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Abstract
The Metric Dimension problem asks for a minimum-sized resolving set in a given (unweighted,
undirected) graph G. Here, a set S ⊆ V (G) is resolving if no two distinct vertices of G have the
same distance vector to S. The complexity of Metric Dimension in graphs of bounded treewidth
remained elusive in the past years. Recently, Bonnet and Purohit [IPEC 2019] showed that the
problem is W[1]-hard under treewidth parameterization. In this work, we strengthen their lower
bound to show that Metric Dimension is NP-hard in graphs of treewidth 24.
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1 Introduction

Let G be an unweighted and undirected graph and let S ⊆ V (G). For a vertex v ∈ V (G), the
distance vector from v to S is the assignment S ∋ w 7→ distG(v, w), where distG denotes the
distance in the graph G. The set S is resolving if a distance vector to S uniquely determines
the source vertex; that is, no two vertices of G have the same distance vector to S. The
Metric Dimension problem asks for a resolving set of minimum possible size; such a set is
sometimes called the metric basis of G. The decision version of Metric Dimension asks
for a resolving set of size not exceeding a given threshold k.

Metric Dimension has already been introduced in 1970s [7, 12]. Determining its
computational complexity turned out to be quite challenging. It is polynomial-time solvable
on trees [7, 12, 10], outerplanar graphs [3], and chain graphs [6], but NP-hard for example on
planar graphs [3] or split graphs [5]. From the parameterized complexity point of view, the
FPT status of the Metric Dimension parameterized by the solution size has been open
for a while and finally resolved in negative by Hartung and Nichterlein [8]. In the search
of a tractable structural parameterization, FPT algorithms has been shown for parameters:
treelength plus maximum degree [1], vertex cover number [8], max leaf number [4], and
modular-width [1].

The above list misses probably the most important graph width measure, namely treewidth.
Determining the complexity of Metric Dimension, parameterized by treewidth, remained
elusive in the last years, and has been asked a few times [1, 3, 4]. Bonnet and Purohit in a
paper presented at IPEC 2019 [2] showed that the problem is W[1]-hard, even with pathwidth
parameterization. In this work we strengthened their result by proving para-NP-hardness of
this parameterization.
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▶ Theorem 1. Metric Dimension, restricted to graphs of treewidth at most 24, is NP-hard.

Theorem 1 brings us much closer to closing (unfortunately mostly in negative) the question
of the complexity of Metric Dimension in graphs of bounded treewidth. The remaining
gap is to determine the exact treewidth value where the problem becomes hard: note that it
is open if Metric Dimension is polynomial-time solvable on graphs of treewidth 2.

The proof of Theorem 1 starts with a construction of a graph with a separation of order
9 over which a lot of information on a partial solution to Metric Dimension is transfered.
More formally, similarly as Bonnet and Purohit [2], we use the Multicolored Resolving
Set problem as an auxiliary intermediate problem. In this problem, the input graph is
additionally equipped with an integer k, a tuple of k disjoint vertex sets X1, X2, . . . , Xk,
and a set P of vertex pairs. The goal is to choose a set S consisting of exactly one vertex
from each set Xi so that for every {u, v} ∈ P , the pair {u, v} is resolved by S, that is, u and
v have different distance vectors to S. In our construction, the sets Xi are on one side of
the said separation of order 9, while the pairs P are on the second side. The crux of the
construction is to make every distance from a vertex of the separator to a chosen vertex of S

count: despite the fact that the separation has constant size, S is of unbounded size, giving
Ω(|S|) distances to work with. Overall, the above gives a relatively clean reduction giving
NP-hardness of Multicolored Resolving Set in graphs of constant treewidth, presented
in Section 3. This reduction is the main new insight and technical contribution of this paper.

Then, again similarly as in the work of Bonnet and Purohit [2], it takes a lot of effort
(presented in Section 4) to turn the above reduction to Multicolored Resolving Set
into a reduction to Metric Dimension. Here, there are two problems. First, one needs to
introduce some gadgets to force the solution to take exactly one vertex from each set Xi.
Second, one needs to ensure that the intended solution resolves all vertex pairs, not only
the ones from P. For both problems, we borrow the tools from Bonnet and Purohit [2]. In
particular, the first problem is resolved by forced set gadgets in a way very similar to [2]. The
second problem is resolved by adding a number of new connections to the graph and forced
vertex gadgets of [2]. Thus, while the toolbox remains the same as in [2], the application
is different as the graph we are working with is significantly different. The construction is
presented in Sections 4.1-4.2.

After applying all the modifications to obtain a Metric Dimension instance, one needs
to check three aspects. First, one needs to ensure that the forced set gadgets work as intended,
forcing the solution to take one vertex from each Xi; this check is rather simple and very
similar to the analogous check of [2]. Second, one needs to check that the introduced forced
vertex gadgets, that contain extra vertices from the intended resolving set (apart from the
ones in Xis), do not accidentally resolve any pair from P. This check is not trivial, but
still relatively simple. Note that the mentioned two properties already ensure one of the
implications in the proof of the correctness of the reduction: if the final Metric Dimension
instance is a yes-instance, then the input instance of the source problem is a yes-instance.
These two checks are presented in Section 4.3.

Then one needs to check that every pair of vertices is resolved by an intended solution.
Due to the complexity of the construction and the properties of this problem, this turned
out to be long and arduous (the full proof is deferred to the full version of the paper).

Besides, we show that the treewidth of the constructed graph is bounded by a constant
in Section 4.4.
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2 Preliminaries

In this paper, all graphs are undirected. In a graph G, let V (G) be the set of vertices of
G. For a vertex v ∈ V (G), we denote the open neighborhood and closed neighborhood
of v by NG(v) and NG[v] respectively (or just N(v) and N [v] if the graph is clear in the
context). For two vertices u, v ∈ V (G), let P (u, v) be a path from u to v. Since the graph
is undirected, P (u, v) and P (v, u) denote the same path. We denote the neighbor of u on
P (u, v) by Nu(u, v) (also the neighbor of v on P (u, v) by Nv(u, v)). Similarly, if there is a
path which is named as, for example, P h(i, j, x) such that u is one endpoint of P h(i, j, x), we
denote the neighbor of u on P h(i, j, x) by Nh

u (i, j, x). For simplicity, we abuse the notation
in the sense that for a path P , we use P to denote the path or the vertex set of the path.
The meaning should be clear in the context. We define the length of a path P to be the
number of edges on the path and denote it by |P |. For two vertices u, v ∈ V (G), we define
the distance between u and v to be the length of any shortest path from u to v, denoted by
distG(u, v). Note that in this paper we use dist(u, v) to denote the distance between u and v

mostly if the graph is clear in the context. For a path P of even length with two endpoints u

and v, let w be the vertex on P such that the length of the subpath of P from u to w equals
the length of the subpath of P from w to v. Then we call w the middle vertex of P and
denote it by mid(P ). We say that two distinct vertices u, u′ are false twins if N [u] = N [u′].
Since a path decomposition is also a tree decomposition, the treewidth of a graph G is at
most the pathwidth of G. In this paper, for convenience of the proof, we use the alternative
characterization of pathwidth, i.e. the pathwidth of a graph G equals the node search number
of G minus one [11]. The definition of the node search number comes from the node search
game. We give an informal definition of the node search game as follows. Imagine that the
edges of an undirected graph G are tunnels and they are contaminated by some gas. We need
to put searchers on vertices of G to clean the gas. The rule is that when the two endpoints
of an edge are occupied by two searchers, this edge becomes clean. However, if we remove
some searchers from the graph, a cleaned edge can be recontaminated immediately through
an unoccupied endpoint to which a contaminated edge is incident. The node search number
of G is the minimum number of searchers required to clean all edges of G.

3 Reduction from 3-Dimensional Matching to Multicolored Resolving
Set

Bonnet and Purohit introduced k-Multicolored Resolving Set as an intermediate
problem in order to show the W[1]-hardness of Metric Dimension parameterized by
treewidth [2].

k-Multicolored Resolving Set
Input: An undirected graph G = (V, E), an integer k, a set χ = {X1, ..., Xk} where
X1, ..., Xk are disjoint subsets of V (G) and a set P = {{x1, y1}, ..., {xh, yh}} where
{x1, y1}, ..., {xh, yh} are vertex pairs of G.
Question: Is there a set of k vertices S such that
(i) |S ∩ Xi| = 1 for every i = 1, ..., k, and
(ii) for every ℓ ∈ {1, ..., h}, there exists a vertex v ∈ S such that dist(v,xℓ) ̸= dist(v,yℓ).

We show that this problem is NP-hard on graphs of constant treewidth. We make a
reduction from 3-dimensional matching, which is well-known to be NP-hard [9].

IPEC 2021
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3-dimensional matching
Input: the universe U = {1, 2, 3} × [n] and a set F = {A1, ..., Am} of tuples such that
for every j ∈ [m], the tuple Aj = {(1, x), (2, y), (3, z)} where (1, x), (2, y), (3, z) ∈ U .

Question: are there n tuples Aj1 , ..., Ajn such that
n⋃

h=1
Ajh

= U .

Given an instance (U, F) of 3-dimensional matching with the universe U = {1, 2, 3} ×
[n] and a set F of m tuples A1, ..., Am ⊆ U , we construct an instance (G, n, χ, P) of n-
Multicolored Resolving Set as follows. First, we create m vertices s1

i , ..., sm
i as Xi

for each i ∈ [n]. Let χ = {X1, ..., Xn} and X =
n⋃

i=1
Xi. Then we create n vertex pairs

{u1
r, v1

r}, ..., {un
r , vn

r } for each r ∈ {1, 2, 3} and let Pr = {{ui
r, vi

r}|i = 1, ..., n}. We create 3
vertices ar, br, cr and let Wr = {ar, br, cr} for each r ∈ {1, 2, 3}. Let P = P1 ∪ P2 ∪ P3 and
W = W1 ∪ W2 ∪ W3. Finally, let M = 40(n + 1). For each tuple Aj = {(1, x), (2, y), (3, z)}
(j ∈ [m], x, y, z ∈ [n]) of the given instance and each integer i ∈ [n], we link sj

i to a1, b1, c1
with three paths P (sj

i , a1), P (sj
i , b1), P (sj

i , c1) of lengths M
2 + 10x, M

2 + 5x + 1 and M
2 − 10x

respectively, link sj
i to a2, b2, c2 with three paths P (sj

i , a2), P (sj
i , b2), P (sj

i , c2) of lengths
M
2 + 10y, M

2 + 5y + 1 and M
2 − 10y respectively, and link sj

i to a3, b3, c3 with three paths
P (sj

i , a3), P (sj
i , b3), P (sj

i , c3) of lengths M
2 + 10z, M

2 + 5z + 1 and M
2 − 10z respectively. For

every vertex pair {up
r , vp

r } (p ∈ [n], r ∈ {1, 2, 3}), we link up
r to ar, br, cr with three paths

P (up
r , ar), P (up

r , br), P (up
r , cr) of lengths M

2 −10p, M
2 −5p−1 and M

2 +10p respectively, and link
vp

r to ar, br, cr with three paths P (vp
r , ar), P (vp

r , br), P (vp
r , cr) of lengths M

2 − 10p, M
2 − 5p − 2

and M
2 + 10p respectively. This finishes the construction. See Figure 1 for an example.

▶ Lemma 2. For an arbitrary vertex pair {ux
r , vx

r } ∈ P (r ∈ {1, 2, 3}, x ∈ [n]),{ux
r , vx

r } is
resolved by sj

i (i ∈ [n], j ∈ [m]) if and only if (r, x) ∈ Aj.

Proof. On one hand, suppose that (r, x) ∈ Aj . For an arbitrary i ∈ [n], the three paths from
sj

i to ux
r via ar, br and cr have lengths M, M and M respectively. The three paths from sj

i

to vx
r via ar, br and cr have lengths M, M − 1 and M respectively. Note that there could be

other paths from sj
i to vx

r or ux
r that go repeatedly between vertices in X and vertices in W .

However, the lengths of such paths are at least M − 20n + M − 10n > M . As a result, the
shortest paths from sj

i to ux
r and vx

r are of lengths M and M − 1 respectively. Thus {ux
r , vx

r }
is resolved by sj

i .
On the other hand, for an arbitrary tuple Ai = {(1, p1), (2, p2), (3, p3)}, the paths from

the vertex sj
i (i ∈ [n]) to ux

r (r ∈ {1, 2, 3}) via ar, br and cr have lengths M + 10(pr − x), M +
5(pr − x) and M − 10(pr − x) respectively. The paths from the vertex sj

i (i ∈ [n]) to vx
r

(r ∈ {1, 2, 3}) via ar, br and cr have lengths M +10(pr−x), M +5(pr−x)−1 and M −10(pr−x)
respectively. Note that the paths from sj

i to ux
r (or vx

r ) that go repeatedly between the
vertices in X and the vertices in W have lengths at least M − 20n + M − 10n > M + 10n.
They are not the shortest paths from sj

i to ux
r (or vx

r ). If pr < x, the shortest paths from sj
i

to ux
r and vx

r both have lengths M + 10(pr − x). If pr > x, the shortest paths from sj
i to ux

r

and vx
r both have lengths M − 10(pr − x). If pr = x, the shortest paths from sj

i to ux
r and

vx
r have lengths M and M − 1 respectively. As a result, if {ux

r , vx
r } is resolved by sj

i , then
pr = x. According to the construction, (r, x) ∈ Aj . ◀

▶ Lemma 3. The constructed instance (G, n, χ, P) of n-Multicolored Resolving Set
is a yes-instance if and only if the given instance (U, F) of 3-dimensional matching is a
yes-instance.
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Figure 1 An example of the reduction from 3-Dimensional Matching to n-Multicolored
Resolving Set in which U = {1, 2, 3} × [n] and F = {A1, ..., Am}. Here we only draw the
corresponding paths and resolved pairs of the tuple Aj = {(1, x), (2, y), (3, z)}.

IPEC 2021
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Proof. (⇐) For an arbitrary tuple Ai = {(1, x), (2, y), (3, z)}, according to Lemma 2, pairs
{ux

1 , vx
1 },{uy

2, vy
2} and {uz

3, vz
3} are all resolved by sj

i for every i ∈ [n]. Suppose that the given
instance of 3-dimensional matching is a yes-instance, that is, there exists Aj1 , ..., Ajn

satisfying that
n⋃

h=1
Ajh

= U . It follows that S = {sjh

h : h ∈ [n]} is a solution for the

constructed instance of n-Multicolored Resolving Set.
(⇒) Let S = {sjh

h : h ∈ [n]} be a solution for the constructed instance of n-Multicolored
Resolving Set. For an arbitrary pair {ux

r , vx
r }, since it is resolved by some s

jh′
h′ ∈ S,

according to Lemma 2, (r, x) ∈ Ajh′ . As a result, {Ajh
: h ∈ [n]} is a solution for the instance

of 3-dimensional matching. ◀

It is well-known that the treewidth of a graph is bounded by the size of a minimum
feedback vertex set of the graph. We can easily observe that W is a feedback vertex set of
size 9 for G. It follows that the treewidth of G is at most 10. Then we have the following
lemma.

▶ Lemma 4. k-Multicolored Resolving Set is NP-hard even on graphs of treewidth at most 10.

4 Reduction from Multicolored Resolving Set to Metric Dimension

In this section, we create in polynomial time an instance (G′, k) of Metric Dimension,
which is equivalent to the instance (G, n, χ, P) of n-Multicolored Resolving Set we
created in last section. Roughly speaking, the reduction consists in adding gadgets on base
of the constructed instance (G, n, χ, P) to solve the following two issues: (1) the solution for
Metric Dimension could contain vertices not in any set of χ or more than one vertex from
some set of χ, which would spoil the desired reduction; (2) we did not make sure that every
pair of distinct vertices are resolved by the solution in an instance of n-Multicolored
Resolving Set. We find that similar strategies to those in [2] can be used to solve these
two issues. More specifically, we solve the first issue by adding forced set gadgets. One such
gadget contains two pairs of vertices such that they are only resolved simultaneously by a
vertex of Xi (where it is attached). We solve the second issue by adding forced vertex gadgets.
One such gadget contains a pair of pendant neighboring vertices (false twins), both of which
are also adjacent to an identical vertex. Such construction forces at least one vertex of the
false twins to be chosen in the solution. The chosen vertices (forced vertices) are designed to
resolve the remaining unresolved vertex pairs. Besides, we need to add a number of extra
paths and set appropriate budget k to make sure that the reduction works as described
above.

4.1 Construction of the forced set gadgets
Let (G, n, χ, P) be an instance of n-Multicolored Resolving Set that we created in last
section. For every Xi ∈ χ (i ∈ [n]), we add two pairs of isolated vertices {p1

i , q1
i } and {p2

i , q2
i }.

Then we add two vertices π1
i and π2

i such that p1
i , q1

i are adjacent to π1
i , p2

i , q2
i are adjacent

to π2
i . The vertex triples p1

i , q1
i , π1

i and p2
i , q2

i , π2
i (i ∈ [n]) form a forced set gadget. Then we

create a path P (sj
i , p1

i ) of length 20(n + 1) from sj
i to p1

i and create a path P (sj
i , p2

i ) of length
20(n+1) from sj

i to p2
i for each i ∈ [n], j ∈ [m]. In order to make sure that a vertex can resolve

p1
i , q1

i and p2
i , q2

i simultaneously if and only if it belongs to Xi, we need to create 4 paths of
length 20(n + 1) from π1

i to Nsj
i
(sj

i , ar), from π1
i to Nsj

i
(sj

i , br), from π1
i to Nsj

i
(sj

i , cr) and
from π1

i to Nsj
i
(sj

i , p2
i ) respectively for each i ∈ [n], j ∈ [m] and r ∈ {1, 2, 3}. For simplicity,

we name the four paths as P 1(i, j, ar), P 1(i, j, br), P 1(i, j, cr) and P 1(i, j, p2
i ) respectively.
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Symmetrically, we need to create 4 paths of length 20(n+1) from π2
i to Nsj

i
(sj

i , ar), from π2
i to

Nsj
i
(sj

i , br), from π2
i to Nsj

i
(sj

i , cr) and from π2
i to Nsj

i
(sj

i , p1
i ) respectively for each i ∈ [n] and

r ∈ {1, 2, 3}. For simplicity, we name the four paths as P 2(i, j, ar), P 2(i, j, br), P 2(i, j, cr) and
P 2(i, j, p1

i ) respectively. Let Πh(i, j, r) = {P h(i, j, ar), P h(i, j, br), P h(i, j, cr), P h(i, j, p3−h
i )}

for i ∈ [n], j ∈ [m], r ∈ {1, 2, 3}, h ∈ {1, 2}.
This completes the construction of the first phase.

4.2 Construction of the forced vertex gadgets

A forced vertex gadget consists of a triangle, namely three vertices such that each vertex
is adjacent to the other two vertices. Two vertices of the triangle are false twins whose
degrees are exactly 2 and we call the other vertex in the triangle the connecting vertex of the
gadget. When we say that we add a forced vertex gadget F to a vertex v, we mean that we
create a forced vertex gadget F such that v is identified with the connecting vertex of F .
For each i ∈ [n], j ∈ [m], r ∈ {1, 2, 3}, h ∈ {1, 2}, we add a forced vertex gadget F h(i, j, ar)
to Nh

πh
(i, j, ar), F h(i, j, br) to Nh

πh
(i, j, br), F h(i, j, cr) to Nh

πh
(i, j, cr) and F h(i, j, p3−h

i ) to
Nh

πh
(i, j, , p3−h

i ) respectively.
In order to make sure that the false twins of F h(i, j, br) for i ∈ [n], j ∈ [m], r ∈ {1, 2, 3}, h ∈

{1, 2} do not resolve any vertex pair of P, we create a path P (πh
i , ar) and a path P (πh

i , cr)
both of length 10(n + 1) for i ∈ [n], h ∈ {1, 2} and r ∈ {1, 2, 3}.

For each i ∈ [n], j ∈ [m], r ∈ {1, 2, 3}, h ∈ {1, 2}, we add a forced vertex gadget F (πh
i , ar)

to Nar
(πh

i , ar) and a forced vertex gadget F (πh
i , cr) to Ncr

(πh
i , cr). For each i ∈ [n], j ∈

[m], r ∈ {1, 2, 3}, we add a forced vertex gadget F (sj
i , ar) to Nar

(sj
i , ar) and a forced vertex

gadget F (sj
i , cr) to Ncr

(sj
i , cr).

Let mid(P h(i, j, p3−h
i )) be the middle vertex of P h(i, j, p3−h

i ) for i ∈ [n], j ∈ [m], h ∈ {1, 2}.
In order to make sure that the false twins of F h(i, j, p3−h

i ) do not resolve the vertex pair
{p3−h

i , q3−h
i }, create a path P (qh

i , mid(P 3−h(i, j, ph
i ))) from qh

i to mid(P 3−h(i, j, ph
i )) of

length |P 3−h(i, j, ph
i )|/2 + |P (sj

i , ph
i )| − 1. Then add a forced vertex gadget F mid(i, j, h) to

mid(P h(i, j, p3−h
i )).

For i ∈ [n], j ∈ [m], r ∈ {1, 2, 3}, h ∈ {1, 2}, add a forced vertex gadget F ecc(i, j, h, r) to
the vertex x ∈ P h(i, j, ar) such that dist(πh

i , x) = 10(n + 1) + 1.
For each i ∈ [n], r ∈ {1, 2, 3}, create two forced vertex gadgets F 1(ui

r, vi
r) and F 2(ui

r, vi
r)

for the vertex pair {ui
r, vi

r} ∈ Pr. Then create an edge from the connecting vertex of
F 1(ui

r, vi
r) to ui

r, to vi
r, to Nui

r
(ar, ui

r) and to Nui
r
(cr, ui

r) respectively for i ∈ [n], r ∈ {1, 2, 3}.
Create an edge from the connecting vertex of F 2(ui

r, vi
r) to ui

r, to vi
r, to the vertex x such

that x ∈ P (ar, ui
r) and dist(x, ui

r) = 2, and to the vertex y such that y ∈ P (cr, ui
r) and

dist(y, ui
r) = 2. This completes the construction of the second phase.

Finally, let G′ be the graph constructed by above two phases and set k = 34nm + 19n.
This finishes constructing the instance (G′, k) of Metric Dimension. Figure 2 shows a part
of G′.

4.3 Soundness of the reduction

First, we define the vertex sets to be used in the following parts. Recall that Xi = {s1
i , ..., sm

i }.
For every i ∈ [n], r ∈ {1, 2, 3}, h ∈ {1, 2}, let

Uh
i =

⋃
j∈[m]

P (sj
i , ph

i ),

IPEC 2021
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Figure 2 An example showing a part of G′. Triangles represent corresponding forced vertex
gadgets. For clarity, some forced vertex gadgets do not appear on the figure. Dotted or dashed lines
are used in order for cleanness of the figure.
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Hi,r =
⋃

j∈[m]

P (sj
i , ar) ∪ P (sj

i , br) ∪ P (sj
i , cr),

Sh
i =

⋃
r∈{1,2,3}

P (πh
i , ar) ∪ P (πh

i , cr),

Lh
i =

⋃
j∈[m]

P (qh
i , mid(P 3−h(i, j, ph

i ))),

Rr =
⋃

i∈[n]

P (ar, ui
r) ∪ P (ar, vi

r) ∪ P (br, ui
r) ∪ P (br, vi

r) ∪ P (cr, ui
r) ∪ P (cr, vi

r), and

Πh(i, j, r) = P h(i, j, ar) ∪ P h(i, j, br) ∪ P h(i, j, cr) ∪ P h(i, j, p3−h
i ).

For every i ∈ [n], let

Ui =
⋃

h∈{1,2}

Uh
i Hi =

⋃
r∈{1,2,3}

Hi,r Si =
⋃

h∈{1,2}

Sh
i

Li =
⋃

h∈{1,2}

Lh
i Πi =

⋃
j∈[m],r∈{1,2,3},h∈{1,2}

Πh(i, j, r).

Let F be the union of all forced vertex gadgets, i.e.

F =
⋃

i∈[n],j∈[m],r∈{1,2,3},h∈{1,2}

(F (sj
i , ar) ∪ F (sj

i , cr) ∪ F (πh
i , ar) ∪ F (πh

i , cr)

∪ F h(ui
r, vi

r) ∪ F h(i, j, ar) ∪ F h(i, j, br) ∪ F h(i, j, cr)
∪ F h(i, j, p3−h

i ) ∪ F mid(i, j, h) ∪ F ecc(i, j, h, r)).

Next we introduce a lemma about forced set gadgets and this lemma is important for the
correctness of the reduction.

▶ Lemma 5. The following three statements are true for the instance (G′, k).
(a) The vertex sj

i for i ∈ [n], j ∈ [m] resolves both pairs {p1
i , q1

i } and {p2
i , q2

i }. Moreover, sj
i

does not resolve any vertex pair {ph
i′ , qh

i′} such that i′ ∈ [n], h ∈ {1, 2} and i′ ̸= i.
(b) The vertices of any forced vertex gadget do not resolve any vertex pair of {{ph

i , qh
i } | i ∈

[n], h ∈ {1, 2}}.
(c) Any vertex v ∈ V (G′) \ (Xi ∪ F) resolves at most one vertex pair of {{ph

i , qh
i } | i ∈

[n], h ∈ {1, 2}}.

Proof. By the construction of G′, dist(sj
i , qh

i ) = |P (sj
i , ph

i )| + 2 = 20(n + 1) + 2 > dist(sj
i , ph

i )
for i ∈ [n], j ∈ [m] and h ∈ {1, 2}. Thus any vertex of Xi resolves both pairs {p1

i , q1
i } and

{p2
i , q2

i } for i ∈ [n]. For a vertex pair {ph′

i′ , qh′

i′ } such that i′ ̸= i, there is a shortest path from
sj

i to ph′

i′ or qh′

i′ going through cr′ and πh′

i′ with some integer r′ ∈ {1, 2, 3}. Thus a vertex
s ∈ Xi resolves exactly two vertex pairs of {{ph

i , qh
i } : i ∈ [n], h ∈ {1, 2}}.

First we claim that vertices of F do not resolve any vertex pair {ph′

i′ , qh′

i′ } for i′ ∈ [n], h′ ∈
{1, 2}. For any vertex v ∈ F h(ui

r, vi
r) for i ∈ [n], r ∈ {1, 2, 3}, h ∈ {1, 2}, there is a shortest

path from v to ph′

i′ or qh′

i′ going through ar and πh′

i′ . Thus v does not resolve any vertex
pair {ph′

i′ , qh′

i′ } for i′ ∈ [n], h′ ∈ {1, 2}. For any vertex v ∈ F mid(i, j, h) ∪ F ecc(i, j, h, r) for
i ∈ [n], j ∈ [m], h ∈ {1, 2}, r ∈ {1, 2, 3}, we can see that dist(v, ph′

i′ ) = dist(v, qh′

i′ ) with
i′ = i. There is a shortest path from v to ph′

i′ or qh′

i′ going through πh
i , ar and πh′

i′ with
i′ ̸= i. Thus v does not resolve any vertex pair {ph′

i′ , qh′

i′ } for i′ ∈ [n], h′ ∈ {1, 2}. For any
vertex v ∈ F \

⋃
i∈[n],j∈[m],r∈{1,2,3},h∈{1,2}(F h(ui

r, vi
r) ∪ F ecc(i, j, h, r) ∪ F mid(i, j, h)), there
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is a shortest path from v to ph′

i′ or qh′

i′ going through πh′

i′ with i′ = i. There is a shortest path
from v to ph′

i′ or qh′

i′ going through cr (or ar) and πh′

i′ with i′ ≠ i. Thus v does not resolve
any pair {ph′

i′ , qh′

i′ }. As a result, vertices of F do not resolve any vertex pair {ph′

i′ , qh′

i′ } for
i′ ∈ [n], h′ ∈ {1, 2}.

Then we show that any vertex v ∈ V (G′) \ (Xi ∪ F) resolves at most one pair of {p1
i , q1

i }
and {p2

i , q2
i }.

For a vertex v ∈ Uh
i \ Xi for i ∈ [n], h ∈ {1, 2}, dist(v, ph

i ) = dist(v, qh
i ) − 2 < dist(v, qh

i ).
dist(v, q3−h

i ) = dist(v, Nsj
i
(sj

i , ph
i )) + |P 3−h(i, j, ph

i )| + 1 = dist(v, p3−h
i ). For a vertex pair

{ph′

i′ , qh′

i′ } such that i′ ̸= i, there is a shortest path from v to ph′

i′ or qh′

i′ going through πh′

i′ .
Thus v ∈ Uh

i \ Xi for i ∈ [n], h ∈ {1, 2} resolves exactly one vertex pair of {{ph
i , qh

i } : i ∈
[n], h ∈ {1, 2}}.

Let P (mid(P 3−h(i, j, ph
i )), Nsj

i
(sj

i , ph
i )) be the subpath of P 3−h(i, j, ph

i ) from
mid(P 3−h(i, j, ph

i )) to Nsj
i
(sj

i , ph
i ). Let Λh

i = (
⋃

j∈[m] P (mid(P 3−h(i, j, ph
i )), Nsj

i
(sj

i , ph
i ))) \

{mid(P 3−h(i, j, ph
i )) | j ∈ [m]}. For a vertex v ∈ Λh

i for i ∈ [n], h ∈ {1, 2}, dist(v, ph
i ) =

dist(v, qh
i )−2 < dist(v, qh

i ). dist(v, q3−h
i ) = dist(v, π3−h

i )+1 = dist(v, p3−h
i ). For a vertex pair

{ph′

i′ , qh′

i′ } such that i′ ̸= i, there is a shortest path from v to ph′

i′ or qh′

i′ going through πh′

i′ . Thus
v ∈ Λh

i for i ∈ [n], h ∈ {1, 2} resolves exactly one vertex pair of {{ph
i , qh

i } : i ∈ [n], h ∈ {1, 2}}.
For a vertex v ∈ Lh

i \ {mid(P h(i, j, p3−h
i )) | j ∈ [m]} for i ∈ [n], h ∈ {1, 2}, dist(v, qh

i ) =
dist(v, ph

i ) − 2 < dist(v, ph
i ). There is a shortest path from v to p3−h

i or q3−h
i going through

π3−h
i . For a vertex pair {ph′

i′ , qh′

i′ } such that i′ ≠ i, there is a shortest path from v to ph′

i′ or
qh′

i′ going through πh′

i′ . Thus v ∈ Lh
i \ {mid(P h(i, j, p3−h

i )) | j ∈ [m]} for i ∈ [n], h ∈ {1, 2}
resolves exactly one vertex pair of {{ph

i , qh
i } : i ∈ [n], h ∈ {1, 2}}.

For a vertex v ∈ Πi ∪ Si ∪ Hi \ (Xi ∪ Λ1
i ∪ Λ2

i ) for i ∈ [n], there is a shortest path from
v to ph′

i′ or qh′

i′ going through πh′

i′ with i = i′, h′ ∈ {1, 2}. For a vertex pair {ph′

i′ , qh′

i′ } such
that i′ ≠ i, there is a shortest path from v to ph′

i′ or qh′

i′ going through πh′

i′ . Thus v does not
resolve any vertex pair of {{ph

i , qh
i } : i ∈ [n], h ∈ {1, 2}}.

For a vertex v ∈ Rr for r ∈ {1, 2, 3}, there is a shortest path from v to ph
i or qh

i for
i ∈ [n], h ∈ {1, 2} going through ar and πh

i . Thus v does not resolve any vertex pair of
{{ph

i , qh
i } : i ∈ [n], h ∈ {1, 2}}. This completes the proof for the lemma. ◀

By the properties of false twins, we need to choose exactly one vertex of the false twins
(arbitrarily) of every forced vertex gadget in the resolving set of G′, which we call a forced
vertex. For convenience, we use f(·) to represent the chosen forced vertex of the corresponding
gadget F (·). Then we have the following lemma.

▶ Lemma 6. The forced vertices do not resolve any vertex pair {ui
r, vi

r} ∈ P for r ∈ {1, 2, 3}
and i ∈ [n].

Proof. We fix arbitrary integers i ∈ [n], j ∈ [m], r ∈ {1, 2, 3}, h ∈ {1, 2}. For the forced
vertex fh(i, j, ar), dist(fh(i, j, ar), ui′

r′) = 2 + |P (πh
i , ar′)| + |P (ar′ , ui′

r′)| = 2 + |P (πh
i , ar′)| +

|P (ar′ , vi′

r′)| = dist(fh(i, j, ar), vi′

r′) for i′ ∈ [n], r′ ∈ {1, 2, 3}. Thus fh(i, j, ar) does not resolve
any vertex pair of P . Similarly, the forced vertices fh(i, j, br), fh(i, j, cr) and fh(i, j, p3−h

i ) do
not resolve any vertex pair of P. For the forced vertex fmid(i, j, h), dist(fmid(i, j, h), ui′

r′) =
dist(fmid(i, j, h), vi′

r′) = |P h(i, j, p3−h
i )|/2+ |P (πh

i , ar′)|+ |P (ar′ , ui′

r′)|. Thus fmid(i, j, h) does
not resolve any vertex pair of P . For the forced vertex fecc(i, j, h, r), dist(fecc(i, j, h, r), ui′

r′) =
dist(fecc(i, j, h, r), vi′

r′) = 10(n + 1) + 1 + |P (πh
i , ar′)| + |P (ar′ , ui′

r′)|. Thus fecc(i, j, h, r) does
not resolve any vertex pair of P.

We fix arbitrary integers i ∈ [n], j ∈ [m], r ∈ {1, 2, 3}. For the forced vertex f(sj
i , ar),

dist(f(sj
i , ar), ui′

r ) = 2 + |P (ar, ui′

r )| = 2 + |P (ar, vi′

r )| = dist(f(sj
i , ar), vi′

r ) for i′ ∈ [n].
For the forced vertex f(sj

i , cr), dist(f(sj
i , cr), ui′

r ) = 2 + |P (cr, ui′

r )| = 2 + |P (cr, vi′

r )| =
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dist(f(sj
i , cr), vi′

r ) for i′ ∈ [n]. Thus f(sj
i , ar) and f(sj

i , cr) do not resolve any vertex
pair of Pr. Similarly, f(πh

i , ar) and f(πh
i , cr) for i ∈ [n], h ∈ {1, 2}, r ∈ {1, 2, 3} do not

resolve any vertex pair of Pr. For vertex pairs of Pr′ with r′ ∈ {1, 2, 3} and r′ ̸= r,
dist(f(sj

i , ar), ui′

r′) = 2+|P (ar, π1
i )|+|P (ar′ , π1

i )|+|P (ar′ , ui′

r )| = 2+|P (ar, π1
i )|+|P (ar′ , π1

i )|+
|P (ar′ , vi′

r )| = dist(f(sj
i , ar), vi′

r′) for i′ ∈ [n]. dist(f(sj
i , cr), ui′

r′) = 2 + |P (cr, π1
i )| +

|P (ar′ , π1
i )| + |P (ar′ , ui′

r )| = 2 + |P (cr, π1
i )| + |P (ar′ , π1

i )| + |P (ar′ , vi′

r )| = dist(f(sj
i , ar), vi′

r′)
for i′ ∈ [n]. Thus f(sj

i , ar) and f(sj
i , cr) do not resolve any vertex pair of Pr′ .

We fix arbitrary integers i ∈ [n], r ∈ {1, 2, 3}. For the forced vertex f1(ui
r, vi

r) or
f2(ui

r, vi
r), obviously it does not resolve the vertex pair {ui

r, vi
r}. For a vertex pair {ui′

r , vi′

r }
with i′ ∈ [n] and i′ ̸= i, dist(f1(ui

r, vi
r), ui′

r ) = 2 + |P (ar, ui
r)| − 1 + |P (ar, ui′

r )| = 2 +
|P (ar, ui

r)| − 1 + |P (ar, vi′

r )| = dist(f1(ui
r, vi

r), vi′

r ). For a vertex pair {ui′

r′ , vi′

r′} with i′ ∈ [n]
and r′ ∈ {1, 2, 3} and r′ ̸= r, dist(f1(ui

r, vi
r), ui′

r′) = 2 + |P (ar, ui
r)| − 1 + |P (π1

i , ar)| +
|P (π1

i , ar′)| + |P (ar′ , ui′

r′)| = dist(f1(ui
r, vi

r), vi′

r′). As a result, f1(ui
r, vi

r) does not resolve any
vertex pair of P. For a vertex pair {ui′

r , vi′

r } with i′ ∈ [n] and i′ ̸= i, dist(f2(ui
r, vi

r), ui′

r ) =
2 + |P (ar, ui

r)| − 2 + |P (ar, ui′

r )| = 2 + |P (ar, ui
r)| − 2 + |P (ar, vi′

r )| = dist(f2(ui
r, vi

r), vi′

r ).
For a vertex pair {ui′

r′ , vi′

r′} with i′ ∈ [n], r′ ∈ {1, 2, 3} and r′ ̸= r, dist(f2(ui
r, vi

r), ui′

r′) =
2+ |P (ar, ui

r)|−2+ |P (π1
i , ar)|+ |P (π1

i , ar′)|+ |P (ar′ , ui′

r′)| = dist(f2(ui
r, vi

r), vi′

r′). As a result,
f2(ui

r, vi
r) does not resolve any vertex pair of P . This completes the proof for the lemma. ◀

▶ Lemma 7 (Soundness). If G′ has a resolving set of size at most 34nm + 19n, then
(G, n, χ, P) is a yes-instance.

Proof. Suppose that S is a resolving set for G′ of size at most 34nm + 19n. Let Ŝ = S ∩ X.
(Recall that X =

n⋃
i=1

{s1
i , ..., sm

i }.) We claim that Ŝ is solution for (G, n, χ, P). Note that for

the false twins {u, u′} of a forced vertex gadget, no vertex resolves the vertex pair {u, u′}
except u (or u′). It follows that S contains 34nm + 18n forced vertices since there are
34nm+18n forced vertex gadgets in G′. Since X has no intersection with the vertex set of all
forced vertex gadgets, |Ŝ| ≤ n. By Lemma 5, we get that |Ŝ ∩ Xi| = 1 for each i ∈ [n]. Thus
|Ŝ| = n. By Lemma 6 and the assumption that S is a resolving set for G′, Ŝ resolves every
pair {ui

r, vi
r} in G′ for r ∈ {1, 2, 3} and i ∈ [n]. We can check that the distance between sj

i and
ui′

r in G′ (and the distance between sj
i and vi′

r in G′) for i ∈ [n], j ∈ [m], i′ ∈ [n], r ∈ {1, 2, 3}
is the same as that in G. Thus Ŝ is a solution for (G, n, χ, P). ◀

4.4 Treewidth bound of the graph
Since the completeness proof takes a large amount of space, before proceeding to that, we
first show that G′ is of constant treewidth. In fact, we will prove a slightly stronger statement
that G′ is of constant pathwidth by giving a search strategy with a constant number of
searchers.

▶ Lemma 8. The pathwidth of G′ is at most 24.

Proof. Following the characterization of pathwidth by Kirousis and Papadimitriou [11], we
give a search strategy with 25 searchers. First, we put 9 searchers on

⋃
r∈{1,2,3}{ar, br, cr}.

The 9 searchers remain there until the end of the whole searching process. The searching
process consists of two phases. We search the “left” part of G′ in the first phase and the
“right” part of G′ in the second phase.

The first phase of the searching process consists of n rounds. At the beginning of the i-th
round (i ∈ [n]), we put 6 searchers on

⋃
h∈{1,2}{ph

i , qh
i , πh

i }. Here when we say that we clean
a path, this means that there are already two searchers guarding at the endpoints (or the
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neighbor of the endpoints) of this path and we use 3 extra searchers x, y, z such that x, y

move alternately from one end of the path to the other end to clean the edges of the path.
When a searcher, say x arrives at the connecting point of a forced vertex gadget, we put y, z

on the false twins of this forced vertex gadget to clean the edges of this gadget and then
after removing y, z, put y ahead of x to continue the alternating process unless x reaches the
endpoint of this path. Then for each j ∈ [m], we

put 5 vertices on NG′(sj
i ).

put 2 vertices on mid(P h(i, j, p3−h
i )) for h ∈ {1, 2}.

use 3 extra searchers to clean the paths P (sj
i , ph

i ) for h ∈ {1, 2}, the paths P (sj
i , ar),

P (sj
i , br), P (sj

i , cr) for r ∈ {1, 2, 3}, the paths P h(i, j, ar), P h(i, j, br), P h(i, j, cr),
P h(i, j, p3−h

i ) for h ∈ {1, 2}, r ∈ {1, 2, 3}, the paths P (πh
i , ar), P (πh

i , cr) for h ∈ {1, 2}, r ∈
{1, 2, 3} and the path P (qh

i , mid(P 3−h(i, j, ph
i ))) for h ∈ {1, 2} successively (including all

forced vertex gadgets attached to the vertices on these paths).
remove the above 10 searchers that are still on the graph.

At the end of the i-th round, we remove the 6 searchers on
⋃

h∈{1,2}{ph
i , qh

i , πh
i }.

The second phase of the searching process consists of 3 rounds. During the r-th round
(r ∈ {1, 2, 3}), we operate as follows. For each i ∈ [n], we

put 4 searchers on ui
r, vi

r and the connecting point of F h(ui
r, vi

r) for h ∈ {1, 2}.
use 2 extra searchers to clean the paths P (ar, ui

r), P (br, ui
r), P (cr, ui

r), P (ar, vi
r), P (br, vi

r)
and P (cr, vi

r) (including the forced vertex gadgets F h(ui
r, vi

r) for h ∈ {1, 2} and the
incident edges of the connecting vertex of F h(ui

r, vi
r)).

remove the above 6 searchers that are still on the graph.
This completes the description of the the search strategy.

As a result, the node search number of G′ is at most 25. It follows that the pathwidth of
G′ is bounded by 24. ◀

4.5 Completeness of the reduction
For every forced vertex gadget of G′, we choose a vertex from the false twins arbitrarily as a
forced vertex and let the set of all chosen forced vertices be F . In this section, we show that
if (G, n, χ, P) has a solution S, then S ′ = S ∪ F is a resolving set of size at most 34nm + 19n

for G′. Formally, we will prove the following lemma.

▶ Lemma 9 (Completeness). If (G, n, χ, P) is a yes-instance, then G′ has a resolving set of
size at most 34nm + 19n.

The proof of Lemma 9 consists of a list of lemmas. Suppose that V (G′) = V1 ∪V2 ∪ ...∪Vt.
Our general method is to show that for each i ∈ [t], every internal vertex pair of Vi is resolved
by S ′ and every vertex pair of Vi′ × Vi for each i′ < i is resolved by S ′. Note that when we
mention the vertex pairs of Vi′ × Vi, we ignore the vertex pairs with two identical vertices by
default as it’s meaningless in our problem. Due to the page constraint, the proof of Lemma 9
is deferred to the full version of the paper.

5 Conclusion

In this paper, we show that metric dimension is NP-hard on graphs of treewidth at most
24. One of the key points in bounding the treewidth of G′ is to maintain a vertex separation
of constant size. In the first step of our construction, we need 9 vertices to be the vertex
separation and convey the choice of the vertices in each color class Xi (i ∈ [n]). It seems
hard to show NP-hardness of this problem on graphs of treewidth bounded by a constant
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c ≤ 9 using the techniques in this paper, so we mention this open problem again: is metric
dimension polynomial-time solvable on graphs of treewidth 2 or series-parallel graphs [1]?
Another direction is about the parameterized complexity of metric dimension. We ask
the following two questions. Is metric dimension FPT parameterized by the size of the
resolving set on constant treewidth graph? Is metric dimension FPT parameterized by
both the size of the resolving set and the treewidth of the input graph?
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