean functions that are closed
under restriction (that is, fixing any subset of the input variables of a function in the class
yields a function that remains in the class).

2.1 Fourier Analysis
We briefly recall basic Fourier analysis: any Boolean function f : {−1, 1}n → {−1, 1} admits
a unique multilinear expansion, also known as the Fourier expansion, given by

f(x) =
∑

S⊆[n]

f̂(S)xS , (2)

where we write xS ≜
∏

i∈S xi. The Fourier coefficient f̂(S) is given by

f̂(S) = EX∼{−1,1}n [f(X)XS ].

For more on Fourier analysis of Boolean functions, see the excellent book by O’Donnell [16].
One may thus extend the domain of f to [−1, 1]n, where f(x) for arbitrary x is evaluated
according to the expression in Equation (2). Note that in this case, f(0) = f̂(∅) = EUn

[f(Un)].
One of the main parameters of interest from the Fourier expansion for this framework is the
following:

▶ Definition 7. The level-k mass of a Boolean function f is

L1,k(f) ≜
∑

S⊆[n]:|S|=k

|f̂(S)|,

and the level-k mass of a class F is L1,k(F) ≜ maxf∈F L1,k(f).

In this work, we will show how to construct PRGs whose seed length depends on the
following, smaller quantity:

▶ Definition 8. For any multilinear polynomial f : Rn → R given by f(x) =
∑

S⊆[n] f̂(S)xS,
define the level-k part by

fk(x) ≜
∑

S⊆[n]:|S|=k

f̂(S)xS ,

and further define f<k(x) ≜
∑k−1

i=0 fi(x) and f≥k(x) ≜
∑n

i=k fi(x). Then we define the
level-k absolute Fourier sum of f by

Mk(f) ≜ max
x∈[−1,1]n

∣∣∣∣ ∑
S⊆[n]:|S|=k

f̂(S)xS

∣∣∣∣ = max
x∈{−1,1}n

∣∣∣∣ ∑
S⊆[n]:|S|=k

f̂(S)xS

∣∣∣∣
and analogously define Mk(F) ≜ maxf∈F Mk(f) for a class F .

Note that the equality arises by multilinearity, and clearly we have Mk(f) ≤ L1,k(f) by
the triangle inequality. Without loss of generality, we may further assume that our class is
closed under flipping the image, i.e. we may suppose that f ∈ F if and only if −f ∈ F ; this
transformation does not change either L1,k(f) or Mk(f), and therefore the same bound on
the class still holds when completing it to include all such functions. If this is the case, we
get the more striking identity:
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10:10 Fractional Pseudorandom Generators from Any Fourier Level

▶ Lemma 9. Suppose that F is closed under negation of variables and that f ∈ F implies
−f ∈ F . Then

Mk(F) = max
f∈F

∑
S⊆[n]:|S|=k

f̂(S) = max
f∈F

fk (1) .

To see why this holds, simply note that if (f, z) ∈ F × {−1, 1}n is a maximizer in the
definition of Mk(F) (where we may now assume that the sign is positive), then by replacing
the function f(x) with g(x) = f(x ◦ z), where ◦ denotes componentwise multiplication, we
have

Mk(F) =

∣∣∣∣∣ ∑
S⊆[n]:|S|=k

f̂(S)zS

∣∣∣∣∣ =
∑

S⊆[n]:|S|=k

ĝ(S) = max
h∈F

∑
S⊆[n]:|S|=k

ĥ(S).

In particular, it suffices to bound the unsigned level-k Fourier sum of such a class.
Lastly, we require the following notion:

▶ Definition 10. Let F be a class of n-variate multilinear polynomials that is closed under
restrictions. Define conv(F) as the convex closure of F ,

conv(F) ≜

∑
f∈F

λf f

∣∣∣∣ ∑
f∈F

λf = 1, λf ≥ 0 ∀f ∈ F

 .

We briefly note the following two elementary facts: first, by the assumption that F is closed
under restrictions, the same is true of conv(F). The second is the following simple claim:

▶ Lemma 11. For any class F of Boolean functions, Mk(F) = Mk(conv(F)).

Proof. One direction is obvious: as F ⊆ convF , clearly Mk(F) ≤ Mk(conv(F)). In the
other direction, let g =

∑
f∈F λf f be an arbitrary element of conv(F), where λf ≥ 0 and∑

f∈F λf = 1. Then

Mk(g) = max
x∈{−1,1}n

∣∣∣∣∣ ∑
S⊆[n]:|S|=k

ĝ(S)xS

∣∣∣∣∣
= max

x∈{−1,1}n

∣∣∣∣∣ ∑
S⊆[n]:|S|=k

(∑
f∈F

λf f̂(S)
)

xS

∣∣∣∣∣
≤
∑
f∈F

λf max
x∈{−1,1}n

∣∣∣∣∣ ∑
S⊆[n]:|S|=k

f̂(S)xS

∣∣∣∣∣
≤ max

f∈F
Mk(f).

The reverse inequality immediately follows. ◀

2.2 (Fractional) Pseudorandom Generators
We now recall the (well-known) definition of a pseudorandom generator, as well as the
generalization of a fractional pseudorandom generator as introduced by [4]:

▶ Definition 12. Let F be a class of n-variate Boolean functions. Then a pseudorandom
generator (PRG) for F with error ε > 0 is a random variable X ∈ {−1, 1}n such that for all
f ∈ F ,

|EX[f(X)] − EUn
[f(Un)]| ≤ ε,

where Un is the uniform distribution on {−1, 1}n. If X = G(Us) for some explicit function
G : {−1, 1}s → {−1, 1}n, then X has seed length s.
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▶ Definition 13. A fractional pseudorandom generator (fractional PRG) for F with error
ε > 0 is a random variable X ∈ [−1, 1]n such that for all f ∈ F (identifying f with its
multilinear expansion)

|EX[f(X)] − f(0)| ≤ ε,

where the definition of seed length is the same. A fractional PRG is p-noticeable if for each
i ∈ [n], E[X2

i ] ≥ p.

We now state the main results of [4] and [6] that show how to construct PRGs from
suitably combining noticeable fractional PRGs. This is done by the following amplification
theorem, which roughly composes fractional random variables into a random walk inside the
Boolean hypercube:

▶ Theorem 14. Suppose F is class of n-variate Boolean functions that is closed under
restrictions, and that X is an explicit p-noticeable fractional PRG with error ε and seed
length s. Then there exists an explicit PRG for F with seed length O(s log(n/ε)/p) and error
O(ε log(n/ε)/p).

Using this result, [4] proved the following theorem that exploits strong L1 control of each
Fourier level:

▶ Theorem 15. Let F be any class of n-variate Boolean functions that is closed under
restrictions. Suppose that L1,k(F) ≤ bk for some b ≥ 1 and all 1 ≤ k ≤ n. Then for any
ε > 0, there exists an explicit PRG for F with error ε and seed length b2 · polylog(n/ε).

This is achieved by constructing a fractional PRG that is a scaled version of a log(1/ε)-
wise nearly unbiased distribution. As we will be analyzing a similar fractional PRG, we defer
the details to next section. To lessen the requisite assumptions on the Fourier spectrum,
Chattopadhyay et al. [6] derandomize a construction of Raz and Tal [18] to prove the
following result that requires only level-two control, albeit at a cost of exponentially worse
dependence on the error ε, and quadratically worse dependence on the level-two mass:

▶ Theorem 16. Let F be any class of n-variate Boolean functions that is closed under
restrictions. Suppose that L1,2(F) ≤ b2 for some b ≥ 1. Then for any ε > 0, there exists an
explicit PRG for F with error ε and seed length O((b2/ε)2+o(1)polylog(n)).

3 Low-Degree Polynomial Approximations on Subcubes

Throughout this section, we assume that F is a class of n-variate Boolean functions closed
under restrictions. As mentioned above, the main result from which we derive our improve-
ments in constructing pseudorandom generators is essentially a statement about low-degree
polynomial approximations on subcubes [−c, c]n for c < 1. We remark that this setting is
equivalent to approximating noisy versions Tcf on [−1, 1]n, where Tρ is the ρ-noise operator.
This is because for any y ∈ [−c, c]n, we can write y = cx for some x ∈ [−1, 1]n and

f(y) = f(cx) =
∑

S⊆[n]

f̂(S)(cx)S =
∑

S⊆[n]

c|S|f̂(S)xS = Tcf(x).

In general, given any k ≤ n, c ≥ 0, and any f ∈ F , let εc,k(f) be defined by

εc,k(f) ≜ inf
g:deg(g)<k

max
x∈[−c,c]n

|f(x) − g(x)|, (3)
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10:12 Fractional Pseudorandom Generators from Any Fourier Level

and extend the definition to function classes by

εc,k(F) ≜ max
f∈F

εc,k(f).

Now, given ε > 0, k ≤ n, and the class F , define ck(F , ε) by

ck(ε, F) ≜ max{c ≥ 0 : εc,k(F) ≤ ε}.

In words, ck(ε, F) measures how small a hypercube we must take to ensure that for every
function in our class, there exists a degree-(k − 1) approximating polynomial that agrees
with f up to a uniform ε error on the subcube [−c, c]n; by multilinearity, it actually suffices
that this holds at the extreme points {−c, c}n. Note that Equation (3) can be formulated as
a linear program and its optimal solution is the best low-degree ℓ∞-approximation to f .

The main technical claim in this section is that we bound ck (ε, F) in terms of Mk(F).
Specifically, we show that for any class F that is closed under restrictions, truncating the
Fourier expansion of a function f ∈ F to its first (k −1) levels serves as a good approximation
to f on a sufficiently small hypercube around the origin.

▶ Theorem 17. Let f ∈ F that is closed under restrictions. Then for all c ∈ (0, 1), we have

max
x∈[−c,c]n

|f≥k(x)| ≤
(

c

1 − c

)k

Mk(F).

In particular, it follows that

εc,k(F) ≤
(

c

1 − c

)k

Mk(F).

From Theorem 17, one immediately obtains a lower bound on ck(ε, F):

▶ Corollary 18. For any class F that is closed under restrictions, and any ε > 0 and k ≤ n,

ck(ε, F) = Ω
((

ε

Mk(F)

)1/k
)

Proof. Observe that by setting c = Ω
((

ε
Mk(F)

)1/k
)

in Theorem 17, the right side is

bounded by ε. Because f≥k = f − f<k and f<k has degree strictly less than k, it follows
immediately from the definition of ck(ε, F) that ck(ε, F) is at least c. ◀

We now return to the proof of Theorem 17. To prove this result, we require the following
intermediate claims. The first simply shows that we may always bound the contribution of
the level-k part of any function in F by simply rescaling the argument:

▶ Lemma 19. Let f ∈ conv(F). Then, for all c ∈ (0, 1) and x ∈ [−c, c]n, we have

|fk(x)| ≤ ckMk(F).

Proof. Observe that c−1x ∈ [−1, 1]n by assumption, and by homogeneity of fk as a polyno-
mial, we have

|fk(x)| = ck|fk(c−1x)| ≤ ckMk(conv(F)) = ckMk(F). ◀
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The next simple yet powerful claim shows that one can “recenter” functions in F and they
remain in conv(F) (and therefore, enjoy the same Fourier bounds). This random restriction
technique is a key tool in [4].

▶ Lemma 20. Let f ∈ conv(F), a ∈ [−1, 1]n and b ∈ [0, 1] such that |ai| + bi ≤ 1 for all
i ∈ [n]. Define f̃ by f̃(x) = f(a + b ◦ x), where ◦ denotes componentwise multiplication.
Then, f̃ ∈ conv(F).

Proof. Given a and b, define a distribution Di on Zi = {−1, 1, xi} where xi is treated as
formal variable, such that Eyi∼Di

[yi] = ai + bixi; note that this is possibly by the assumption
that |ai| + bi ≤ 1. Let D =

∏
i Di be the product distribution of the Di. For any z ∈

∏
i Zi,

define fz(x) as the function obtained by setting xi = zi for each i; in particular, each variable
gets set to ±1 or remains a formal variable. By our assumption on the closure of F , we clearly
have fz ∈ F for any z. By multilinearity and independence of the product distribution, we
have f(a + b ◦ x) = Ez∼D[fz(x)]. Thus f̃ ∈ conv(F). ◀

As mentioned before, our approach will be to bound the higher-order terms of the Fourier
expansion at the fractional points of the fractional PRG via the error term that arises in
Taylor’s theorem. Denote by h(k) the k-th derivative of any Ck function h : R → R. We then
have the following claim:

▶ Lemma 21. Let f : Rn → R be multilinear and let x ∈ Rn. Define g : R → R by
g(t) = f(tx). Then,

g(k)(0) = k! · fk(x).

Proof. From the definition, it follows that

g(t) =
∑

S⊆[n]

t|S|f̂(S)xS .

Differentiating g with respect to t, we get

g(k)(t) =
∑

S⊆[n]:|S|≥k

( k−1∏
i=0

(|S| − i)
)

t|S|−kf̂(S)xS .

Setting t = 0 eliminates all of the monomials with |S| > k, giving us the required bound. ◀

The last intermediate result we require connects the function defined in the previous part
with our assumed Fourier bounds:

▶ Lemma 22. Let f ∈ conv(F), c ∈ (0, 1) and x ∈ [−c, c]n. Define g as in Lemma 21.
Then,

max
s∈[0,1]

∣∣g(k)(s)
∣∣ ≤

(
c

1 − c

)k

· k! · Mk(F)

Proof. Fix s ∈ [0, 1] and let λ = 1−c ∈ [0, 1]. Define the auxiliary function f̃(y) = f(sx+λy).
Writing a = sx and b = (λ, . . . , λ), we clearly have s|xi|+λ ≤ 1, so we may apply Lemma 20 to
see that f̃ ∈ conv(F). Now writing g̃(t) = f̃(tx) = f(sx + λtx), we also have g̃(t) = g(s + tλ).
By the chain rule, differentiating both sides k times and then setting t = 0, we have

λkg(k)(s) = g̃(k)(0).

CCC 2021



10:14 Fractional Pseudorandom Generators from Any Fourier Level

On the other hand, by Lemma 21, we have g̃(k)(0) = k! · f̃k(x), and as f̃ ∈ conv(F) by
Lemma 20, we conclude using Lemma 19 that

∣∣g(k)(s)
∣∣ =

∣∣∣∣ g̃(k)(0)
λk

∣∣∣∣ ≤
(

c

1 − c

)k

· k! · Mk(F). ◀

With these intermediate claims taken care of, we may now put them together to obtain
Theorem 17.

Proof of Theorem 17. The second statement follows immediately from the first by setting
g = f<k for any given f , and noticing that f − g = f≥k. Therefore, we focus on the first
statement.

Let f ∈ F , x ∈ [−c, c]n and define g(t) = f(tx). Then, by Taylor expanding g about
t = 0 and evaluating g at t = 1, we have

g(1) =
∑
i<k

g(i)(0)
i! + Rk, (4)

where Rk is the error term and is given in Lagrange form by

Rk = g(k)(s)
k!

for some s ∈ (0, 1). By Lemma 21, we easily see that the first term in the right hand side of
Equation (4) is precisely f<k(x), and as g(1) = f(x), we clearly then must have Rk = f≥k(x).
Therefore, by Lemma 22, we obtain

|f≥k(x)| =
∣∣∣∣g(k)(s)

k!

∣∣∣∣ ≤
(

c

1 − c

)k

Mk(F),

as desired. ◀

3.1 Lower Bounds via Chebyshev Polynomials
In this subsection, we show that our bounds on the uniform error of any low-degree polynomial
approximator are essentially tight for a reasonable range of c < 1. Recall that Theorem 17
shows that the low-degree Fourier expansion is an excellent approximator to the original
function for c small enough; we now show that this bound cannot be significantly improved
for a reasonable range of c using any approximator. Our main result of this section is the
following converse:

▶ Theorem 23. Let F be any class of n-variate multilinear functions that are closed under
restrictions. Then for any c ≤ min

(
1
3 , 3−k Mk(F)

Mk+1(F)

)
, we have

εc,k(F) ≥
( c

2

)k

Mk(F).

Recall that on the interval [−1, 1], the Chebyshev polynomials give the minimum ℓ∞
norm among all polynomials with same leading coefficient in magnitude:

▶ Fact 24 (Theorem 1.5.4 of [17]). If a polynomial f : R → R is monic of degree n,
then maxx∈[−1,1] |f(x)| ≥ 2−n+1, with equality if and only if f = Tn, the normalized n-th
Chebyshev polynomial.
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Proof of Theorem 23. Let (f, x) attain the maximum in the definition of Mk(F), namely

Mk(F) =

∣∣∣∣∣∣
∑

S⊆[n]:|S|=k

f̂(S)xS

∣∣∣∣∣∣ .
First, note that the claim is trivial if every function in F is of degree at most k, because
then f≥k is a homogeneous polynomial of degree k and this lower bound is trivial. Under
this assumption, Mk+1(F) > 0. Fix c ∈ (0, 1) and let p : [−1, 1]n → R be any multilinear
polynomial of degree strictly less than k. Define the univariate function g : [−1, 1] → R by

g(t) = f(tcx) − p(tcx).

By taking the Fourier expansion of f , it is easy to see that the coefficient of tℓ for ℓ ≥ k is
precisely

cℓ
∑

S⊆[n]:|S|=ℓ

f̂(S)xS ,

so that the coefficient of tk is equal to ckMk(F) in magnitude. We then have

sup
z∈[−c,c]n

|f(z) − p(z)| ≥ max
z∈[−cx,cx]

|f(z) − p(z)|

= sup
t∈[−1,1]

|g(t)|

≥ sup
t∈[−1,1]

|g≤k(t)| − sup
t∈[−1,1]

|g≥k+1(t)|.

By Fact 24, the first term is at least ckMk(F)/2k−1. On the other hand, the second term
can be bounded using Theorem 17 by

sup
t∈[−1,1]

|g≥k+1(t)| ≤
(

c

1 − c

)k+1
Mk+1(F).

Therefore, we obtain

sup
z∈[−c,c]n

|f(z) − p(z)| ≥ 2
( c

2

)k

Mk(F) −
(

c

1 − c

)k+1
Mk+1(F).

It is straightforward to verify that for c ≤ min
(

1/3, 3−k Mk(F)
Mk+1(F)

)
, the second term is

bounded by half of the first. Because p was an arbitrary low-degree multilinear polynomial,
the claim follows. ◀

4 From Polynomial Approximations to PRGs

4.1 From Polynomial Approximations to Fractional PRGs
From Theorem 17, we now show how the construction of fractional PRGs from level-k bounds
reduces to efficient polynomial approximation on “large” subcubes.

▶ Theorem 25. Let F be closed under restrictions. Then there exists a fractional PRG for
F with error ε and seed length O(k log n) that is (ck(ε/2, F))2-noticeable. In particular, if
Mk(F) = bk, there exists such a fractional PRG that is Ω

(
ε2/k

b2

)
-noticeable with seed length

O(k log n).
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Proof. The second statement follows immediately from the first using Corollary 18, so we
focus on the first statement.

Fix f ∈ F , ε > 0, and let X be a (k − 1)-wise independent random variable over {−1, 1}n

such that |Xi| = c ≤ 1/2 for all i ∈ [n] for some c > 0 we specify momentarily. It is well-
known that X can be sampled efficiently with seed length O(k log n) [25]. By definition of
c := ck(ε/2, F), there exists a degree-(k − 1) multilinear polynomial f̃ which ε-approximates
f on the subcube [−c, c]n, i.e.

max
y∈[−c,c]n

∣∣f(y) − f̃(y)
∣∣ ≤ ε/2. (5)

Then we have, via the Fourier expansion of f ,∣∣EX[f(X)] − f(0)
∣∣ ≤ ε

2 +
∣∣∣EX[f(X)] − f̃(0)

∣∣∣
= ε

2 +
∣∣∣EX

[
f(X) − f̃(X)

]∣∣∣
≤ ε

2 + EX

[∣∣f(X) − f̃(X)
∣∣]

≤ ε.

The first inequality applies Equation (5) at the point x = 0, and the second uses the fact
that X is (k − 1)-wise independent and f̃ has degree at most k − 1. The final inequality
holds because of (5) and the fact that X ∈ [−c, c]n. Therefore, X satisfies the definition
of a fractional PRG. Note that by construction, X is c2-noticeable since it takes values in
{−c, c}n. ◀

Although it does not fit so neatly in this approximation framework, one can essentially
recover the improved seed length of [4] (which we recall assumes L1,i(F) bounds for i =
1, . . . , n) if one further has L1,i(F) bounds just up to level k − 1:

▶ Theorem 26. Let F be closed under restrictions, and suppose that Mk(F) ≤ bk for some
b ≥ 1, k ≥ 2. If it further holds that L1,i(F) ≤ bi for all 1 ≤ i < k, then there exists a
Θ(ε2/k/b2)-noticeable fractional pseudorandom generator for F with error ε and seed length
O(log log n + log k + log(1/ε)).

Proof. Fix f ∈ F , and let X be a random variable such that |Xi| = c for all i ∈ [n] for some
c > 0 we specify momentarily. Then we have, via the Fourier expansion of f ,

∣∣EX[f(X)] − f(0)
∣∣ =

∣∣∣∣∣EX

[ ∑
S⊆[n]:1≤|S|≤k−1

f̂(S)XS

]∣∣∣∣∣+
∣∣EX[f≥k(X)]

∣∣.
We first deal with the second term on the right hand side. By Theorem 17 we have

∣∣EX[f≥k(X)]
∣∣ ≤

(
c

1 − c

)k

Mk(F).

By assumption, Mk(F) ≤ bk for some b ≥ 1; therefore, by taking c = Θ(ε1/k/b), this term
is at most ε/2. To deal with the first term, we take the same approach as [4]. Under the
assumption L1,i(F) ≤ bi for all i < k, one may apply their analysis by letting X = c · Y′,
where Y′ is an (k − 1)-wise (ε/2)-biased independent random variable over {−1, 1}n. It is
clear that X is c2 = Θ(ε2/k/b2)-noticeable. Moreover, exactly as in [4], we have∣∣∣∣∣EX

[ ∑
S⊆[n]:1≤|S|≤k−1

f̂(S)XS

]∣∣∣∣∣ ≤
k−1∑
i=1

ci
∑

S⊆[n]:|S|=i

∣∣f̂(S)
∣∣∣∣E[Y

′S ]
∣∣ ≤ (ε/2)

k−1∑
i=1

(bc)i ≤ ε/2,
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because by our choice of c we have bc ≤ 1/2. By standard constructions, Y′ can be efficiently
sampled with seed length O(log log n + log k + log(1/ε)) [15]. Combining these two errors
proves the theorem. ◀

4.2 From Fractional PRGs to PRGs
Using Theorem 25 and Theorem 26 in tandem with Theorem 14, it is fairly immediate to
obtain PRGs that rely only on a bound on some k-th Fourier level. Similarly, bounds on
levels up to k can be leveraged to get an improved seed length.

▶ Theorem 27 (Theorem 4, restated). Let F be any class of n-variate Boolean functions that
is closed under restrictions. Suppose that Mk(F) ≤ bk for some b ≥ 1 and k ≥ 3. Then for
any ε > 0, there exists an explicit PRG for F with error ε with seed length

O

(
b2+ 4

k−2 · k log n · log1+ 2
k−2 (n/ε)

ε
2

k−2

)
.

If it further holds that L1,i(F) ≤ bi for all 1 ≤ i < k, then the seed length can be improved to

O

(
b2+ 4

k−2 · (log log n + log k + log(b/ε)) · log1+ 2
k−2 (n/ε)

ε
2

k−2

)
.

Proof. By Theorem 14, given an explicit p-noticeable fractional PRG for F with error δ and
seed length s, one immediately obtains an explicit PRG for F with error O(δ log(n/δ)/p)
and seed length O(s log(n/δ)/p).

For the first statement, by our assumption and using the fractional PRG guaranteed
by Theorem 25, for any δ > 0, we immediately obtain an explicit PRG for F with error
O(b2δ1−2/k log(n/δ)) and seed length O(b2k log(n) log(n/δ)/δ2/k). To get the error below ε,
we set

δ = Θ
((

ε

b2 log(n/ε)

) k
k−2
)

(the astute reader may notice we implicitly use b ≤ n here). This yields a PRG with error ε

and seed length

O

(
b2+ 4

k−2 · k log n · log1+ 2
k−2 (n/ε)

ε
2

k−2

)
.

The second statement follows in an identical manner from the improved seed length given in
the second part of Theorem 26 in the case that one has control on the L1 Fourier mass on
the lower levels. ◀

Corollary 5 is now an immediate consequence of Theorem 27; for any desired ε > b · log(n) ·
2−O(k), one can simply apply Theorem 27 using level k = Θ(log(b log(n)/ε)) to obtain a
PRG for F with error at most ε with seed length

O(b2 · log(b log(n)/ε) · log(n/ε)).

Note that for error ε = 1/poly(n), one needs bounds only up to level Θ(log n) (again, using
the fact that b ≤ n). This also partially answers an open question of [6], which asks how
many levels of Fourier bounds suffice to recover polylogarithmic dependence in 1/ε.
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▶ Remark 28. Note that this Taylor’s theorem approach does not yield anything nontrivial
given bounds just on the second level, unlike the fractional PRG in [6]. This is actually a
necessary byproduct of combining this approach with the random walk gadget of [4]. Given
only level-two bounds, this approach attempts to use j-wise independence for j < k = 2 and
smallness to deal with errors on the high degree terms (k ≥ 2). However, the trivial random
variable that is ±1 with equal probability is trivially 1-wise independent, as each component
is a uniform random bit, albeit completely correlated. No matter how we scale them, one can
show that composing arbitrarily many independent copies of this random variable via the
random walk gadget must necessarily polarize to ±1 at termination, which clearly cannot
fool any nontrivial functions.

5 Low-degree Polynomials over F2

Our analysis recovers all the existing applications of [4] (among them, AC0 circuits, low-
sensitivity functions, and read-once branching programs); indeed, all the classes considered
there satisfy L1 Fourier bounds on the entire tail. To our knowledge, our new analysis does
not immediately improve the seed lengths obtained there, though it shows that (i) the seed
lengths there can potentially be improved using stronger bounds on Mk, and (ii) the PRGs
there would still have fooled those classes had these Fourier bounds been known only up to
some level k.

However, the generality afforded to us by this new analysis allows us to obtain a new
PRG for low-degree polynomials over F2, which addresses an open question of [4] by showing
that this framework can handle this class. Indeed, let F be the set of n-variate, degree-d
polynomials over F2. As a preliminary step towards deriving Fourier tail bounds that would
imply a nontrivial PRG for this class using their framework, [4] proves the following Fourier
bounds:

▶ Proposition 29 (Theorem 6.1 of [4]). Let p : Fn
2 → F2 be a degree-d polynomial, and let

f(x) = (−1)p(x). Then L1,k(f) ≤ (k · 23d)k.

Note that this result cannot be applied to their original analysis, for they require a nontrivial
bound at all levels, while this bound is trivial for k = Ω(

√
n) and any d. While Theorem 16

can yield a nontrivial PRG by just applying the level-two bound, the dependence on 1/ε is at
least quadratic.4 However, using our new, more flexible analysis, one can obtain a nontrivial
PRG with polylogarithmic dependence on the error parameter. Our formal result is the
following:

▶ Theorem 30. Let F be the class of degree-d polynomials over F2 on n variables. Then
there exists an explicit pseudorandom generator for F with error ε and seed length

2O(d) · log3(log(n)/ε) · log(n/ε).

Proof. Fix ε > 0 and let k = Θ(log(log(n)/ε)). By Proposition 29, we have that for all
j ≤ k,

L1,j(F) ≤ Θ
(
log(log(n)/ε) · 23d

)j
.

4 By applying this Fourier bound at level-two, one can use the fractional PRG of [6] to obtain seed
length 2O(d)polylog(n)/ε2+o(1) using the random walks framework. This gives exponentially worse error
dependence compared to our approach.
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By setting b = Θ(log(log(n)/ε) · 23d), we may apply Theorem 27 for F and error ε. Note
that ε−Θ(1/ log(1/ε)) = O(1), so plugging in this value of b, we immediately obtain the desired
pseudorandom generator. ◀

For comparison, the best known construction by Viola [26], obtained by summing d independ-
ent copies of a sufficiently good small-bias space, attains seed length d·log n+O(d·2d log(1/ε)),
which for constant ε and d is within a constant factor of the optimal seed length. The gener-
ator implied by our analysis recovers this polylogarithmic dependence in n/ε, although with
slightly worse dependence on log n and polynomially worse dependence in log(1/ε). Neither
generator can handle superlogarithmic degree. While this result clearly falls short of the
state-of-the-art, we emphasize that this generator is conceptually distinct from the existing
constructions, and yet belongs to this generic random walk framework.

Our analysis allows us to exploit known Fourier bounds that are too weak for the existing
analyses to obtain polylogarithmic error dependence. In particular, to get a nontrivial
pseudorandom generator for polynomials of superlogarithmic degree with nontrivial seed
length, our work shows that the following weaker conjecture would suffice to break the
logarithmic degree barrier and still achieve polylogarithmic (in n) seed length for ε =
1/poly(n):

▶ Conjecture 31. Let F be the class of degree-d polynomials over F2 on n variables. Then

Mk(F) ≤ (poly(k, log n) · 2o(d))k

for k ≤ O(log n).

In fact, we observe that to break the logarithmic degree barrier, it actually suffices that this
holds just at level k = 3, though with poor dependence on ε. Note that this is a significantly
weaker conjecture than positing that the same bounds hold for L1,k(F). Moreover, as we
explain in the next section, Mk(F) can be controlled using correlation bounds, which are
much better studied than L1 Fourier bounds.

6 Bounds on Mk(F) via Correlation with Shifted Majorities

As we have seen, our new analysis lets one construct PRGs from the weaker quantity Mk(F).
In this section, we extend the argument of Chattopadhyay, Hatami, Hosseini, Lovett, and
Zuckerman [5] to show how bounds on Mk(F) follow from covariance bounds with certain
resilient functions (in particular, shifted majorities). In their paper, they deal with the case
of k = 2; we rather straightforwardly generalize this argument, but stress that the approach
is the same as in Section 6 of their paper. To that end, for convenience and consistency with
their argument, we adopt their conventions and requisite definitions just for this section.
We will now consider Boolean functions written as f : {0, 1}n → {0, 1}. Translating to this
notation, for any such Boolean function f , let e(f)(x) ≜ (−1)f(x). Then, letting F = e(f),
we now have F̂ (S) = Ex[F (x)e(

∑
i∈S xi)].

▶ Definition 32. The covariance between f and g, where f, g are Boolean is

cov(f, g) ≜
∣∣E[e(f(x))e(g(x))] − E[e(f(x))]E[e(g(x))]

∣∣.
The covariance between a function f and a class G is defined as cov(f, G) ≜ maxg∈G cov(f, g).
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For any x ∈ {0, 1}n, we write |x| for its Hamming weight, i.e.
∑n

i=1 xi. For any
a ∈ {0, 1, . . . , n}, [5] defines Maja by

Maja(x) ≜
{

1 if |x| > a

0 otherwise,

as well as the following associated functions for any θ ∈ [n/2]:

Thrθ(x) ≜
{

(−1)Majn/2(x) if
∣∣|x| − n/2

∣∣ > θ

0 otherwise.

We now prove the following lemma relating Mk(F) with covariance bounds against the
k-XORs of these functions:

▶ Lemma 33 (Lemma 6.1 of [5], adapted). Let F be any family of (kn)-variate Boolean
functions that is closed under relabeling and negation of input variables. Suppose that for
any a1, . . . , ak such that |ai − n/2| = O(

√
kn log n) for all i ∈ [k], and all f ∈ F , we have

for some t ≥ 1

cov
(
f, ⊕k

i=1Majai

)
≤

(√
t

n

)k

,

where ⊕ denotes the XOR function. Then,

Mk(F) ≤ O
(√

tk log n
)k

.

To prove this lemma, [5] uses the following sequence of claims.

▶ Fact 34 (Claim 6.2 in [5]). For any f ∈ F , let F (x1, . . . , xk) = e(f(x1, . . . , xk)). Under
the hypotheses of Lemma 33, for any 1 ≤ a1, . . . , ak ≤ O(

√
kn log n),∣∣∣∣Ex1,...,xk

[(
F (x1, . . . , xk) − E[F ]

) k∏
i=1

Thrai
(xi)

]∣∣∣∣ ≤

(√
t

n

)k

.

▶ Fact 35 (Claim 6.3 of [5]). For any x ∈ {0, 1}n,
∑n

i=1 e(xi) = 2
∑

1≤a≤n/2 Thra(x).

▶ Fact 36 (Claim 6.4 of [5], adapted). For any Boolean function f : {0, 1}kn → {0, 1}, there
exists a k-equipartition of [kn] into disjoint sets S1, . . . , Sk such that∣∣∣∣ ∑

S⊆[kn]:|S|=k

f̂(S)
∣∣∣∣ ≤ Ck

∣∣∣∣ ∑
ij∈Sj ∀j∈[k]

f̂({i1, . . . , ik})
∣∣∣∣

for some absolute constant C > 0.

As this fact is not quite identical to that in [5], we give an argument here:

Proof. We use the probabilistic method: let P be the set of k-equipartitions of [kn]. Let
T ⊆ [kn] of size k be arbitrary; without loss of generality, suppose T = [k]. Consider a
uniformly random k-equipartition P = S1 ⊔ · · · ⊔ Sk ∈ P. The probability that each i ∈ T

belongs to a distinct Sj is easily seen to be

k−1∏
i=1

(k − i) · n

kn − i
≥ (k − 1)! nk−1

(kn)k−1 = (k − 1)!
kk−1 = e−O(k),
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where the last equality uses Stirling’s approximation. By symmetry, let α ∈ N be the number
of k-equipartitions that any arbitrary subset T is in. Then we have

α

∣∣∣∣ ∑
S⊆[kn]:|S|=k

f̂(S)
∣∣∣∣ =

∣∣∣∣ ∑
P ∈P

∑
ij∈Sj ∀j∈[k]

f̂({i1, . . . , ik})
∣∣∣∣

≤
∑
P ∈P

∣∣∣∣ ∑
ij∈Sj ∀j∈[k]

f̂({i1, . . . , ik})
∣∣∣∣

≤ |P| max
P ∈P

∣∣∣∣ ∑
ij∈Sj ∀j∈[k]

f̂({i1, . . . , ik})
∣∣∣∣. ◀

The first line follows from simple counting, while the second is the triangle inequality.
Rearranging, we deduce that (writing T as a generic subset of size k)∣∣∣∣ ∑

S⊆[kn]:|S|=k

f̂(S)
∣∣∣∣ ≤ |P|

α
max
P ∈P

∣∣∣∣ ∑
ij∈Sj ∀j∈[k]

f̂({i1, . . . , ik})
∣∣∣∣

= Pr
P ∼P

(T ∈ P )−1 max
P ∈P

∣∣∣∣ ∑
ij∈Sj ∀j∈[k]

f̂({i1, . . . , ik})
∣∣∣∣

≤ eO(k) max
P ∈P

∣∣∣∣ ∑
ij∈Sj ∀j∈[k]

f̂({i1, . . . , ik})
∣∣∣∣.

The last fact that is needed can be deduced from the Chernoff bound:

▶ Fact 37 (Claim 6.5 of [5], adapted). For any a ≥ Ω(
√

kn log n), E[|Thra|] ≤ O(1/nk).

With these facts, we can now prove Lemma 33 in an entirely analogous fashion to [5]:

Proof of Lemma 33. Fix f ∈ F , and again write F (x1, . . . , xk) = e(f(x1, . . . , xk)). Let
F ′ = F − E[F ]. Let Uj = {i : (j − 1)n + 1 ≤ i ≤ jn}. Then, possibly after relabelling
variables, we have by Fact 36 that∣∣∣∣ ∑

S⊆[kn]:|S|=k

f̂(S)
∣∣∣∣ ≤ Ck

∣∣∣∣ ∑
ij∈Uj ,∀j∈[k]

f̂({i1, . . . , ik})
∣∣∣∣,

so we may turn to bounding this latter term. We have∣∣∣ ∑
ij ∈Uj ,∀j∈[k]

f̂({i1, . . . , ik})
∣∣∣ =
∣∣∣ ∑

ij ∈Uj ,∀j∈[k]

E
[

F
′(x1, . . . , xk)

k∏
j=1

e
(

(xj)ij

)]∣∣∣
=
∣∣∣E[F ′(x1, . . . , xk)

k∏
j=1

(∑
ij ∈Uj

e
(

(xj)ij

))]∣∣∣
≤ 2k

∑
1≤ai≤n/2,∀i∈[k]

∣∣∣E[F ′(x1, . . . , xk)
k∏

i=1

Thrai
(xi)
]∣∣∣

≤ 2k

( ∑
1≤ai≤O(

√
kn log n),∀i∈[k]

∣∣∣E[F ′(x1, . . . , xk)
k∏

i=1

Thrai
(xi)
]∣∣∣+ O(1)

)

≤ 2k · O
(√

kn log n
)k

·

(√
t

n

)k

= O
(√

tk log n
)k

.
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The first inequality follows from Fact 35, the second from Fact 37, and the last from Fact 34.
Because we assumed that F is closed under negations of input variables and f ∈ F was
arbitrary, we obtain the desired claim from Lemma 9 after absorbing the constant C above
into the implicit constant in this bound. ◀

7 Discussion and Open Questions

In this work, we have given a nearly complete interpolation between the previous PRGs
obtained in the polarizing random walk framework by exploiting level-k bounds on the
class of functions, thus answering an open question from [6]. We do so by exploiting an
alternate Fourier analysis via Taylor’s theorem and utilizing multilinearity and random
restrictions. This new analysis enables us to construct PRGs from bounds on the potentially
much smaller and better-understood Fourier quantity Mk(F), for any k ≥ 3. By generalizing
the connection established in [5], this reduces the problem of constructing PRGs in this
framework to proving correlation bounds. Further, we show how to get a PRG with an
improved seed length if we have bounds on L1,i(F), for all i ≤ k, where k ≥ 3. A natural
open question along these lines is to obtain the improved seed length using bounds on Mi(F)
(instead of L1,i(F)) for all i ≤ k. Another natural question is to construct a PRG using
bounds on just M2 (recall that [6] gives such a construction using bounds on L1,2(F) and
our analysis only gives a non-trivial PRG from bounds on Mk(F) when k ≥ 3).

Finally, exploiting known level-k bounds for F2 polynomials, our approach shows that the
polarizing random walk framework can yield pseudorandom generators for the class of F2
polynomials that is competitive with the state of the art. As mentioned, we hope this paper
gives evidence that stronger Fourier control (perhaps via proving the required correlation
bounds) can give better PRGs using this framework, and can also handle classes that were
previously not known to be possible. In particular, we emphasize that proving Conjecture 31
even for the case of k = 3 will lead to PRGs for F2-polynomials with degree ω(log n), a
longstanding problem in complexity theory.
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