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Abstract
In this paper we develop efficient randomized algorithms to solve the black-box reconstruction
problem for polynomials over finite fields, computable by depth three arithmetic circuits with
alternating addition/multiplication gates, such that output gate is an addition gate with in-degree
two. Such circuits naturally compute polynomials of the form G × (T1 + T2), where G, T1, T2 are
product of affine forms computed at the first layer in the circuit, and polynomials T1, T2 have no
common factors. Rank of such a circuit is defined to be the dimension of vector space spanned
by all affine factors of T1 and T2. For any polynomial f computable by such a circuit, rank(f) is
defined to be the minimum rank of any such circuit computing it. Our work develops randomized
reconstruction algorithms which take as input black-box access to a polynomial f (over finite field
F), computable by such a circuit. Here are the results.

[Low rank] : When 5 ≤ rank(f) = O(log3 d), it runs in time (ndlog3 d log |F|)O(1), and, with high
probability, outputs a depth three circuit computing f , with top addition gate having in-degree
≤ drank(f).
[High rank] : When rank(f) = Ω(log3 d), it runs in time (nd log |F|)O(1), and, with high
probability, outputs a depth three circuit computing f , with top addition gate having in-degree
two.

Prior to our work, black-box reconstruction for this circuit class was addressed in [33, 17, 36].
Reconstruction algorithm in [33] runs in time quasi-polynomial in n, d, |F| and that in [17] is quasi-
polynomial in d, |F|. Algorithm in [36] works only for polynomials over characteristic zero fields.
Thus, ours is the first blackbox reconstruction algorithm for this class of circuits that runs in time
polynomial in log |F|. This problem has been mentioned as an open problem in [11] (STOC 2012).
In the high rank case, our algorithm runs in (nd log |F|)O(1) time, thereby significantly improving
the existing algorithms in [33, 17].
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1 Introduction

Arithmetic circuits (Definition 1.1 in [34]) are Directed Acyclic Graphs (DAG), describing
succinct ways of computing multivariate polynomials. Analogous to the exact learning
problem for boolean circuits [2], black-box reconstruction problem (Section 5, [34]) has been
asked for arithmetic circuits:

Given oracle (also known as black-box) access to a multivariate polynomial computable
by an arithmetic circuit of size s, construct an explicit circuit (ideally poly(s) sized) that
computes the same polynomial.
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In its most general setting, this problem is believed to be hard, as illustrated in Section 1.4
of [9] via an analogy with the boolean world. This is because the exact learning [2] of boolean
circuits from membership queries is closely related to the Minimum Circuit Size Problem
(MCSP), which, under certain cryptographic assumptions1 was shown in [14] to not be in P.
In fact, under the same assumptions [1] showed that even approximating the minimum circuit
size was not in P. Drawing an analogy from this, approximating the minimum circuit size
for general arithmetic circuits might not be in P as well, implying the hardness of black-box
reconstruction. We refer the reader to [9] for more details on the analogy. As a result of this,
most of the research on black-box reconstruction has focused on restricted but interesting
sub-classes of arithmetic circuits. One such natural restriction is that of depth three circuits
which we study in this paper. These are layered circuits with three layers of alternating
plus(Σ) gates and product(Π) gates. Reconstruction of ΠΣΠ circuits amounts to black-box
polynomial factorization into sparse factors and efficient randomized algorithms that solve
this are known [16]. However, no such algorithm is known for ΣΠΣ circuits2 (Definition 9).
First non-trivial algorithm for this class which takes exponential time in the fan-in of the
multiplication gates was given in [21]. Current state of the art reconstruction algorithms for
this class either work in the average case [20] or puts further restrictions such as restricting
the circuit class to be (set)-multilinear [33, 17, 4], or restricting the fan-in of the top addition
gate (also called top fan-in) [33, 17, 36]. Therefore, even for the class of depth three circuits,
reconstruction problem appears to be very challenging. In this paper we are interested in the
latter restriction i.e. depth three circuits where fan-in of the top addition gate is assumed to
be k = O(1). When k = 1, the polynomial computed by the circuit is a product of linear
forms and black-box reconstruction can be easily performed using black-box factorization
algorithm in [16]. However, the problem seems to become very challenging as soon as we
go to circuits with k > 1. For k = 2, [33] designed a randomized reconstruction algorithm
which was generalized3 in [17] to circuits with k = O(1). An important point to note is that
while the algorithm in [33] is proper4, i.e., output also has top fan-in 2, the one in [17] is
improper and output might have much larger top fan-in. Both these algorithms use fairly
sophisticated techniques and have time complexity quasi-polynomial in d, |F|5 (even for k = 2
in [17]). Note that ideally we would want the time complexity to depend polynomially on
log |F|, since O(log |F|) bits can represent any scalar in the circuit. Therefore, even for k = 2,
designing algorithms which run in time polynomial in n6, d and log |F| are not known. This
was asked as an open problem in [11] (STOC 2012). In a recent work, [36] also considered
the top fan-in 2 case, but over characteristic zero fields, and rank of input polynomial being
Ω(1). Their algorithm runs in time polynomial in n, d, but their techniques do not work over
finite fields. Based on the above, the following questions seem very natural to ask. (Q1)
Does there exist a reconstruction algorithm for depth 3 circuits with top fan-in 2 (over a
finite field F), whose run-time is polynomial in log |F|? (Q2) Can such an algorithm be
fully polynomial time (at-least in high rank case) i.e. runs in time (nd log |F|)O(1)? This will
substantially improve results in [33, 17] for k = 2. In this paper we resolve both of these
questions.

1 assuming the existence of cryptographically secure one-way functions
2 from here on wards by depth three circuits we mean ΣΠΣ circuits only
3 algorithm in [17] is deterministic
4 when rank (Definition 13) of the input polynomial is Ω(log2 d)
5 d is degree of Π gates and |F| is size of the underlying field
6 n is the number of variables in the circuit
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1.1 Our Results
Notation and Preliminaries

Let n, d denote positive integers and F be a finite field. We denote the sets {1, . . . , n} and
{m, m + 1, . . . , n} by [n] and [m, n] respectively. x⃗ denotes the tuple (or set) of variables
(x1, . . . , xn) and F[x⃗] denotes the ring of multivariate polynomials. For a set of linear forms
ℓ1, . . . , ℓk ∈ F[x⃗], we use V(ℓ1, . . . , ℓk) to denote the subspace {a ∈ Fn : ℓ1(a) = . . . = ℓk(a) =
0}. For a subset of variables xi1 , . . . , xik

, by f|xi1 =αi1 ,...,xik
=αik

we denote the polynomial
obtained on setting xi1 = αi1 , . . . , xik

= αik
in f . As given in Lemma 3.5 of [7], every depth

three circuit C of rank r, computing an n−variate, degree d polynomial f can be converted
into a homogeneous depth three circuit Chom over ≤ n + 1 variables and rank ≤ r + 1, such
that its multiplication gates have in-degree d. Section 1.5 of [35] implies that black-box access
to Chom can be simulated efficiently using black-box access to f and integers n, d. Also there
is a simple and efficient algorithm to obtain C from Chom. Hence, from now onwards we
only consider homogeneous depth three circuits (ΣΠΣ(k, n, d,F), Definition 10). Also, for
any polynomial f , rank(f) (Definition 14) will be the minimum rank of any ΣΠΣ(2, n, d,F)
circuit computing it. Here are our results.

▶ Theorem 1 (Low rank reconstruction). There exists a randomized algorithm which takes as
input integers n, d and black-box access to a polynomial f computable by a ΣΠΣ(2, n, d,F)
circuit (5 ≤ rank(f) = O(log3 d)), runs in time (ndlog3 d log |F|)O(1) and with probability
1− o(1), outputs a ΣΠΣ(k, n, d,F) (k ≤ drank(f)) circuit computing f .

▶ Theorem 2 (High rank reconstruction). There exists a randomized algorithm which takes
as input integers n, d and black-box access to a polynomial f computable by a ΣΠΣ(2, n, d,F)
circuit (rank(f) = Ω(log3 d)), runs in time (nd log |F|)O(1) and, with probability 1 − o(1),
outputs a ΣΠΣ(2, n, d,F) circuit computing f .

We allow algorithms to query input polynomial at points in a (nd)O(1) sized extension K of
F. Here are some remarks on the above results.

Theorems 1 and 2 completely resolve (Q1). Therefore we solve an open problem from
[11]. Theorem 2 resolves (Q2) in the high rank case (Ω(log3 d)) and thus both theorems
substantially improve the overall reconstruction time complexity for this circuit class (as
compared to [33] and [17]).
A crucial component of our proofs is a new structural result (Proposition 5), which might
be of independent interest. We show that for f computable by a ΣΠΣ(2, n, d,F) circuit
(rank(f) ≥ 5), the set of co-dimension 2 subspaces of Fn on which the “non-linear” part
(Definition 3) of f vanishes, has size dO(1), and can be computed efficiently.
In order to prove Theorem 2, we develop an interesting result related to Sylvester Gallai
(SG) type configurations (Definition 17) and present it in Proposition 8. We believe it
might be of independent interest. Similar results called Quantitative SG theorems are
known (Theorem 5.1.2 and Section 5.3 in [6]). These quantitative versions prove bounds
on number of ordinary lines through a point, whereas our theorem considers dimension of
the space spanned by the union of ordinary lines through a point.
When rank(f) = 1, f factors into a product of linear forms and can be reconstructed
efficiently using Lemma 23. So only rank(f) = 2, 3, 4 are not covered by our algorithms.
We note that when char(F) > d or 0, Lemma 19 ([5, 18]) gives an algorithm for Theorem
1 i.e. low rank reconstruction. But, this only works for fields with large characteristic,
whereas Algorithm 1 in our paper is independent of the characteristic of the field.

ITCS 2022
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We would like to highlight that derandomizing our algorithms seems rather difficult.
Theorem 5 in [37] implies that any proper and efficient reconstruction algorithms for
(set)-multilinear ΣΠΣ(2, n, d,F) circuits with running time polynomial in log |F| can be
deterministically converted (in time polynomial in log |F|). into a square root oracle over
F. This is a well studied problem [25, 10, 32, 8, 27, 18, 38] and till date no deterministic
algorithm with running time having polynomial dependence in log |F| is known.
We conjecture that, for k = O(1), our algorithms can be generalized to proper (at least
in the high rank case) reconstruction algorithms (with time complexity polynomial in
log |F|) for ΣΠΣ(k, n, d,F) circuits. Some crucial parts to be generalized/refined are
(a) Proposition 5 to higher co-dimension sub-spaces, and (b) The “gluing” algorithm
(Algorithm 5 in [33]) used in Algorithm 5, which merges factors of restrictions of the input
polynomial and reconstructs one of the product gates. Recall that the known algorithms
for this class are either exponential time in in-degree of product gates [21] or are improper
and run in quasi-polynomial time in d, |F| [17].
Note that as proved in Corollary 7 of [33], ΣΠΣ(2, n, d,F) circuit for a polynomial f

is unique when rank(f) = Ω(log2 d). In fact, for smaller ranks, it is easy to construct
example polynomials computable by multiple ΣΠΣ(2, n, d,F) circuits. Therefore, for
low rank polynomials, in the absence of uniqueness, proper reconstruction might be far
fetched. Moreover, many of our techniques such as construction of a candidate set of
linear forms (Algorithm 3) that help in proper reconstruction only work in the high rank
case. As a result we split our results into the low rank and high rank cases.
A (nd)O(1) time algorithm for reconstructing ΣΠΣ(2, n, d,R) was designed in [36, 35]
when rank(f) = Ω(1). They construct a set of linear forms modulo which the polynomial
factorizes completely into linear forms. This is done using Brills equations [12] which
construct a system of polynomial equations whose solutions characterize polynomials that
decompose into product of linear forms. As derived in Appendix B of [35], computation
of Brills equations involve division by multiples of d and therefore they are not likely to
directly work over finite fields of general characteristic. To the best of our knowledge,
analogous equations for polynomials over finite fields are not well studied. On the other
hand, we construct a set of candidate linear forms in a much simpler way by looking
at co-dimension 2 subspaces where f vanishes. Another difference between the two
techniques is during the “gluing” process of Algorithm 5. In [36, 35] the gluing is done
using δ − SGk theorems [3] which prove existence of many “ordinary” k-flats. On the
other hand we construct a large independent set of linear forms dividing one of the
product gates and use it along with the “gluing” technique from [33] which depends on
lower bounds for locally decodable codes.

Next, we state our proposition regarding the number of co-dimension 2 spaces on which the
non-linear part of f vanishes. In order to do so we first give a few definitions that are used.

▶ Definition 3 (Linear and Non-linear parts). Let f ∈ F[x⃗]. We define Lin(f), called the
linear part of f to be the product (with multiplicity) of all linear polynomials dividing f and
NonLin(f) called the non-linear part of f as NonLin(f) = f

Lin(f)
7.

▶ Definition 4. Let f ∈ F[x⃗]. For any co-dimension 2 space W = V(ℓ1, ℓ2) ⊂ Fn, we say
that f vanishes on W , if, for isomorphism Φ : F[x⃗] → F[x⃗] mapping ℓ1 7→ x1, ℓ2 7→ x2,
the polynomial Φ(f)|x1=0,x2=0 is identically zero. This is well defined, i.e. if we take some

7 Lin(f), NonLin(f) are unique up to scalar factors which are constrained such that f = Lin(f) ×
NonLin(f).
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other linear forms ℓ′
1, ℓ′

2 such that W = V(ℓ′
1, ℓ′

2) and some other isomorphism Φ′ mapping
ℓ′

1 7→ x1, ℓ′
2 7→ x2, then Φ(f)|x1=0,x2=0 = 0⇔ Φ′(f)|x1=0,x2=0 = 0. For any polynomial f , we

define S(f) to be the set of all co-dimension 2 sub-spaces W ⊂ Fn such that f vanishes on
W .

▶ Proposition 5. Let f ∈ F[x⃗] be a polynomial computable by a ΣΠΣ(2, n, d,F) circuit with
rank(f) ≥ 5. The following are true.
1. |S(NonLin(f))| ≤ 3d7.
2. ∃ a randomized algorithm that takes as input black-box access to f along with integers

n, d, runs in time (nd log |F|)O(1) and, outputs a set S (of size ≤ 3d7) containing tuples
of independent linear forms in F[x⃗] such that with probability 1− o(1),

{V(ℓ1, ℓ2) : (ℓ1, ℓ2) ∈ S} = S(NonLin(f)).

Next we state Proposition 8 about ordinary lines and the space spanned by them, that was
mentioned in remarks following the theorems. This requires definitions of proper sets and
ordinary lines which we provide below.

▶ Definition 6 (Proper set, Section 5.3, [6]). We call a set of points v1, . . . , vm ∈ Fn proper
if no two points are a constant multiple of each other and the zero point is not in the set (i.e.
it is a subset of the projective space).

▶ Definition 7 (Ordinary line, Section 5.1, [6]). Let S ⊂ Fn be a proper set. For any t ∈ Fn

and s ∈ S, such that t /∈ sp{s}, the vector space sp{t, s} is called an ordinary line from t

into S, iff sp{t, s} ∩ S ⊆ {t, s}. Define O(t,S) to be the set of ordinary lines from t into S.

▶ Proposition 8. Let S ⊂ Fn be a proper set (Definition 6) and T ⊂ Fn be any LI set of
size ≥ log |S| + 2. Then ∃ t ∈ T , such that union of all elements of O(t,S) spans a high
dimensional space. More precisely,

dim(
∑

W ∈O(t,S)

W ) ≥ dim(sp(S))
log |S|+ 2 .

Next, in Sections 1.2 and 1.3, we provide some definitions and notations and known
results respectively, which we use throughout the paper. Following this, in Section 1.4, we
describe the key technical ideas used in our main algorithms.

1.2 Notations and definitions
Throughout the paper [n] will denote the set {1, . . . , n}, [m, n] will denote the set
{m, m + 1, . . . , n − 1, n} and F will denote a finite field. We use calligraphic letters like
B,P,Q,R,S, T ,X to denote sets. x⃗, y⃗, u⃗ are used to represent column vectors or tuples
of variables. Unless otherwise specified, x⃗ will denote the tuple (x1, . . . , xn). Bold capital
letters A, B are used to represent matrices. F[x⃗] denotes the ring of polynomials in variables
x⃗ = (x1, . . . , xn) with coefficients in field F. Capital letters like G, H, T1, T2, S1, S2, U, Ui are
used to denote polynomials that are a product of linear forms. Small letters f, g, h, u, ℓ are
also used to denote polynomials and linear forms. Let g, f be any two polynomials, then, g

divides f is denoted by g | f and g does not divide f is denoted by g ∤ f . We use short-hand
LD for linearly dependent, LI for linearly independent, LHS for left hand side, RHS for
right hand side and iff for if and only if.

ITCS 2022
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▶ Definition 9 (Depth 3 circuit, ΣΠΣ). A depth 3 circuit is a layered arithmetic circuit with
three layers of nodes labelled by arithmetic operations, defined on a finite number of variables.
First and third (Σ) layers have addition nodes and second (Π) layer has multiplication nodes.
Top layer has a single addition node.

▶ Definition 10 (Homogeneous Depth 3 circuit, ΣΠΣ(k, n, d,F)). A ΣΠΣ(k, n, d,F) circuit
is a depth three circuit such that the first (Σ) layer computes linear forms on n variables,
there are k multiplication nodes at the second (Π) layer all having in-degree d, and the
addition node at third(Σ) layer can only have incoming edges from the k multiplication
nodes at second layer. Any circuit belonging to this class naturally computes an n−variate
polynomial f = M1 + . . . + Mk, where Mi, i ∈ [k] are product of linear forms computed at the
multiplication gates and deg(M1) = . . . = deg(Mk) = d.

▶ Definition 11 (Simple ΣΠΣ(k, n, d,F) circuit). Let C be a ΣΠΣ(k, n, d,F) circuit computing
polynomial f = M1 + . . . + Mk as described in Definition 10. We say that C is simple if
gcd(M1, . . . , Mk) = 1.

▶ Definition 12 (Minimal ΣΠΣ(k, n, d,F) circuit). Let C be a ΣΠΣ(k, n, d,F) circuit com-
puting the polynomial f = M1 + . . . + Mk as described in Definition 10. We say that C is
minimal if no proper sub collection of polynomials M1, . . . , Mk sums to zero.

▶ Definition 13 (Rank of ΣΠΣ(2, n, d,F) circuit, Section 1.3 in [33]). Let C be a ΣΠΣ(2, n, d,F)
circuit computing the polynomial f = M1 + M2 as described in Definition 10. If G =
gcd(M1, M2), then f can be written as f = G× T1 + G× T2 where G, T1, T2 are product of
linear forms with gcd(T1, T2) = 1. Rank of C is then defined as

rank(C) = dim(sp{linear form ℓ ∈ F[x⃗] : ℓ | T1 × T2})

▶ Definition 14 (Rank of polynomial). For any polynomial f ∈ F[x⃗] computable by a
ΣΠΣ(2, n, d,F) circuit, its rank, called rank(f) is defined as the minimum of rank(C) over
all ΣΠΣ(2, n, d,F) circuits computing f .

▶ Definition 15. Let f ∈ F[x⃗]. For any co-dimension 1 space W ⊂ Fn, we say that f

factorizes into non-zero linear forms on W , if, for linear form ℓ1 such that W = V(ℓ1),
and isomorphism Φ : F[x⃗]→ F[x⃗] mapping ℓ1 7→ x1, the polynomial Φ(f)|x1=0 is a non-zero
product of linear forms in F[x2, . . . , xn]. It is easy to see that this is well defined, i.e. if
we take some other linear form ℓ′

1 such that W = V(ℓ′
1) and some other isomorphism Φ′

mapping ℓ′
1 7→ x1 then Φ(f)|x1=0 is a non-zero product of linear forms ⇔ Φ′(f)|x1=0 is a

non-zero product of linear forms.

▶ Definition 16 (Candidate linear forms). Let f ∈ F[x⃗]. Let ℓ be a linear form and W = V(ℓ).
Suppose f factorizes into non-zero linear forms on W , and there exist linear forms ℓ1, ℓ2
with ℓ, ℓ1, ℓ2 being LI, such that f vanishes on co-dimension 2 subspaces V(ℓ, ℓ1),V(ℓ, ℓ2).
Then, ℓ, considered as a point in the projective space, is called a candidate linear form. The
set of candidate linear forms is denoted by L(f). It is easy to see that |L(f)| ≤ |S(f)|2.

▶ Definition 17 (Sylvester Gallai (SG) configuration, Definition 5.3.1, [6]). A proper set
S = {s1, . . . , sm} ⊂ Fn is called an SG configuration if for every i ̸= j ∈ [n], ∃k ∈ [n] \ {i, j}
with si, sj , sk LD.

▶ Definition 18 (Number of essential variables, restated from [4]). Let f(x⃗) ∈ F[x⃗]. We say
that f(x⃗) has m (≤ n) essential variables if there exist an invertible matrix A ∈ F(n×n) such
that f(A · x⃗) depends only on m variables.
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1.3 Known results
▶ Lemma 19 ([5, 19]). Let n, d be positive integers and F be a field with char(F) > d or 0.
There is a randomized algorithm that takes as input black-box access to an n-variate degree d

polynomial f(x⃗) ∈ F[x⃗] having m essential variables and computable by a circuit of size s,
that runs in time (nds)O(1) and outputs an invertible matrix A ∈ F(n×n) such that f(A · x⃗)
depends only on the first m-variables.

▶ Lemma 20 (Solving polynomial equations, Implied from [13, 24]). There is a randomized
algorithm that takes as input n variate polynomials f1, . . . , fm each of degree ≤ d. If the
system of equations defined by setting all these polynomials simultaneously to zero, has finitely
many solutions in F̄ and all solutions are in Fn, then the algorithm computes all solutions
with probability 1− exp(−mnd log |F|). Running time of the algorithm is (mdn log |F|)O(1).

▶ Lemma 21 (Schwartz Zippel Lemma, [31, 39]). Let p(x1, . . . , xn) be a polynomial of total
degree d such that it is not identically zero. Let S ⊂ F be any finite set. For s1, . . . , sn picked
independently and uniformly from S, Pr[p(s1, . . . , sn) = 0] ≤ d

|S| .

▶ Lemma 22 (Randomized polynomial identity test, Section 1, Lemma 1.2 in [28]). ∃ a
randomized algorithm that takes as input integer n and black-box access to a degree d,
n−variate polynomial f with coefficients in Fq, runs in time (nd log q)O(1) and outputs either
‘yes′ or ‘no′ such that,

output is ‘yes′ if f ≡ 0
Pr[output is ‘no′] ≥ 1− o(1) if f ̸≡ 0

▶ Lemma 23 (ΣΠΣ(k, n, d,F) deterministic polynomial identity test, Theorem 1 in [29]). ∃
a deterministic algorithm that takes as input black-box access to a degree d, n−variate
polynomial f computable by a ΣΠΣ(k, n, d,F) circuit, runs in time (ndk log |F|)O(1) and,
outputs ‘yes′ if f ≡ 0 and ‘no′ if f ̸≡ 0.

▶ Lemma 24 (ΣΠΣ(k, n, d,F) Rank bound, Theorem 1.7 in [30]). Let C be a ΣΠΣ(k, n, d,F)
circuit, over an arbitrary field F, that is simple, minimal and zero. Then, rank(C) <

3k2 + k2

4 log d.

▶ Lemma 25 (Black-box multivariate polynomial interpolation, Theorem 11 in [22]). Let
n, m, d be parameters and F be a finite field. ∃ a deterministic algorithm that runs in time
(nmd log |F|)O(1), and outputs a set S of points in Fn, such that given black-box access to any
polynomial f ∈ F[x1, . . . , xn] with at most m monomials, the coefficients of all monomials
can be recovered in (nmd log |F|)O(1) time using evaluations from the set {f(s) : s ∈ S}.

▶ Lemma 26 (Effective Hilbert irreducibility / Quantitative Bertini theorem, Corollary 2 [15],
Remarks 11.5.33, 11.5.66 [26], Theorem 1.1 [23]). Let F be a perfect field and g(x⃗) ∈ F[x⃗]
be a degree d irreducible polynomial. Pick tuples, a = (a2, . . . , an), b = (b1, . . . , bn), c =
(c1, . . . , cn) such that every ai, bj , ck is chosen uniformly randomly and independently from a
set S ⊂ F. Consider the bi-variate restriction

ĝ(X, Y ) = g(X + b1Y + c1, a2X + b2Y + c2, . . . anX + bnY + cn)

Then P [(a, b, c) ∈ Sn−1 × Sn × Sn : ĝ(X, Y ) is not irreducible ] ≤ 2d4

|S| .

ITCS 2022
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▶ Lemma 27 (Black-box multivariate polynomial factorization, [16]). ∃ a randomized algorithm
that takes as input black-box access to a degree d, n−variate polynomial f with coefficients
in F, runs in time (nd log |F|)O(1) and outputs black-box access to polynomials f1, . . . , fm

(m ≤ d) along with integers e1, . . . , em such that,

Pr[f ≡ fe1
1 . . . fem

m

∧
f1, . . . , fm are irreducible] ≥ 1− o(1).

▶ Corollary 28 (Decomposition into linear and non-linear factors). ∃ a randomized algorithm
that takes as input black-box access to a degree d, n−variate polynomial f with coefficients in
F, runs in time (nd log |F|)O(1) and outputs a list {ℓ1, . . . , ℓs} (s ≤ d) of affine forms along
with black-box access to a polynomial NonLin(f) such that,

Pr[f ≡ l1 . . . lsNonLin(f)
∧

NonLin(f) has no linear factors] ≥ 1− o(1).

Proof. This follows from Lemma 27 in a straight forward. We simply interpolate the
irreducible factors fi as linear forms ℓi and test whether fi − ℓi ≡ 0 using Lemma 22. The
factors which pass the test are the linear factors and the remaining constitute NonLin(f). ◀

1.4 Key technical ideas
The algorithms mentioned in Theorems 1 and 2 are provided in Algorithms 1 and 2 respectively.
In this section we discuss the key technical ideas used. Missing details are supplied in the
subsequent sections. Proof of Propositions 5 and 8 are directly provided in Sections 4 and
5 respectively and not discussed here for brevity. As described in Definition 13, we write
f = G× (T1 + T2) where G, T1, T2 are product of linear forms and gcd(T1, T2) = 1. We know
that Lin(f)×NonLin(f) = f = G× (T1 + T2).

1.4.1 Theorem 1: Key ideas for Algorithm 1
The algorithm mentioned in Theorem 1 is presented in Algorithm 1 and its correctness/com-
plexity is discussed in Section 2. We describe the main ideas now. Since NonLin(f) has no
linear factors and Lin(f), G are product of linear forms, NonLin(f) divides T1 +T2 implying
that NonLin(f) = h(y1, . . . , yr), for some homogeneous polynomial h over F and independent
linear forms y1, . . . , yr spanning the set of linear factors of T1×T2 (here r = rank(f)). Clearly
NonLin(f) is non-constant, otherwise rank of f would not be >= 5. Using Corollary 28,
with high probability, we get black-box access to NonLin(f) and its degree t. If we also had
access to (a) the integer r = rank(f), and (b) a dO(1) sized set L of linear forms containing
required y1, . . . , yr, then we could just iterate over all r sized subsets {y1, . . . , yr} of L and
using deterministic multivariate black-box interpolation (Lemma 25) compute polynomial
h(y1, . . . , yr) as a sum of degree t monomials in y1, . . . , yr which is trivially computed by a
ΣΠΣ(tr, n, t,F) circuit. We can then multiply all linear factors of Lin(f), obtained using
Corollary 28, to all multiplication gates of this circuit resulting in a ΣΠΣ(tr, n, d,F) circuit
for f . So we only need to argue about the required access described above. We do not
know rank(f) but we know that rank(f) = O(log3 d). Therefore, we try all values of r in
[O(log3 d)]. To get access to the set L, we use results in Proposition 5. It guarantees that
the set of co-dimension 2 subspaces on which NonLin(f) vanishes, has size dO(1) and also
efficiently constructs a set S that comprises of tuples of linear forms representing such co-
dimension 2 spaces. Using S, we define L = {ℓ1 : ∃ℓ2 such that (ℓ1, ℓ2) ∈ S or (ℓ2, ℓ1) ∈ S}.
L is easily constructed from S. Also |S| = dO(1) implies |L| = dO(1). In Lemma 2, we show
that L contains an independent set {y1, . . . , yr} of linear forms that spans the set of linear
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factors of T1×T2. Basically, for any linear form ℓ1 dividing T1, we show there is a linear form
ℓ2 dividing T2 (and vice versa) such that NonLin(f) vanishes on V(ℓ1, ℓ2). This gives rise to
a tuple (ℓ′

1, ℓ′
2) ∈ S (i.e. ℓ′

1, ℓ′
2 ∈ L) such that sp{ℓ1, ℓ2} = sp{ℓ′

1, ℓ′
2}. Let L′ be the collection

of all such ℓ′
1, ℓ′

2. By construction L′ ⊂ L and sp{L′} = sp{linear form ℓ : ℓ | T1 × T2}. Now
we can take y1, . . . , yr to be any basis of L′. At the end we perform a randomized polynomial
identity test to check whether the reconstructed circuit computes the input polynomial or
not. This guarantees that with probability 1− o(1), no incorrect reconstruction is returned.
At the same time, for correct r and L, by the above technique, with probability 1− o(1), we
recover the correct circuit which will pass the test. Our algorithm takes (ndlog3 d log |F|)O(1)

time. Full details can be found in Section 2.

Comparison with algorithm in [33]

The broad idea for low rank8 reconstruction given in Algorithm 3 of [33] is similar to ours.
However, their algorithm runs in time quasi-polynomial in n, d and |F|. The main reason is
that they search for the required basis {y1, . . . , yr} of linear forms (Step 2 of Algorithm 3 in
[33]) by iterating over the entire set of linear forms in O(log2 d) many variables. This makes
their algorithm quasi-polynomial time with respect to |F|, since this set has size |F|O(log2 d).
As described above, our algorithm performs a more efficient search by searching within the
dO(1) sized set L, that is efficiently constructed. This leads to a polynomial time dependence
on log |F| which is ideal as O(log |F|) bits can represent each scalar in the circuit.

1.4.2 Theorem 2: Key ideas for Algorithm 2
The algorithm mentioned in Theorem 2 is presented in Algorithm 2. Its correctness and
time complexity are discussed in Section 3. Our algorithms crucially utilize the set of
“candidate linear forms” which are defined in Definition 16. This definition further requires
us to define what it means for a polynomial to factorize into non-zero linear forms on a
co-dimension 1 subspace which is defined in Definition 15. Next, we present a reconstruction
algorithm solving a corner case, where one of T1, T2 is power of a linear form (up to scalar
multiplication). Then we discuss the general case algorithm which is run if the corner case
fails to reconstruct. In this case, linear factors of both T1, T2 span at least a two dimensional
space.

Corner case - One of T1, T2 is power of a linear form

Formal statement is provided in Lemma 36 and corner case reconstruction algorithm is
given in Algorithm 4. We sketch the idea here. If one of T1, T2 is power of a linear form,
then we prove in Claim 37 that Lin(f) = G and NonLin(f) = T1 + T2. The basic idea
is that if T1 + T2 has a non trivial linear factor ℓ, then span of any any linear factor of
T1 and ℓ will contain some linear factor of T2. This can be used to show that dimension
of sp{linear form ℓ : ℓ | T1} and sp{linear form ℓ : ℓ | T2} can differ by at most 1. Since
rank(f) = Ω(log3 d), we arrive at a contradiction to our assumption in this case. Therefore,
using Corollary 28 we get black-box access to T1 + T2, its degree t, and the entire list of linear
factors (with multiplicity) of G. Lets assume that for some i ∈ [2], Ti is power of some linear
form. If we also had access to (a) a linear factor ℓ1 of Ti, and (b) a dO(1) sized set X of scalars
such that Ti = δℓt

1 for some δ ∈ X , then we could just go over all scalars δ ∈ X and try to

8 their low rank case assumes rank(f) = O(log2 d). we assume rank(f) = O(log3 d).
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factorize black-box of T1 +T2−δℓt
1, using Corollary 28. If factorization gives all linear factors,

we would have obtained a ΣΠΣ(2, n, t,F) circuit for T1 + T2. Combining this with linear
factors of G gives a ΣΠΣ(2, n, d,F) circuit for f . So we only need to argue about the required
access. In Claim 38, we show that a linear factor ℓ1 of Ti belongs to L(NonLin(f)) that we
defined in Definition 16. To see this, notice that since NonLin(f) = Ti +T3−i, it will factorize
into a non-zero product of linear forms on V(ℓ1) for any linear factor ℓ1 of Ti. Since rank of
Ti + T3−i is Ω(log3 d), we easily obtain linear factors ℓ2, ℓ3 of T3−i such that ℓ1, ℓ2, ℓ3 satisfy
conditions required by Definition 16 ⇒ ℓ1 ∈ L(NonLin(f)). Definition 16 and Proposition
5 imply that L(NonLin(f)) has size dO(1) and Algorithm 3 efficiently constructs it. So we
search for ℓ1 in this set. To construct set X containing δ where Ti = δℓt

1, we restrict Ti +T3−i

to V(ℓ1), and obtain two LI factors ℓ2, ℓ3 of the restriction of T3−i using Corollary 28. These
factors will exists since rank(f) = Ω(log3 d). For simplicity map ℓ1 7→ x1, ℓ2 7→ x2, ℓ3 7→ x3.
Our polynomial has the form NonLin(f) = δxt

1 + (x2−βx1)(x3− γx1)T ′
3−i, for some scalars

β, γ and product of linear forms T ′
3−i. To find δ, we observe that this polynomial depends on

x3 but becomes independent on plugging x2 = βx1. We first set x4, . . . , xn to random values
in F and use multivariate interpolation from Lemma 25, to represent this new polynomial as
a degree t polynomial in F[x1, x2, x3]. Then we solve for a fresh variable β such that setting
x2 = βx1, makes this polynomial independent of x3. This is done by collecting all coefficients
(∈ F[β]) of monomials containing x3 and solving the system of equations they define. This
system has dO(1) many solutions, since all polynomials are univariate with degree dO(1). All
solutions to this system are computed using algorithm given in Lemma 20. We plug these βs
back into coefficient of xt

1 and obtain a dO(1) sized set X containing δ. At the end, using
polynomial identity testing algorithm in Lemma 23, we deterministically check whether the
reconstruction is correct or not. Thus, for choices of ℓ1,X , where the circuit was not correct,
we don’t output anything and for the right values of ℓ1,X , by the algorithm described above,
we correctly reconstruct the circuit. Our algorithm takes (nd log |F|)O(1) time.

General case - Both T1, T2 have at least 2 independent linear factors

This is the more general case of our algorithm and is tried after the above mentioned corner
case fails to provide a reconstruction. Our algorithm tries to find an Ω(log d) sized set of
linear forms such that all linear forms in this set divide the same Ti. Once such a set is found
we use it to reconstruct all linear forms dividing G× T3−i and using this the entire circuit.
We break down our key ideas below.

We first explain, how one can complete the reconstruction given access to such a set.
Formal statement is given in Lemma 41 and algorithm is provided in Algorithm 5. The
basic idea is as follows. Without loss of generality, we assume the independent set of linear
forms is the set of variables x1, . . . , xt where t = Ω(log d) and that all of these divide T1.
Therefore, Lin(f)×NonLin(f) = f = G× (x1 . . . xtT

′
1 + T2), where T ′

1 is a product of
linear forms and gcd(T ′

1, T2) = 1. Without loss of generality we also assume that no xi

divides f since we can divide f by largest power of all the xi
9. The idea is to construct

all linear factors of G× T2 by first computing all linear factors of (G× T2)|xi=0 for i ∈ [t]
and then gluing these factorizations together. Linear factors of (G×T2)|xi=0 can be easily
computed by applying Corollary 28 to the black-box computing f|xi=0 . Clearly for each
i the multi-sets of linear factors will have the same (i.e. deg(f)) number of elements.
These multi-sets are glued using Algorithm 5 from [33]. The idea behind this algorithm

9 we add them back after reconstruction of this new polynomial is complete
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is to find a linear form ℓ1 dividing (G× T2)|x1=0 (with multiplicity say k), and an integer
2 ≤ i ≤ t such that there are exactly k linear factors ℓ1

i , . . . , ℓk
i (could be multiples of each

other) of (G× T2)|xi=0 such that ℓ1|xi=0 and ℓi|x1=0 are scalar multiples. Once such ℓ1, i

and ℓj
i , j ∈ [k] are found, ℓ1 is glued with each ℓj

i by comparing coefficients and k glued
linear forms dividing G× T2 are obtained. Then ℓ1 (with all its multiplicity) and all ℓj

i ,
j ∈ [k] are removed from their respective multi-sets. This process is repeated until the
multi-sets are empty. When the multi-sets are non-empty, such ℓ1 and i always exist. If
not, then in Theorem 33 of [33], they show that a lower bound on length of linear 2-query
locally decodable codes gets violated. Details are provided inside proof of Theorem 29 in
[33] and for cleaner presentation we do not repeat it here. At the end, all linear factors
(with multiplicity) of G × T2 are known. To know G × T2 completely, we still need to
know the appropriate constant to multiply to the product of these linear factors. For this,
we restrict all linear forms in our computed multi-set to x1 = 0 and compare with the
multi-set of linear factors of (G× T2)|x1=0 which we had already computed earlier. Now
we can factorize the black-box for f −G× T2 and recover all linear factors of G× T1 and
construct a ΣΠΣ(2, n, d,F) circuit for f . Finally using polynomial identity test in Lemma
23, we can check whether this circuit correctly computes f or not, and only output a
correct circuit.
Now, we come back to our process of finding the LI set utilized above. We use the set
of candidate linear forms L(NonLin(f)) efficiently constructed using Algorithm 3. In
Parts 1 and 2 of Lemma 44 (which uses Proposition 8), we show existence of a linear
form ℓ ∈ L(NonLin(f)) and a LI set B ⊂ L(NonLin(f)) of size Ω(log d) such that ℓ

and all linear forms in B divide T1 × T2. Moreover, ∀ ℓ′ ∈ B, sp{ℓ, ℓ′} does not contain
any other10 linear factor of T1 × T2, and any linear factor of T1 + T2. Using this, in Part
3 of Lemma 44, we show that for ℓ′ ∈ B, NonLin(f) vanishes on V(ℓ, ℓ′) iff ℓ, ℓ′ divide
different Ti. This is used to split B into two parts, with linear forms in each part dividing
the same Ti. One of these would be Ω(log d) in size giving us the required LI set. Full
details can be found in Part 3 of Lemma 44. We use the existence of ℓ,B in Algorithm
5 in the following way. For every ℓ in L(NonLin(f)) using the construction of B in
parts 1, 2 of Lemma 44, we construct a O(rank(f)) sized collection of sets containing
B. For each candidate B in this collection, we apply the test (from part 3 of Lemma
44) mentioned above to divide it into two parts U ,V. The larger set is provided to the
previous algorithm (details in Algorithm 5) to reconstruct the circuit. In the end, we use
deterministic polynomial identity test to reject incorrect constructions. The existence of
ℓ,B and the test above, make sure that for the correct choices, we will output the correct
circuit.

Comparison with algorithm in [33]

As described above, if we have access to an Ω(log d) sized set of linear forms such that all of
them divide the same Ti, our algorithm exactly matches the one given in Algorithm 5 of [33].
The main difference11 is in the way such a set is created. In Steps 1, 2 of Algorithm 4 in [33],
they iterate over all possible Ω(log d) sized sets of linear forms inside an Ω(log2 d + log2 n)
sized random subspace of Fn. Such a brute force search considers |F|Ω(log d(logd + log2 n)) many
sets leading to a quasi polynomial time complexity in n, d and |F|. Using L(NonLin(f)),

10 apart from ℓ, ℓ′

11 also we assume rank to be Ω(log3 d) whereas [33] assumes it to be Ω(log2 d) for high rank reconstruction
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in Lemma 44 we are able to create a small collection of sets of independent linear forms,
such that at least one set in this collection has size Ω(log d) and comprises of linear forms
all of which divide the same Ti. Construction of this collection has required new structural
techniques from Proposition 5 and Proposition 8. Searching through this small collection
and rejection of incorrect reconstructions by a deterministic polynomial identity test lead to
an overall running time of (nd log |F|)O(1) which is a huge improvement compared to [33].

2 Low Rank Reconstruction: Proof of Theorem 1

Algorithm 1 Low rank reconstruction.
Input - Black-box access to f , integers n, d.
Output - ΣΠΣ circuit C or #.

1. Using Corollary 28 with inputs as black-box access to f and integers n, d, compute
list of linear factors ℓ1, . . . , ℓs and black-box access to NonLin(f). Compute degree of
NonLin(f) as t = d− s. Using this black-box and integers n, t as input to Algorithm 6,
obtain set S containing tuples of linear forms representing co-dimension 2 subspaces of
Fn on which NonLin(f) vanishes (i.e. S(NonLin(f))).

2. Construct set L of linear forms ℓ, such that for some ℓ′ either (ℓ, ℓ′) or (ℓ′, ℓ) is in S.
For each r ∈ [O(log3 d)], iterate over all r sized LI subsets {y1, . . . , yr} ⊂ L. Construct
isomorphism Γ mapping yi 7→ xi, i ∈ [r]. Simulate black-box for Γ(NonLin(f)) and using
Lemma 25 interpolate it as a linear combination of degree t monomials in F[x1, . . . , xr],
obtaining a polynomial h(x1, . . . , xr).

3. By creating appropriate multiplication/addition gates, construct a ΣΠΣ(tr, n, d,F) circuit
C that computes polynomial f ′ = ℓ1 × . . . × ℓs × h(y1, . . . , yr). Using randomized
polynomial identity test from Lemma 22, check if f − f ′ = 0. If yes, Return C. If no,
try the next r sized subset in Step 2. If all r sized subsets have been tried, r = r + 1.

We present the low rank reconstruction algorithm required by Theorem 1 in Algorithm
1. We analyze its correctness and running-time here. Using correctness of Corollary 28
and Algorithm 6, at the end of step 1, with probability 1− o(1), we have obtained a black-
box computing NonLin(f), degree t of NonLin(f), and all linear factors ℓ1, . . . , ℓs (with
multiplicity) of f . Next, we show that, for some r ≤ rank(f) and linear forms y1, . . . , yr,
Step 2 computes a polynomial h(x1, . . . , xr) such that NonLin(f) = h(y1, . . . , yr). In order
to do so we prove the following lemma.

▶ Lemma 29. Let r = rank(f). ∃ LI subset {y1, . . . , yr} ⊂ L such that it spans the set of
linear factors of T1 × T2, implying existence of the polynomial h.

Proof. Since rank(f) ≥ 5, we know that NonLin(f) is a non-constant polynomial. Consider
any linear form ℓ | Ti for some i ∈ [2]. We will show that there is some ℓ′ | T3−i such that
NonLin(f) vanishes on the co-dimension 2 subspace V(ℓ, ℓ′). Assuming this is true, we know
there is a tuple (ℓ1, ℓ2) ∈ S such that V(ℓ, ℓ′) = V(ℓ1, ℓ2) ⇒ sp({ℓ, ℓ′}) = sp({ℓ1, ℓ2}). By
construction of set L, ℓ1, ℓ2 ∈ L. By going over different ℓ dividing T1 × T2 this process
would give a list of 2m (m = deg(T1) = deg(T2)) linear forms {ℓ1, . . . , ℓ2m} ⊂ L such that

sp({linear form ℓ : ℓ | T1 × T2}) ⊂ sp({ℓ1, . . . , ℓ2m}) ⊂ sp({linear form ℓ : ℓ | T1 × T2})

Since sp({linear form ℓ : ℓ | T1 × T2}) is rank(f) dimensional we get that there are r LI
linear forms y1, . . . , yr ∈ {ℓ1, . . . , ℓ2m} ⊂ L and the proof would be complete. So we only
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need to show that ∃ ℓ′ | T3−i such that NonLin(f) vanishes on the co-dimension 2 subspace
V(ℓ, ℓ′). To see this, let L be the product of all linear factors of T1 + T2. Let Φ be an
isomorphism mapping ℓ 7→ x1. On setting x1 = 0, we get, Φ(L)|x1=0 ×Φ(NonLin(f))|x1=0 =
Φ(T3−i)|x1=0 ̸= 0. The non zeroness comes from the fact that gcd(T1, T2) = 1. The above
equation implies (using unique factorization in the ring F[x2, . . . , xn]) that there is some
linear form ℓ′ | T3−i such that Φ(ℓ′)|x1=0 divides Φ(NonLin(f))|x1=0 . Now, define the
isomorphism ∆ mapping x1 7→ x1, Φ(ℓ′) 7→ x2. This can be defined since x1 and Φ(ℓ′) are
LI (otherwise ℓ divides ℓ′ violating gcd(T1, T2) = 1). Applying ∆ to the fact that Φ(ℓ′)|x1=0

divides Φ(NonLin(f))|x1=0 , we get that ∆(Φ(ℓ′)|x1=0) | ∆(Φ(NonLin(f))|x1=0). Since ∆
fixes x1, we get ∆(Φ(ℓ′))|x1=0 | ∆(Φ(NonLin(f)))|x1=0 . So there is polynomial g such that
∆(Φ(NonLin(f)))|x1=0 = ∆(Φ(ℓ′))|x1=0 × g. Now setting x2 = 0 on both sides will send the
RHS to 0 since ∆ ◦Φ maps ℓ 7→ x1, ℓ′ 7→ x2. Therefore ∆(Φ(NonLin(f)))|x1=0,x2=0 = 0, and
so using Definition 4 one can see that NonLin(f) vanishes on the co-dimension 2 subspace
V(ℓ, ℓ′). ◀

h(y1, . . . , yr) naturally exhibits a ΣΠΣ(tr, n, t,F) circuit. This can be seen as follows.
Addition gates at the bottom layer will compute linear forms y1, . . . , yr. For each monomial,
there will be one multiplication gate. If xk

j is the largest power of xj dividing some monomial,
then there will be k connections from yj to the multiplication gate corresponding to this
monomial. Finally, the top layer is connected to all the multiplication gates and weight on
such an edge is equal to the coefficient of the monomial the multiplication gate corresponded
to. Step 3 just multiplies this circuit with all the linear factors and therefore computes
a candidate ΣΠΣ(tr, n, d,F) circuit for f . Randomized polynomial identity test in Step 3
ensures that with high probability we output a correct ΣΠΣ(tr, n, d,F) circuit for f . If for
some r and linear forms y1, . . . , yr, an incorrect circuit gets constructed, probability that it
will be outputted is o(1). There are at most (dlog3 d log3 d)O(1) many such bad settings of
r and y1, . . . , yr. Using boosting with independent runs of randomized polynomial identity
test, we can make error exponentially small in nd so that overall the probability of error
still remains o(1) by union bound ⇒ with probability 1− o(1) all these bad settings will be
rejected. For r = rank(f) and the correct LI set {y1, . . . , yr} (i.e. one spanning all linear
factors of T1 × T2), we have seen that with probability 1 − o(1), a correct circuit will be
constructed which will always pass the randomized polynomial identity test and will be
returned. So overall with probability 1− o(1), a correct ΣΠΣ(tr, n, d,F) circuit for f will be
returned. Next we discuss the time complexity of the above algorithm.

▶ Lemma 30. Algorithm 1 takes (ndlog3 d log |F|) time.

Proof. Time complexity of Corollary 28 and Algorithm 6 imply that Step 1 takes
(nd log |F|)O(1) time. L can be constructed in (nd log |F|)O(1) time since it involves iter-
ating over the dO(1) sized set S. Our search for the correct r = rank(f) and linear forms
y1, . . . , yr takes (ndlog3 d log |F|)O(1) time in the worst case and multivariate interpolation
(Lemma 25) also takes the same amount of time in the worst case. Step 3 multiplies linear
factors to all the gates in the circuit for NonLin(f) and therefore takes (ndlog3 d log |F|)O(1)

time and therefore overall time complexity is (ndlog3 d log |F|)O(1). ◀

3 High Rank Reconstruction: Proof of Theorem 2

The algorithm in Theorem 2 is presented in Algorithm 2. This algorithm further calls
Algorithms 3, 4 and 5. We present and analyze them in Sections 3.1, 3.2 and 3.3 respectively.
Correctness of our algorithm heavily relies on Lemma 44, which we prove in Section 3.4.
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Algorithm 2 High rank reconstruction.
Input - Black-box access to f , integers n, d.
Output - ΣΠΣ(2, n, d,F) circuit C or #.

1. Run Algorithm 4 with inputs as black-box access to f along with integers n, d. If output
is a circuit C, Return C. If output was #, go to the next step.

2. Using Corollary 28 with input as black-box access to f and integers n, d, compute list
of linear factors ℓ1, . . . , ℓs and black-box access to NonLin(f). Compute the degree of
NonLin(f) as t = d− s.

3. Using Algorithm 3 with inputs as black-box access to f and integers n, d, construct
the set L(NonLin(f)). For each ℓ ∈ L(NonLin(f)) consider all linear forms ℓ′ ∈
L(NonLin(f))\{ℓ} such that sp{ℓ, ℓ′} does not intersect L(NonLin(f)) at any point other
than ℓ, ℓ′. Find a maximal independent set X of such ℓ′s and continue if |X | = Ω(log2 d).
If no such ℓ exists, Return #. Otherwise, partition X into equal parts of size Ω(log d)
each and iterate over all parts B.
a. Initialize sets U ,V ← ϕ. Iterate over all linear forms ℓ′ ∈ B. Define an isomorphism Φ

mapping ℓ 7→ x1, ℓ′ 7→ x2 and using Lemma 22, check if Φ(NonLin(f))|x1=0,x2=0 ≡ 0.
If yes, add ℓ′ to U else add it to V . Select r = 60 log d + 61 linear forms y1, . . . , yr from
the larger of U ,V.

b. Run Algorithm 5 with inputs as black-box access to f , integers n, d and linear forms
y1, . . . , yr. If it returns a ΣΠΣ(2, n, d,F) circuit C, Return C. Else, go to the next
partition B and then to the next linear form ℓ in the search.

4. Return #

Now, we discuss the correctness and time complexity of Algorithm 2. Step 1 tries to solve
a corner case where one of T1, T2 is power of a linear form. By correctness of Algorithm
6, we know that, if this corner case is satisfied, then with probability 1− o(1), the correct
ΣΠΣ(2, n, d,F) circuit is returned. Also Algorithm 6 never returns an incorrect circuit.
Therefore with high probability Step 1 will complete the reconstruction if the corner case
condition holds. If it does not hold this algorithm will always proceed to Step 2. Also, if
it does not return a circuit we can assume that with high probability the corner case does
not hold and therefore linear factors of each Ti span at least a two dimensional space. By
correctness of Corollary 28, we know that with probability 1− o(1), Step 2 correctly obtains
a black-box computing NonLin(f), its degree t and correctly identifies all linear factors of f

with multiplicity. Correctness of the next step is proved in the following lemma.

▶ Lemma 31. If outputs of Steps 1 and 2 are correct, then with probability 1− o(1), Step 3
computes a ΣΠΣ(2, n, d,F) circuit computing f .

Proof. By correctness of Algorithm 3, we know that the set L(NonLin(f)) is correctly
computed. Our algorithm goes through all linear forms ℓ ∈ L(NonLin(f)) and for each
such linear form goes through Ω(log d) sized sets which are parts of a partition of the set X
defined using ℓ. In Step 3(b), correctness of Algorithm 5 ensures that if a circuit is returned
for any choice of ℓ,B, it is always correct. So all we need to show is that for some choice
of ℓ,B, Algorithm 5 will return the correct circuit with high probability. We know from
correctness of Algorithm 5 that if the linear forms y1, . . . , yr (that are given as input to it),
all divide the same Ti and are independent, then with high probability a correct circuit will
be returned. Therefore, now all we need to show is that there is some choice of ℓ,B, for
which the constructed y1, . . . , yr are independent linear forms dividing the same Ti. Since we
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have assumed that output of Step 1 is correct, f does not satisfy the corner case implying
that linear factors of each Ti span at least a two dimensional space and therefore Lemma
44 can be applied. Parts 1, 2, 3 of Lemma 44 prove that such ℓ,B exist for which the test
in Step 3(a) creates a partition U ∪ V = B such that linear forms in U divide Tj and linear
forms in V divide T3−j for some j ∈ [2]. Since |B| = Ω(log d), one of U ,V has size Ω(log d).
By construction B is LI and thus both U ,V are LI. Therefore y1, . . . , yr with r = Ω(log d)
are independent linear forms dividing the same Ti. This completes the proof. ◀

Now we discuss the time complexity of the above algorithm.

▶ Lemma 32. Algorithm 2 takes (nd log |F|)O(1) time.

Proof. Time complexity of Algorithm 4 and Corollary 28 imply that Steps 1 and 2 take
O(nd log |F|)O(1) time. By Algorithm 3 we know that the set L(NonLin(f)) has dO(1)

size. We iterate over all ℓ ∈ L(NonLin(f)) and for each ℓ′ check if sp{ℓ, ℓ′} intersects
L(NonLin(f)) at any other point. This can be done in (nd log |F|)O(1) time. From these ℓ′,
we can simply check linear independence of linear forms and create a maximal set in X in
(nd log |F|)O(1) time. Creating a partition of X , iterating over all parts B, and isomorphism
can be created in (nd log |F|)O(1) time. Isomorphism can be efficiently applied to the black-box
computing NonLin(f) by taking every input through Φ before applying the black-box. By
time complexity of algorithm in Lemma 22, the check in Step 3(a) takes (nd log |F|)O(1) time.
Time complexity of Algorithm 5 implies that Step 3(b) takes (nd log |F|)O(1) time. Therefore
overall Algorithm 2 takes (nd log |F|)O(1) time. ◀

In the next subsection, we explain construction of the candidate linear forms (Definition 16).

3.1 Computing Candidate Linear forms
Here is a lemma summarizing the construction of set L(NonLin(f)) of candidate linear
forms (Definition 16).

▶ Lemma 33. There exists a randomized algorithm that takes as input integers n, d and
black-box access to f , runs in time (nd log |F|)O(1), and outputs a set L of linear forms such
that Pr[L = 12L(NonLin(f))] = 1− o(1).

Algorithm for this lemma is provided in Algorithm 3. We prove its correctness now.
By correctness of Corollary 28, we know that Step 1 correctly obtains black-box access to
NonLin(f), its degree t and linear factors (with multiplicity) of f with probability 1− o(1).
Similarly by correctness of Algorithm 6, we know that with probability 1− o(1), the set S
representing elements of S(NonLin(f)) is correctly computed. We prove correctness of the
next two steps in the following lemma.

▶ Lemma 34. Assuming Step 1 works correctly, with probability 1− o(1), the output L of
Algorithm 3 is the same13 as L(NonLin(f)).

Proof. Consider any ℓ ∈ L(NonLin(f)). By definition of the set L(NonLin(f)), we know
that there are linear forms ℓ1, ℓ2 with ℓ, ℓ1, ℓ2 LI, such that the co-dimension 2 subspaces
V(ℓ, ℓ1),V(ℓ, ℓ2) ∈ S(NonLin(f)). So some tuples (p1, q1) and (p2, q2) corresponding to these
two subspaces will be present in S and will be encountered in Step 2. Note that V(p1, q1) =

12 up to scalar multiplication of linear forms in the sets
13 the linear forms in this output are correct upto scalar multiplication
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Algorithm 3 Candidate linear forms.
Input - Black-box access to polynomial f , integers n, d.
Output - A set of linear forms L.

1. Using Corollary 28 with inputs as black-box access to f and integers n, d, obtain list of
linear factors ℓ1, . . . , ℓs and access to black-box computing NonLin(f). Compute degree
of NonLin(f) as t = d − s. Using Algorithm 6, compute the set S of tuples of linear
forms representing co-dimension 2 subspaces on which NonLin(f) vanishes.

2. Initialize L ← ϕ. ∀ pairs of tuples (p1, q1), (p2, q2) ∈ S, check if sp{p1, q1} ∩ sp{p2, q2}is
one dimensional. For this we construct the n× 4 matrix M with its columns containing
coefficients of p1, q1, p2, q2 respectively and then check by gaussian elimination whether
rank of M is 3 or not. If yes, the same gaussian elimination can be used to obtain the one
dimensional space of solutions to Mv = 0 for v ∈ F4. Fixing one such non-zero solution
u = (α1, α2, α3, α4)T then gives us a scalar multiple of ℓ as α1p1 + α2q1. If no scalar
multiple of α1p1 + α2q1 is already present in L, then we add it to L.

3. For each ℓ ∈ L, check whether NonLin(f) restricted to V(ℓ) factorizes into a non-zero
product of linear forms (See Definition 15). This can be done by defining an isomorphism Φ
mapping ℓ 7→ x1, simulating black-box computing Φ(NonLin(f))|x1=0 . Using Lemma 22,
check if this black-box computes the 0 polynomial. If ’yes’, remove ℓ from L. Otherwise,
using Corollary 28, with inputs as this restricted black-box and integers n, t, compute list
of linear factors and check whether there are t of them. If not, then remove ℓ from L.
Finally, Return L.

V(ℓ, ℓ1) and V(p2, q2) = V(ℓ, ℓ2) implies that sp{p1, q1} = sp{ℓ, ℓ1} and sp{p2, q2} = sp{ℓ, ℓ2}
further implying that sp{p1, q1} ∩ sp{p2, q2} = sp{ℓ}. This implies that there are scalars
α1, α2, α3, α4 such that α1p1 + α2q1 + α3p2 + α4q2 = 0, giving us the system of equations as
described in the algorithm. In order for the intersection to be one dimensional, the matrix
M should have rank 3. We check that using gaussian elimination which also gives the one
dimensional set of solutions. Any non-zero solution (α1, α2, α3, α4) will then give a linear
form α1p1 + α2q1 in the intersection which will be a scalar multiple of ℓ. Thus, Step 2
identifies a scalar multiple of ℓ and adds it to L. Step 3 just checks whether NonLin(f)
factorizes as a product of non-zero linear forms on V(ℓ) (see Definition 15). Correctness of
Step 3 is implied by correctness of Lemma 22 and Corollary 28. Since ℓ ∈ L(NonLin(f)), it
will pass this test and remain in L. Now consider any ℓ ∈ L that is returned. In Steps 2 and
3 we have checked whether it satisfies the conditions required for it to be in L(NonLin(f))
or not and therefore correctly output L(NonLin(f)) with high probability. ◀

▶ Lemma 35. Algorithm 3 takes (nd log |F|)O(1) time.

Proof. Time complexity of Corollary 28 and Algorithm 6 imply that Step 1 takes
(nd log |F|)O(1) time. By first part of Proposition 5, we know that |S| ≤ 3d7 and there-
fore going over pairs of elements of S takes O(nd log |F|)O(1) time. Gaussian elimination
on matrix M takes (n log |F|)O(1) time for each pair of tuples. After Step 2 we will have
at most |S|2 many elements in L leading to a size of dO(1). In Step 3 for every ℓ ∈ L, the
construction of Φ, simulation of black-box for Φ(NonLin(f))|x1=0 are done in (n log |F|)O(1)

time. Time complexity of algorithm provided in Lemma 22 which tests whether this new
polynomial is identically zero or not is (nd log |F|)O(1). Finally, time complexity of Corollary
28 implies that in time (nd log |F|)O(1) we can check whether it has t linear factors or not.
Therefore overall Algorithm 3 takes(nd log |F|)O(1) time. ◀
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Algorithm 4 Corner case.
Input - Black-box access to polynomial f , integers n, d.
Output - A ΣΠΣ(2, n, d,F) circuit or #.

1. Using Corollary 28 with inputs as black-box access to f and integers n, d compute linear
factors ℓ̂1, . . . , ℓ̂s and get access to black-box computing NonLin(f). Compute degree of
NonLin(f) as t = d− s. Using Algorithm 3, compute set L(NonLin(f)).

2. Iterate over ℓ1 ∈ L(NonLin(f)). Construct an isomorphism Φ mapping ℓ1 7→ x1.
a. Simulate black-box for Φ(NonLin(f))|{x1=0} and using Corollary 28 identify two LI

factors say ℓ2, ℓ3. Construct another isomorphism ∆ mapping x1 7→ x1, ℓ2 7→ x2, ℓ3 7→
x3. Pick α4, . . . , αn uniformly randomly from F. Simulate black-box for

g(x1, x2, x3) = ∆(Φ(NonLin(f)))|{x4=α4,...,xn=αn}

b. Using Lemma 25, interpolate g in monomial basis of F[x1, x2, x3]. Substitute x2 = yx1
in all monomials and rearrange to get a representation in F[y][x1, x3]. Equate coefficient
polynomials of monomials containing x3 to 0 and solve the resulting system of equations
using Lemma 20. If all ℓ1s have been tried and no solution was obtained, Return #.
Otherwise, for each solution, evaluate coefficient polynomial of xt

1, creating a set of
scalars.

c. Iterate over all δs in the set of scalars obtained above. Simulate black-box for
NonLin(f)−δℓt

1 and using Corollary 28 check if it has t linear factors say ℓs+1, . . . , ℓs+t.
If not, then go to the next δ. If all δ have been tried, go to next ℓ1 ∈ L(NonLin(f)).
If all ℓ1s have been tried, Return #. Otherwise, simulate black-box for f − f ′, where

f ′ = ℓ̂1 × . . .× ℓ̂s × (δℓt
1 + ℓs+1 × . . .× ℓs+t)

and using Lemma 23 for ΣΠΣ(4, n, d,F) circuits, check if f − f ′ ≡ 0. If output is ’yes’,
construct ΣΠΣ(2, n, d,F) circuit C computing f ′. Return C. If not, then go to next
δ. If all δ have been tried, go to next ℓ1 ∈ L(NonLin(f)). If all ℓ1s have been tried,
Return #.

3.2 Reconstruction when T1 (or T2) = αyt
1

This is a corner case of our problem and needs slightly different techniques. Here is a lemma
summarizing the reconstruction algorithm in this case.

▶ Lemma 36. If for some i ∈ [2], Ti = αyt
1 for some linear form y1 and α ∈ F, then ∃ a

randomized algorithm that takes as input integers n, d and black-box access to polynomial f ,
runs in time (nd log |F|)O(1), and with probability 1− o(1) outputs a ΣΠΣ(2, n, d,F) circuit
computing f .

Algorithm is provided in Algorithm 4. Now we prove its correctness. By correctness of
Corollary 28, with probability 1−o(1), Step 1 correctly obtains the black-box for NonLin(f),
its degree t and the multi-set of all linear factors of f . If we assume that these are correct,
then by correctness of Algorithm 3, with probability 1− o(1), Step 1 also correctly computes
the set L(NonLin(f))14 of linear forms. In order to prove the correctness of Step 2 we give
two claims, both of which are proved in Appendix A. The first claim says that in this corner

14 all linear forms are correct up to scalar multiple.
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case, NonLin(f) is actually the same as T1 + T2 (up to scalar multiplication) and the second
claim guarantees that some scalar multiple of y1 actually belongs to the set L(NonLin(f)).
Here are the formal statements.

▷ Claim 37. Assume Ti = αyt
1, for some i ∈ [2], α ∈ F and linear form y1. Then Lin(f) = G

(up to scalar factor). This also means that NonLin(f) and T1 + T2 are equal up to a scalar
factor.

▷ Claim 38. Assume Ti = αyt
1, for some i ∈ [2], α ∈ F and linear form y1, then some scalar

multiple of y1 belongs to L(NonLin(f)).

We proceed in our correctness proof assuming that these claims are true. Assuming that Step
1 was correct, we show that Step 2 returns the correct circuit with high probability. Note
that in Step 2(c), using Lemma 23, we check whether the reconstructed circuit is correct or
not. This ensures that we only return a correct circuit. Our algorithm in Steps 2(b), 2(c)
tries all linear forms in L(NonLin(f)) and for each such linear form it constructs a set of
scalars. So basically the algorithm iterates over possibilities of ℓ1, δ with the hope of finding
one such that Ti = δℓt

1. If we can show that for some value of ℓ1, δ with high probability a
correct ΣΠΣ(2, n, d,F) circuit is reconstructed, we will be done. We show this for ℓ1 being
the scalar multiple of y1 that belongs to L(NonLin(f)) (guaranteed by Claim 38) in the
following lemma.

▶ Lemma 39. For ℓ1, the scalar multiple of y1 in L(NonLin(f)), the set of scalars constructed
in Step 2(b) contains a scalar δ such that Ti = αyt

1 = δℓt
1 and with probability 1−o(1) correctly

reconstructs a ΣΠΣ(2, n, d,F) circuit computing f .

Proof. We know that NonLin(f) restricted to the co-dimension 1 subspace V(ℓ1) factors
into a non-zero product of linear forms. By correctness of Corollary 28, we know that all
linear factors of Φ(NonLin(f))|x1=0 can be computed. By Claim 37, we know that this is
the same as Φ(T3−i)|x1=0 up to scalar multiplication. Since rank(f) = Ω(log3 d) and linear
factors of Ti span a 1 dimensional space, factors of this polynomial will span an Ω(log3 d)
dimensional space and therefore we will be able to find at least two LI factors ℓ2, ℓ3 in
F[x2, . . . , xn]. This means that the polynomial Φ(NonLin(f)) looks like

Φ(NonLin(f)) = δℓt
1 + (ℓ2 − βx1)(ℓ3 − γx1)

t+1∏
i=4

ℓi,

for some scalars β, γ and linear forms ℓ4, . . . , ℓt+1 in F[x1, . . . , xn]. Recall the isomorphism
∆ used in the algorithm, mapping x1 7→ x1, ℓ2 7→ x2, ℓ3 7→ x3. Black-box computing the
polynomial ∆(Φ(NonLin(f))) can be constructed by taking every input of blackbox through
the isomorphisms. The new polynomial now looks like

∆(Φ(NonLin(f))) = δxt
1 + (x2 − βx1)(x3 − γx1)

t+1∏
i=4

∆(ℓi),

Finally, we plug in uniform random values for the variables x4, . . . , xn. By Lemma 21 we
know that with probability 1−o(1) the polynomial

∏t+1
i=4 ∆(ℓi) will not be identically zero and

we will be left with a non-zero polynomial g(x1, x2, x3) = δxt
1 + (x2−βx1)(x3− γx1)

∏t+1
i=4 ui

computable by a ΣΠΣ(2, 3, d,F) circuit, where ui are affine forms in F[x1, x2, x3]. Using the
above black-box, we get access to black-box for g and then using deterministic multivariate
interpolation (Lemma 25), interpolate it as a degree t polynomial in the monomial basis
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of F[x1, x2, x3]. g depends on variable x3. So substituting x2 = yx1 for a fresh variable
y, and solving for common zeros of all coefficient (of monomials involving x3) univariate
polynomials in F[y] would give us a set of scalars containing β. Note that, since our system
has only univariate polynomials, all of degree dO(1), it can have at most dO(1) solutions. By
correctness of algorithm in Lemma 20, with probability 1− o(1), this set would be correctly
computed. Now substitution of x2 = βx1 would recover δ as coefficient of xt

1. By correctness
of Corollary 28, with probability 1−o(1), we will be able to completely factorize the black-box
NonLin(f)− δℓt

1 into a product of t linear factors giving us the correct T3−i. By correctness
of Step 1, we know all linear factors of f , were correctly computed and therefore for scalar
multiple ℓ1 of y1 and the computed scalar δ, with probability 1 − o(1), we reconstruct a
correct ΣΠΣ(2, n, d,F) circuit for f . ◀

Now we discuss the time complexity of the above algorithms.

▶ Lemma 40. Algorithm 4 takes (nd log |F|)O(1) time.

Proof. Time complexity of Corollary 28 and Algorithm 3 imply that Step 1 takes
(nd log |F|)O(1) time. In Step 2, the outer iteration is over all linear forms in L(NonLin(f))
which has size dO(1) (clear from Definition 16 and explanation given in Algorithm 3). Step
2(a) involves simulations of black-boxes post application of isomorphism and setting values
for some variables. It also involves using Corollary 28 to compute all linear factors. All these
steps take (nd log |F|)O(1) time. Finding LI pair of linear forms out of all linear factors is
also done in (nd log |F|)O(1) time. Step 3 involves trivariate interpolation (Lemma 25) which
takes (d log |F|)O(1) time and by time complexity of Lemma 20 solutions of the system of
univariate polynomials (all have degree dO(1)) are also found in (nd log |F|)O(1) time. The set
of solutions is dO(1) sized since a univariate polynomial of degree s has at most s roots over a
field. Therefore Step 2(b) takes (nd log |F|)O(1) time and creates a set of scalars of size dO(1).
Step 2(c) iterates over this dO(1) sized set. Simulation of black-box and factorization using
Corollary 28 take (nd log |F|)O(1) time. Blackbox for f − f ′ is constructed in (nd log |F|)O(1)

time and by time complexity of algorithm in Lemma 23, it can be checked to be 0 or not in
(nd log |F|)O(1) time. Therefore overall Algorithm 4 takes (nd log |F|)O(1) time. ◀

3.3 Reconstruction with LI set dividing Ti given
Suppose we are given LI linear forms u1, . . . , ut, t > 60 log d + 61, such that for some i ∈ [2],
all the ujs divide Ti. Then ∃ an efficient reconstruction algorithm as described below.

▶ Lemma 41. There exists a randomized algorithm which takes as input integers n, d,
black-box access to polynomial f computable by a ΣΠΣ(2, n, d,F) circuit and LI linear forms
u1, . . . , ut, t > 60 log d + 61 (for some i ∈ [2], all ujs divide Ti), runs in time (nd log |F|)O(1)

and with probability 1− o(1) outputs a ΣΠΣ(2, n, d,F) circuit computing f .

We present the algorithm for proving the above lemma in Algorithm 5. We use Algorithm
5 (we call this the merge algorithm) of [33] in Step 2. More details on this merge algorithm
can be found in Algorithm 5 and Theorem 29 of [33]. Now we prove correctness of our
algorithm. Black-box computing Φ(f) is simulated by passing every input through Φ first.
Correctness of Corollary 28 imply that with probability 1− o(1), all linear factors of Φ(f)
and black-box access to Φ(NonLin(f)) are correctly computed. From these linear forms,
we remove any linear form ℓ that are divisible by some xi. However we will keep the scalar
ℓ/xi. The black-box obtained by multiplying the black-box of Φ(NonLin(f)) returned by
Corollary 28 with these scalars and black-boxes computing the remaining linear factors
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Algorithm 5 LI linear factors of a multiplication gate are known.
Input - Black-box access to f , integers n, d, linear forms u1, . . . , ut, t > 60 log d + 61.
Output - A ΣΠΣ(2, n, d,F) circuit C or #.

1. Construct isomorphism Φ mapping ui 7→ xi, i ∈ [t] and simulate black-box computing
Φ(f). Using Corollary 28 with inputs as black-box computing Φ(f) and integers n, d,
obtain all its linear factors (with multiplicity) along with access to black-box computing
Φ(NonLin(f)). By traversing through the factors identify ei, the largest power of xi that
divides Φ(f). Using this set of factors and black-box computing Φ(f), simulate black-box
computing g = Φ(f)/

∏
xei

i .
2. For each i ∈ [t], simulate black-box computing g|{xi=0} and using Corollary 28 with

inputs as this black-box, compute its factors. If there are non linear factors, Return #.
Otherwise, store factors in multi-set Ui. Using Algorithm 5 in [33] merge the multi-sets
Ui together to obtain a multiset U comprising of all linear factors of one of the product
gates in the ΣΠΣ(2, n, s,F) circuit computing g (here s is some integer ≤ d).

3. Construct the multi-set U ′ = {ℓ|{x1=0} : ℓ ∈ U}. Check if this multi-set U ′ and U1 contain
same linear forms (upto multiplicity). If not, Return #. Otherwise compute scalar

α =
∏

ℓ∈U1
ℓ

/ ∏
ℓ∈U ′ ℓ by matching linear forms between U ′,U1.

4. Simulate black-box computing g−α
∏

ℓ∈U ℓ and factorize this polynomial using Corollary
28. If all factors are not linear, Return #. Otherwise, store factors in multi-set V.
Apply Φ−1 to all linear forms in U ,V. Simulate black-box for f − f ′, where f ′ =∏t

i=1 uei
i × (α

∏
ℓ∈U ℓ +

∏
ℓ∈V ℓ). Using Lemma 23 for ΣΠΣ(4, n, d,F) circuits, check if

f − f ′ ≡ 0. If output is ’yes’, construct ΣΠΣ(2, n, d,F) circuit C computing f ′ and
Return C. If not, Return #.

simulates black-box access to g = Φ(f)/
∏t

i=1 xei
i . g is a ΣΠΣ(2, n, s,F) circuit for some

integer s ≤ d. Assuming that Step 1 is correct, simulation of black-boxes g|xi=0 , i ∈ [t] can
be done. Correctness of Corollary 28 implies that with probability 1− o(1) all multi-sets Ui

are correctly computed. By correctness of Algorithm 5 in [33], we know that these multi-sets
are glued together to obtain a multi-set U containing all linear factors of one of the product
gates S2 of g (we are assuming that g = S1 + S2 where S1, S2 are product of linear forms and
xi | S1 for i ∈ [t].). Note that the algorithm only recovers all linear factors of S2 and therefore
it still needs to recover an appropriate scalar α (see algorithm) to completely recover S2.
Note that g|x1=0 = S2|x1=0 ̸= 0. Therefore we can compare the multi-set of linear forms in
U1 with the multi-set of linear forms U ′ = {ℓ|x1=0 : ℓ ∈ U}. All linear forms will match up
to scalar multiplication giving us the scalar α. By correctness of Corollary 28, we know
that with probability 1− o(1), we will be able to correctly factor g − α

∏
ℓ∈U ℓ and collect

them in multi-set V. Finally at the end, we can apply Φ−1 and multiply by
∏t

i=1 uti
i and

correctly recover the ΣΠΣ(2, n, d,F) circuit with probability 1 − o(1). Note that in Step
4, by correctness of Lemma 23, we know that we can deterministically check whether the
constructed circuit is correct or not and only return a correct circuit. Now we discuss the
time complexity of the above algorithm.

▶ Lemma 42. Algorithm 5 runs in time (nd log |F|)O(1) time.

Proof. Isomorphism Φ is constructed in (n log |F|)O(1) time. Time complexity of Corollary 28
implies that (nd log |F|)O(1) time is spent on factorizing Φ(f). Removing powers of xi, i ∈ [t]
again requires scanning through the linear factors and takes (nd log |F|)O(1). Black-box
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for g = Φ(f)/
∏t

i=1 xei
i is then created by multiplying outputs of all the black-boxes for

any input and therefore is also simulated in (nd log |F|)O(1) time. Therefore Step 1 takes
(nd log |F|)O(1) time. Restrictions of black-box g to xi = 0, i ∈ [t] can be simulated by passing
inputs through the restriction and therefore takes (nd log |F|)O(1) time. Time complexity of
Corollary 28 implies that factorization of g|xi=0 can be done in (nd log |F|)O(1) time. Running
time of Algorithm 5 in [33] is (nd log |F|)O(1) and therefore the multi-set U is created in
(nd log |F|)O(1) time. Therefore Step 2 takes (nd log |F|)O(1) time overall. Step 3 involves
iterating through the linear forms in U , restricting them to x1 = 0, giving multi-set U ′, and
then comparing the dO(1) sized multi-sets U ′ and U to obtain the appropriate scalar α. All
these steps can be executed in polynomial time leading to a time complexity of (nd log |F|)O(1)

for Step 3. Black-box computing polynomial g−α
∏

ℓ∈U ℓ can be simulated in (nd log |F|)O(1)

time by going through each of the involved (black-boxes) polynomials and then computing
the output after algebraic operations. Time complexity of Corollary 28 implies that the
factorization of this black-box can be done in (nd log |F|)O(1) time. Finally computing the
black-box for f ′ and simulating black-box for f − f ′ can similarly be done in (nd log |F|)O(1)

time. By time complexity of algorithm in Lemma 23, we know that in time (nd log |F|)O(1),
we can deterministically test whether f − f ′ is the zero polynomial or not. Therefore Step 4
also takes time (nd log |F|)O(1). So, overall Algorithm 5 runs in time (nd log |F|)O(1). ◀

3.4 Identify LI Set Dividing Ti

In this subsection, our goal is to prove a lemma (Lemma 44) that plays a crucial role in
Algorithm 2 (explained in Section 1.4.2) in optimizing the search for a large LI set of linear
forms dividing one of T1, T2. As we mentioned earlier, [33] compute such an independent
set by using a brute force search (Algorithm 4, [33]) on the space of linear forms over many
variables, and therefore take quasi-polynomial time even before using this set in Algorithm 5
(of [33]). We significantly improve the search using candidate linear forms L(NonLin(f))
and ordinary lines (see Definition 7) among them. First, in Section 3.4.1 below we give
intuition about why set L(NonLin(f)) approximates the set of linear factors of T1 × T2 and
then in in Lemma 44, Section 3.4.2 use this set to construct the required LI set.

3.4.1 Candidate set approximates set of linear forms dividing T1, T2

In order to quantify how close the candidate set L(NonLin(f)) is to the set of linear forms
in the input circuit, we define some new sets.

Lgood = {ℓ ∈ L(NonLin(f)) : ℓ | T1 × T2}, Lbad = L(NonLin(f)) \ Lgood,

Lothers = {ℓ | T1 × T2 : sp(ℓ) ∩ L(NonLin(f)) = ϕ} and Lfactors = {ℓ : ℓ | T1 + T2}

For all sets, we only keep linear forms upto scalar multiplication and therefore treat them as
proper sets (Definition 6). Lgood contains all candidate linear forms which also divide one
of the two gates T1, T2. Lbad are candidates which do not divide T1 or T2. Lother are linear
forms dividing one of the gates but not captured (even up to scalar multiplication) in the
candidate set and Lfactors contain linear forms that divide T1 + T2. In the following claim,
we show that Lgood is high dimensional and Lbad,Lother are low dimensional quantifying the
closeness of L(NonLin(f)) to the set of linear forms dividing T1 × T2. We also show that
Lfactors is low dimensional. For better exposition, proof is provided in Appendix A.
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▷ Claim 43. The following claim is true about these newly constructed sets.
1. dim(sp(Lfactors)) ≤ log d + 2,
2. dim(sp(Lgood)) ≥ rank(f)− 2,
3. dim(sp(Lbad)) ≤ log d + 2, and
4. dim(sp(Lothers)) ≤ 2.

3.4.2 Proof of Lemma 44
In this subsection, we prove Lemma 44 which was used by Algorithm 2. Recall the definition
of the set of ordinary lines (Definition 7) and that rank(f) = Ω(log3 d).

▶ Lemma 44. The following are true.
1. ∃ ℓ ∈ Lgood such that the set of linear forms ℓ′ ∈ L(NonLin(f)) \ {ℓ} for which

sp{ℓ, ℓ′} intersects L(NonLin(f)) only at {ℓ, ℓ′} (i.e. sp{ℓ, ℓ′} is an ordinary line into
L(NonLin(f))), spans a space of dimension at least Ω(log2 d). Let X be some maximal
independent subset ⇒ |X | = Ω(log2 d).

2. Every partition of X into Ω(log d) equal parts of size Ω(log d) each, contains a
part B such that B ⊂ Lgood and ∀ ℓ′ ∈ B, sp{ℓ, ℓ′} is an ordinary line into
Lgood,Lbad,Lothers,Lfactors.

3. Let ℓ′ ∈ B and assume ℓ | Ti. Let Φ be an isomorphism mapping ℓ 7→ x1, ℓ′ 7→ x2, then,
Φ(NonLin(f))|x1=0,x2=0 = 0⇔ ℓ′ divides T3−i.

Proof. We prove all parts one by one.
1. Let T ⊂ Lgood be a LI set of size 126 log d + 2 (exists by Claim 43). Applying Proposition

5 on L(NonLin(f)) and T implies that ∃ ℓ ∈ T such that

dim(
∑

W ∈O(ℓ,L(NonLin(f)))

W ) ≥ dim(sp(L(NonLin(f))))
126 log d + 2 ≥ dim(sp(Lgood))

126 log d + 2 = Ω(log2 d)

Thus, the set of linear forms ℓ′ ∈ L(NonLin(f)) \ {ℓ} for which sp{ℓ, ℓ′} intersects
L(NonLin(f)) only at {ℓ, ℓ′}, spans a space of dimension at least Ω(log2 d). Let X be a
maximal independent subset ⇒ |X | = Ω(log2 d).

2. Consider any partition of X into Ω(log d) parts of size Ω(log d) each. We first claim
that Ω(log d) parts in X are inside Lgood. If not, then Ω(log d) parts intersect Lbad ⇒
dim(sp(Lbad)) = Ω(log d), contradicting Claim 43. Now we only deal with these Ω(log d)
parts inside Lgood. Since Lgood,Lbad ⊂ L(NonLin(f)), we see that ∀ ℓ′ in any of
these parts, sp{ℓ, ℓ′} is an ordinary line in Lgood,Lbad as required. Next we show
that out of the Ω(log d) parts inside Lgood, ∃ a part B such that ∀ ℓ′ ∈ B, sp{ℓ, ℓ′}
is an ordinary line in Lothers,Lfactors, thereby completing the proof. If not, then ∃
Ω(log d) many ℓ′s, each belonging to a different part among the Ω(log d) parts, such
that sp{ℓ, ℓ′} intersects Lothers ∪ Lfactors at a linear form outside sp{ℓ} ∪ sp{ℓ′} say ℓ′′.
Since all the Ω(log d) ℓ′s are independent, the ℓ′′s span a space of dimension Ω(log d)⇒
dim(sp(Lothers ∪ Lfactors)) = Ω(log d), contradicting Claim 43.

3. Since ℓ | Ti, we know that x1 | Φ(Ti). Therefore, the following equation holds:

Φ(L)|x1=0,x2=0 Φ(NonLin(f))|x1=0,x2=0 = Φ(Ti)|x1=0,x2=0 +Φ(T3−i)|x1=0,x2=0 = Φ(T3−i)|x1=0,x2=0 .

Here L is the product of all linear factors of T1 + T2 i.e. L = Lin(T1 + T2). First, we
assume that Φ(NonLin(f))|x1=0,x2=0 = 0. This implies using the above equation that
Φ(T3−i)|x1=0,x2=0 = 0. Therefore there is a linear form ℓ′′ | T3−i such that ℓ′′ ∈ sp{ℓ, ℓ′}.
If ℓ′′ is not a scalar multiple of ℓ or ℓ′, by construction of ℓ, ℓ′ in parts 1 and 2 of this
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lemma, we know that no scalar multiple of ℓ′′ can belong to Lgood or Lothers and therefore
it cannot divide T1 × T2 which is a contradiction since it divides T3−i. Therefore, ℓ′′

has to be a scalar multiple of ℓ or ℓ′. It cannot be scalar multiple of ℓ since ℓ | Ti and
gcd(Ti, T3−i) = 1. Therefore ℓ′′ and ℓ′ are scalar multiples implying that ℓ′ divides T3−i

as needed. Next, for the converse, we assume that ℓ′ | T3−i. Again, using the equation
we gave at the beginning of this part, we get that,

Φ(L)|x1=0,x2=0Φ(NonLin(f))|x1=0,x2=0 = Φ(Ti)|x1=0,x2=0 + Φ(T3−i)|x1=0,x2=0 = 0.

Therefore, since F[x3, . . . , xn] is an integral domain, either polynomial Φ(L)|x1=0,x2=0 = 0
or polynomial Φ(NonLin(f))|x1=0,x2=0 = 0. Assume that Φ(L)|x1=0,x2=0 = 0. This implies
that there is some linear factor ℓ′′ of T1 +T2 such that ℓ′′ ∈ sp{ℓ, ℓ′}. Since gcd(T1, T2) = 1
and ℓ | Ti, ℓ′ | T3−i, the linear form ℓ′′ cannot be a scalar multiple of ℓ or ℓ′. So we
found a linear form on sp{ℓ, ℓ′} different from scalar multiples of ℓ, ℓ′, such that some
scalar multiple of ℓ′′ belongs to Lfactors. By construction of ℓ, ℓ′ in parts 1 and 2 of
this lemma, we know that this cannot hold. Therefore our assumption is wrong and
polynomial Φ(NonLin(f))|x1=0,x2=0 = 0 completing the proof. ◀

4 Proof of Proposition 5

In this section we prove Proposition 5. Part 1 is proved in Section 4.1. Algorithm for Part 2
is presented in Algorithm 6 and its correctness/complexity are analyzed in Section 4.2.

4.1 Proof of Part 1
Let W = V(ℓ, ℓ′) ⊂ Fn be a co-dimension 2 subspace on which NonLin(f) vanishes i.e.
W ∈ S(NonLin(f)). Let Φ be an isomorphism mapping ℓ 7→ x1, ℓ′ 7→ x2. Since NonLin(f)
divides T1 + T2 we get that Φ(T1)|x1=0,x2=0

+ Φ(T2)|x1=0,x2=0
= 0. This implies that either

Φ(T1)|x1=0,x2=0
= Φ(T2)|x1=0,x2=0

= 0, or Φ(T1)|x1=0,x2=0
= −Φ(T2)|x1=0,x2=0

̸= 0. We prove
the following lemma which implies the bound.

▶ Lemma 45. The following are true.
1. #{W ∈ S(NonLin(f)) : Φ(T1)|x1=0,x2=0

= Φ(T2)|x1=0,x2=0
= 0} ≤ d2.

2. #{W ∈ S(NonLin(f)) : Φ(T1)|x1=0,x2=0
= −Φ(T2)|x1=0,x2=0

̸= 0} ≤ d5 + d7.

Proof. First we prove 1. The statement implies that there are linear forms ℓ1 | T1 and ℓ2 | T2
such that Φ(ℓ1)|x1=0,x2=0

= Φ(ℓ2)|x1=0,x2=0
= 0. Also, ℓ1, ℓ2 are LI since gcd(T1, T2) = 1

implying that sp{Φ(ℓ1), Φ(ℓ2)} = sp{x1, x2}. On inverting via Φ this implies that sp{ℓ1, ℓ2} =
sp{ℓ, ℓ′}, which further implies that V(ℓ1, ℓ2) = V(ℓ, ℓ′) = W . There can be at most d2 such
W s. In order to prove 2, we use Lemma 46 whose proof is presented in Appendix B.

▶ Lemma 46. There exists a set A of co-dimension 1 subspaces of Fn with |A| ≤ d4 + d6

such that for every W ∈ S(NonLin(f)) satisfying Φ(T1)|x1=0,x2=0
= −Φ(T2)|x1=0,x2=0

̸= 0 ,
∃ V ∈ A with W ⊂ V .

Assuming Lemma 46, we complete the proof as follows. For every W ∈ S(NonLin(f)) satisfy-
ing Φ(T1)|x1=0,x2=0

= −Φ(T2)|x1=0,x2=0
̸= 0, we consider the co-dimension 1 subspace V given

by Lemma 46 such that W ⊂ V . Without loss of generality we assume V = V(x1). We can
now find a linear form ℓ3 such that W = V(x1, ℓ3) and coeffcient of x1 in ℓ3 is 0 i.e. ℓ3 = ℓ3|x1=0 .
Since NonLin(f) vanishes on W we know that Ψ(NonLin(f))|x1=0,x2=0 for isomorphism Ψ
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Algorithm 6 Compute co-dimension 2 subspaces on which NonLin(f) vanishes.
Input - Black-box access to polynomial f , integers n, d.
Output - A set S of tuples of independent linear forms in F[x1, . . . , xn].

1. Create n linear forms ℓ̂1, . . . , ℓ̂n, such that the n2 scalars used as coefficients in them
are sampled uniformly randomly independently from F. If these linear forms are LI,
define isomorphism Φ mapping xi 7→ ℓ̂i, i ∈ [n]. Simulate black-box for g = Φ(f). For
i ∈ [5, n], simulate black-box access for the polynomials gi = g|x5=0,...,xi−1=0,xi+1=0,...,xn=0 ∈
F[x1, x2, x3, x4, xi]. Next, for each i ∈ [5, n] using Corollary 28 with inputs as black-box
access to gi along with integers 5, d obtain black-box access to NonLin(gi) and integer
s denoting the number of linear factors of gi. Define t = d − s. Using multivariate
interpolation (Lemma 25), interpolate NonLin(gi) as a degree t polynomial in the
monomial basis of F[x1, x2, x3, x4, xi].

2. Substitute x1 = y3x3 + y4x4 + yixi, and x2 = z3x3 + z4x4 + zixi in NonLin(gi) to obtain
a polynomial in F[y3, y4, yi, z3, z4, zi][x3, x4]. Find common solutions to the system of
polynomial equations defined by setting all coefficient polynomials (∈ F[y3, y4, yi, z3, z4, zi])
to zero. Initialize a set Si ← ϕ and for each solution (y3, y4, yi, z3, z4, zi) of the system
above add tuple (x1 − y3x3 − y4x4 − yixi, x2 − z3x3 − z4x4 − zixi) to Si.

3. Construct isomorphism ∆ mapping x1 7→ x1, x2 7→ x2, x3 7→ x3, x4 7→ x4 and for i ∈ [5.n],
xi 7→ xi +αi,3x3 +αi,4x4. The scalars αi,3, αi,4, i ∈ [5, n] are sampled uniformly randomly
independently from F. Note that ∆ can be viewed as an isomorphism on F[x1, . . . , xn] as
well as on each F[x1, x2, x3, x4, xi] for i ∈ [5, n].

4. Initialize a set S ← ϕ. Iterate over all tuples (x1 − ℓ5
1, x2 − ℓ5

2) ∈ S5. Initialize ℓ1 ←
ℓ5

1, ℓ2 ← ℓ5
2. Iterate over i ∈ [6, n]. Search for tuple (x1 − ℓi

1, x2 − ℓi
2) ∈ Si such that

tuples (x1 −∆(ℓ5
1)|x5=0

, x2 −∆(ℓ5
2)|x5=0

) = (x1 −∆(ℓi
1)|xi=0

, x2 −∆(ℓi
2)|xi=0

). If multiple
or none such tuples are found in Si then break out of this loop and go to the next tuple
in the outer iteration. If only one such tuple is found then update ℓ1 ← ℓ1 − αxi and
ℓ2 ← ℓ2 − βxi where α, β are coefficients of xi in x1 − ℓi

1, x2 − ℓi
2 respectively. At the end

of iteration on i, update S ← S ∪ {(x1 − ℓ1, x2 − ℓ2)}.
5. For each (ℓ1, ℓ2) ∈ S, construct isomorphism Ψ mapping ℓ1 7→ x1, ℓ2 7→ x2. Simulate

black-box access to polynomial Ψ(NonLin(g))|x1=0,x2=0 . Using randomized polynomial
identity test given in Lemma 22 with input as the above black-box and integer n, check
if it is identically the zero polynomial. If ’no’, remove the tuple from S, else replace it
with (Φ−1(ℓ1), Φ−1(ℓ2)). Return S.

mapping x1 7→ x1, ℓ3 7→ x2. This also implies that x2 divides Ψ(NonLin(f))|x1=0 . Since Ψ
keeps x1 fixed this polynomial is same as Ψ(NonLin(f)|x1=0). Inverting Ψ we get that ℓ3
divides NonLin(f)|x1=0 . There are at most d linear factors (upto scalar multiplication) of
any degree d polynomial, thus there are ≤ d such possible ℓ3. By going ever all choices of V

we get that there are at most (d4 + d6)× d many such W , completing our proof. ◀

4.2 Analysis of Algorithm 6
Before going to the correctness of Algorithm 6, we state a few useful lemmas. These are
repeatedly used in our correctness and time complexity proofs.

▶ Lemma 47. With probability 1− o(1) over random choices in Step 1, the following hold.
1. ℓ̂1, . . . ℓ̂n constructed in Step 1 are LI.
2. NonLin(f) vanishes on V(ℓ1, ℓ2) iff NonLin(g) vanishes on V(Φ(ℓ1), Φ(ℓ2)).
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3. Polynomial gi has a ΣΠΣ(2, 5, d,F) circuit and rank(gi) = 5.
4. NonLin(gi) = NonLin(g)|x5=0,...,xi−1=0,xi+1=0,...,xn=0 .
5. ∀ V(ℓ1, ℓ2) ∈ S(NonLin(g)), ∃ linear forms ℓ′

1, ℓ′
2 ∈ F[x3, . . . , xn] such that V(ℓ1, ℓ2) =

V(x1 − ℓ′
1, x2 − ℓ′

2).
6. Let V(x1 − ℓ1, x2 − ℓ2) ∈ S(NonLin(g)) with ℓ1, ℓ2 ∈ F[x3, . . . , xn]. Then,

NonLin(gi) vanishes on the co-dimension 2 subspace V(x1 − ℓi
1, x2 − ℓi

2). Here ℓi
j =

ℓj |x5=0,...,xi−1=0,xi+1=0,...,xn=0
.

▶ Lemma 48. With probability 1− o(1) over the random choices in Step 3, the following
holds. ∀ i ∈ [5, n] and ∀ pairs of distinct tuples (x1 − ℓ1, x2 − ℓ2), (x1 − ℓ′

1, x2 − ℓ′
2) in Si,

(x1 −∆(ℓ1)|xi=0 , x2 −∆(ℓ2)|xi=0) ̸= (x1 −∆(ℓ′
1)|xi=0 , x2 −∆(ℓ′

2)|xi=0).

For better presentation we prove these lemmas in Appendix C. Now, we prove correctness
of Algorithm 6. By Part 1 of Lemma 47, the linear forms constructed in Step 1 are
LI and therefore isomorphism Φ can be correctly constructed using them. Using this
isomorphism, simulation of black-box for g (by passing every input through the isomorphism)
is straight forward. Further simulation of black-boxes computing the gis is also straight
forward (by setting x5 = 0, . . . , xi=1 = 0, xi+1 = 0, . . . , xn = 0 in the input to black-box).
From Parts 4, 5 of Lemma 47, we know that gi exhibits ΣΠΣ(2, 5, d,F) circuit of rank 5
and NonLin(gi) = NonLin(g)|x5=0,...,xi=1=0,xi+1=0,...,xn=0 , implying that all gi and g have
the same number of linear factors s and degree of all polynomials NonLin(gi) are equal
(= t) which is also the same as degree of NonLin(g). By correctness of Algorithm 1, with
probability 1 − o(1), Step 1 correctly obtains black-box computing NonLin(gi) and its
degree t. Since all gi are 5− variate using deterministic multivariate interpolation (Lemma
25), we can interpolate their black-boxes as degree t polynomials in the monomial basis
of F[x1, x2, x3, x4, xi]. Therefore, at the end of Step 1, we would have correct monomial
representations of all the gi. Next, using Part 5 of Lemma 47, we know that any co-
dimension 2 subspace on which NonLin(g) vanishes has the form V(x1 − ℓ1, x2 − ℓ2) with
ℓ1, ℓ2 ∈ F[x3, . . . , xn]. In Part 6 of Lemma 47, we show that NonLin(gi) vanishes on the
co-dimension 2 space V(x1− ℓi

1, x2− ℓi
2), where for j ∈ [2] and i ∈ [5, n], ℓi

j are restrictions of
ℓj to x5 = 0, . . . , xi−1 = 0, xi+1 = 0, . . . , xn = 0. Since these co-dimension 2 subspaces have
the particular form V(x1 − ℓi

1, x2 − ℓi
2), substituting x1 = ℓi

1, x2 = ℓi
2 in NonLin(gi) should

give 0. Step 2 uses this observation and computes all possible ℓi
1, ℓi

2 by solving the system of
polynomial equations we get on substitution. By correctness of Lemma 20, we can compute
all such solutions. Therefore, the set Si contain tuples corresponding to all co-dimension
2 spaces of the form V(x1 − u1, x2 − u2) (with linear forms u1, u2 ∈ F[x3, x4, xi]) on which
NonLin(gi) vanishes. In the next lemma, we show that these Si are then glued in Steps 3
and 4 to create set S which contains tuples corresponding to elements of S(NonLin(f)).

▶ Lemma 49. Step 4 outputs a set S, such that with probability 1− o(1), it contains tuples
of linear forms representing all co-dimension 2 subspaces on which NonLin(g) vanishes.

Proof. Let V(x1 − ℓ1, x2 − ℓ2) ∈ L(NonLin(g)). By Part 6 of Lemma 47 we know that
NonLin(gi) vanishes on the co-dimension 2 subspace V(x1 − ℓi

1, x2 − ℓi
2) where for j ∈ [2],

ℓi
j = ℓj |x5=0,...,xi−1=0,xi+1=0,...,xn=0

. Therefore the tuples (x1−ℓi
1, x2−ℓi

2) belong to Si computed
at Step 2. Observe that, for i ∈ [6, n] we glue tuple (x1−ℓ5

1, x2−ℓ5
2) with tuple (x1−ℓi

1, x2−ℓi
2)

only if the latter is the only tuple in Si satsfying, (x1 −∆(ℓ5
1)|x5=0

, x2 −∆(ℓ5
2)|x5=0

) =
(x1 −∆(ℓi

1)|xi=0
, x2 −∆(ℓi

2)|xi=0
). Here ∆ is the isomorphism constructed in Step 3. So

all we need to show is that, there is no other tuple (x1 − ℓi
1

′
, x2 − ℓi

2
′) ∈ Si with ℓi

1
′
, ℓi

2
′

being linear forms in F[x3, x4, xi] such that, x1 − ∆(ℓ5
1)|x5=0 = x1 − ∆(ℓi

1
′)|xi=0 and x2 −
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∆(ℓ5
2)|x5=0 = x2−∆(ℓi

2
′)|xi=0 . If there was such a tuple, comparing the equations above gives

(x1 −∆(ℓi
1)|xi=0

, x2 −∆(ℓi
2)|xi=0

) = (x1 −∆(ℓi
1

′)|xi=0
, x2 −∆(ℓi

2
′)|xi=0

), which contradicts
Lemma 48. Therefore tuple (x1 − ℓ5

1, x2 − ℓ5
2) gets correctly glued with each such tuple

(x1 − ℓi
1, x2 − ℓi

2) for i ∈ [6, n] leading to construction of tuple (x1 − ℓ1, x2 − ℓ2) which is
added to S. ◀

Assuming we correctly glued the Si into set S, Step 5, only retains tuples for which NonLin(g)
actually vanishes on the corresponding co-dimension 2 subspace. By correctness of Lemma
22, this is done correctly and only the right tuples are retained. By Part 1 of Lemma 47, in
order to get set S(NonLin(f)) from S(NonLin(g)), we only need to invert all linear forms
present in the elements (tuples) of S. Therefore, with probability 1− o(1), the set of tuples
representing co-dimension 2 subspaces on which NonLin(f) vanishes is correctly computed.

▶ Lemma 50. Algorithm 6 runs in (nd log |F|)O(1) time.

Proof. Assuming that sampling of a uniformly random scalar from F takes O(1) time, the n

linear forms are created in (n log |F|)O(1) time. Checking whether the linear are independent
can be done in (n log |F|)O(1) time by gaussian elimination on the matrix defined by the n2 coef-
ficients of these linear forms. Black-boxes for g and gi are simulated in (n log |F|)O(1) time by
passing each input through Φ and then restricting to x5 = 0, . . . , xi−1=0, xi+1 = 0, . . . , xn = 0.
Time complexity of Corollary 28 implies that black-box access to all NonLin(gi) along with
their degrees t = d − s can be obtained in (nd log |F|)O(1) time. Multivariate interpola-
tion (Lemma 25) on the 5 variate polynomials of degree t each is done in (nd log |F|)O(1)

time. Therefore Step 1 takes (nd log |F|)O(1) time. Each gi has dO(1) non-zero coefficients
in the monomial representation. Substitutions lead to dO(1) many coefficient polynomials
in F[y3, y4, yi, z3, z4, zi] with every polynomial having degree dO(1). By Part 2 of Lemma 47,
every gi has a ΣΠΣ(2, 5, d,F) circuit and has rank 5, therefore, by Part 1 of Proposition 5,
number of co-dimension 2 subspaces on which they vanish are dO(1). Therefore our system of
equations has at most dO(1) solutions since they characterize such co-dimension 2 subspaces
of a certain form. By time complexity of Lemma 20, for each gi all solutions to such a system
can be computed in (d log |F|)O(1) time leading to Si. Therefore in time (nd log |F|)O(1) time
all Si are computed in Step 2. Step 3 involves sampling O(n) many uniformly random
scalars and construction of the isomorphism ∆ can be done in (n log |F|)O(1) time. In Step
4, we iterate over all tuples in S5 and then iterate over i ∈ [6, n] trying to match our tuple
with tuples in the Si. Since each tuple in S5 is matched to at most one tuple in each Si,
for each tuple in S5, we go over all the set Si, i ∈ [6, n] just once. Therefore, overall we
take (nd log |F|)O(1) time in this step. Also, since each tuple in S5, creates at most one
tuple (x1 − ℓ1, x2 − ℓ2) to be added to S, we create at most dO(1) such tuples leading to
|S| = dO(1). In Step 5, for each tuple in S, construction of isomorphism Ψ and black-box
access to Ψ(NonLin(g))|x1=0,x2=0 can be created in (nd log |F|)O(1) time. By time complexity
of algorithm in Lemma 22, in time (nd log |F|)O(1) we can check whether this black-box
computes the 0 polynomial or not. Finally application of Φ−1 to tuples in S can be done
in (nd log |F|)O(1) time. Our final set returned has size dO(1) as it is a subset of the set we
created in Step 4. Therefore, overall Algorithm 6 takes (nd log |F|)O(1) time. ◀

5 Proof of Proposition 8

Proof of Proposition 8 follows from Lemma 51 which in turn is proved using Lemma 52.
Recall definition of set of ordinary lines (Definition 7).
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▶ Lemma 51. Let S ⊂ Fn be a proper set (Definition 6) and T ⊂ Fn be any LI set of size
log |S|+ 2. Then, sp(S) ⊆

∑
t∈T

∑
W ∈O(t,S) W .

▶ Lemma 52. Let S( ̸= ϕ) ⊂ Fn be a proper set and T ⊂ Fn be LI such that for every t ∈ T ,
there is no ordinary line (Definition 7) from t into S. Then |T | ≤ log |S|+ 1.

By taking dimension of both sides in the containment sp(S) ⊆
∑

t∈T
∑

W ∈O(t,S) W ,
applying union bound on the RHS and assuming t ∈ T maximizes dim(

∑
W ∈O(t,S) W )),

we get dim(
∑

W ∈O(t,S) W ) ≥ dim(sp(S))
log |S|+2 , which proves Proposition 8. Therefore, we prove

Lemma 51 next.

Proof of Lemma 51. Let V be the vector space
∑

t∈T
∑

W ∈O(t,S) W . We define set S ′ =
S \ V . S ′ is a proper set. We will show that S ′ = ϕ ⇒ sp(S) ⊂ V . If not, we show
that there cannot be any ordinary line from T into S ′. Suppose there is some such line
sp{t, s} where t ∈ T and s ∈ S ′ are not scalar multiples. Since it is an ordinary line into
S ′, we get that sp{s, t} ∩ S ′ ⊂ sp{s} ∪ sp{t}. Now, if sp{s, t} ∩ V ⊂ sp{s} ∪ sp{t}, then
S = S ′ ∪ (S ∩V )⇒ sp{s, t}∩S ⊂ sp{s}∪ sp{t}. Therefore it is an ordinary line into S. But
all such lines are subsets of V ⇒ s ∈ V which is a contradiction since s ∈ S ′ which is disjoint
from V . In the other case (i.e. sp{s, t} ∩ V ̸⊂ sp{s} ∪ sp{t}), there is some v ∈ sp{s, t} ∩ V

such that v /∈ sp{s} ∪ sp{t}. Therefore t, s, v are LD but t, s and s, v are not ⇒ s ∈ sp{t, v}.
Both t, v are in V by construction and thus s ∈ V which is again a contradiction since s ∈ S ′

which is disjoint from V . Therefore if S ′ is non-empty, there are no ordinary lines from T
into S. Using Lemma 52 with S ′ and T , we get that log |S|+ 2 = |T | ≤ log |S ′|+ 1 which is
a contradiction since S ′ ⊂ S. Therefore, the only conclusion left is S ′ = ϕ, which completes
the proof of our lemma as explained earlier. ◀

Proof of Lemma 52. Let |T | = d and |S| = m. We present a counting argument by building
a one-to-one function mapping subsets of [d−1] into S. Such a function implies that m ≥ 2d−1

and we’ll be done. To construct such a function, fix s ∈ S and let T = {t1, . . . , td}. Without
loss of generality assume that s, t1, . . . , td−1 are LI. For LI vectors u1, . . . , um ∈ Fn, we say
that u ∈ Fn is in the interior of sp{u1, . . . , um}, if there exist non zero αi ∈ F, i ∈ [m], such
that u = α1u1 + . . . + αmum. We use the following claim.

▷ Claim 53. For any P ⊂ [d− 1], ∃ sP ∈ S, in the interior of sp{{ti : i ∈ P} ∪ {s}}.

We can see that the function mapping P ⊂ [d − 1] to sP ∈ S, is one-to-one since for
sets P,Q ⊂ [d − 1], which differ at some j ∈ [d − 1], exactly one of sP , sQ has a non-zero
coefficient of tj , implying they are different. This completes the proof. ◀

Proof of Claim 53. We prove by induction on |P|. For |P| = 0, define sP = s and we are
done. Lets assume the claim is true for |P| = k − 1. We prove it for |P| = k. Consider
any element p ∈ P and let R = P \ {p}. By induction, we know ∃ sR in the interior of
sp{{ti : i ∈ R} ∪ {s}}. Since there is no ordinary line from any t ∈ T into S, the line
sp{tp, sR} contains sP ∈ S such that sP /∈ sp{tp}∪ sp{sR} ⇒ sP = αtp + βsR with α, β ∈ F
being non-zero scalars ⇒ sP is in the interior of sp{{ti : i ∈ P} ∪ {s}}. ◀
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A Proof of Claims 37, 38 and 43

A.1 Proofs of Claims 37 and 38
In these claims we are given that Ti = αyt

1 for some i ∈ [2], α ∈ F and linear form y1.
1. To see the proof of Claim 37, consider any linear factor ℓ of T1 + T2. ℓ ∤ T1, T2 since

gcd(T1, T2) = 1. Let Φ be an isomorphism mapping ℓ 7→ x1. Setting x1 = 0, we get
that Φ(T1)|x1=0

= −Φ(T2)|x1=0
̸= 0. Both sides are non-zero products of linear forms

in F[x2, . . . , xn]. Therefore, by unique factorization we can match factors (upto scalar
multiplication). This implies that dim({linear form ℓ : ℓ | T1}) and dim({linear form ℓ :
ℓ | T2}) cannot differ from each other by more than 1. But since rank(f) = Ω(log3 d),
this cannot happen since one of the Tis spans a one dimensional space. Therefore T1 + T2
has no linear factors and we are done.

2. To see proof of Claim 38, without loss of generality assume y1 | T1. Define isomorphism Φ
mapping y1 7→ x1. Using Claim 37 we know that 0 ̸= Φ(T2)|x1=0

= (Φ(T1)+Φ(T2))|x1=0 =
Φ(NonLin(f))|x1=0 . So first condition of Definition 16 is satisfied. As argued in Claim
37, rank(f) ≥ Ω(log3 d)⇒ linear forms dividing T2, span a Ω(log3 d) dimensional space.
Since Φ(T2)|x1=0

is non-zero, its factors also span Ω(log3 d) dimensional space and so there
exist two LI factors y2, y3 of T2 such that NonLin(f) vanishes on both V(y1, y2) and
V(y1, y3). This implies that second condition of Definition 16 is also satisfied. Therefore,
some scalar multiple of y1 ∈ L(NonLin(f)).

A.2 Proof of Claim 43
1. dim(sp(Lfactors)) ≤ log d + 2: By definition Lfactors is the set of all factors of T1 + T2.

Consider any LI subset Z ⊂ Lfactors and let ℓ ∈ Z. Define isomorphism Φ mapping
ℓ 7→ x1. Setting x1 = 0 in Φ(T1) + Φ(T2) gives Φ(T1)|x1=0

= −Φ(T2)|x1=0
̸= 0. By

unique factorization in ring F[x2, . . . , xn], for every linear form ℓ1 | T1 ∃ ℓ2 | T2 such that
ℓ2 ∈ sp{ℓ, ℓ1}. Since ℓ2 /∈ sp{ℓ}∪ sp{ℓ1}, this means that sp{ℓ, ℓ1} is not an ordinary line
from ℓ into the proper set L containing linear factors of T1, T2. This set has size ≤ 2d.
Since ℓ was arbitrary in Z, there are no ordinary lines from Z into L. So using Lemma
52 we get that |Z| ≤ log |L|+ 1 = log d + 2, completing the proof.

2. dim(sp(Lgood)) ≥ rank(f)− 2 and Lothers ≤ 2: Define Vi = {linear form ℓ : ℓ | Ti}. We
break the proof into two cases. Note that linear forms dividing T1, T2 satisfy first condition
of Definition 16. So whenever we are trying to show that they belong to L(NonLin(f)),
we only prove that they satisfy second condition of Definition 16.
a. First we discuss the case dim(Vi) ≥ log d + 5 ∀ i ∈ [2]. Let H be such that T1 + T2 =

H ×NonLin(f). Let ℓ1 | T1 and Φ be isomorphism mapping ℓ1 7→ x1, then, we see
that Φ(T2)|x1=0

= Φ(H)|x1=0 × Φ(NonLin(f))|x1=0 ̸= 0. Dimension of span of linear
factors of Φ(T2)|x1=0

is at least log d + 4 by assumption in this case. By previous
part, dim(sp(Lfactors)) ≤ log d + 2⇒ Φ(NonLin(f))|x1=0 has two independent linear
factors. Using these we can satisfy second condition of Definition 16 for ℓ1 ⇒ some
scalar multiple of ℓ1 ∈ L(NonLin(f)). The same argument can be repeated for a linear
factor ℓ2 | T2. Thus all linear factors of T1 × T2 are in L(NonLin(f)) (upto scalar
multiplication) ⇒ dim(Lgood) = rank(f). This also implies that dim(Lothers) = 0.
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b. In the case, ∃ i ∈ [2] such that dim(Vi) ≤ log d + 4 ⇒ dim(V3−i) = Ω(log3 d). Using
an argument similar to the one in proof of Claim 37, NonLin(f) = T1 + T2. Consider
any basis {ℓ1, . . . , ℓr} of V1 + V2. If dim(Vi) ≥ 3 ∀ i ∈ [2], then using a similar
argument as before, we can show that all ℓi satisfy second condition in Definition 16
⇒ dim(Lgood) = rank(f)⇒ dim(Lothers) = 0. In case for some i ∈ [2], dim(Vi) = 2
(recall we have assumed dim(Vi) ≥ 2 in the statement of Claim 43), then all linear
forms dividing T3−i are not contained in Vi and hence satisfy second condition of
Definition 16. Thus dim(Lgood) ≥ rank(f)− 2 and dim(Lothers) ≤ 2.

3. dim(sp(Lbad)) ≤ log d + 2: Assume dim(Lbad) ≥ log d + 3. Consider the proper set L
containing all linear factors of T1, T2 ⇒ |L| ≤ 2d⇒ |Lbad| ≥ log |L|+ 2. Let T ⊂ Lbad be
a LI set of size log |L|+ 2. Then by Proposition 5, ∃ t ∈ T such that ordinary lines from
t into L span a space of dimension ≥ dim(sp(L))

log |L|+2 ≥
rank(f)
log d+3 = Ω(log2 d). Since t ∈ Lbad,

restricting T1 +T2 to V(t) (see Definition 15) gives some non-zero product of linear factors,
say H. Let Φ be an isomorphism mapping t 7→ x1. Then Φ(T1)|x1=0

+Φ(T2)|x1=0−H = 0.
This gives an identically zero ΣΠΣ(3, n, d,F) circuit. Since t ∈ Lbad, it does not divide
T1, T2 ⇒ the above circuit is minimal (Definition 12). After cancelling common linear
forms from the three gates Φ(T1)|x1=0

, Φ(T2)|x2=0
, H, we have a simple (Definition 11)

and minimal, identically zero ΣΠΣ(3, n, d,F) circuit. The Ω(log2 d) ordinary lines from t

into L imply that after cancelling the common linear forms, the simple minimal circuit
has rank Ω(log2 d) which is a contradiction to Lemma 24. Thus we conclude that
dim(sp(Lbad)) ≤ log d + 2.

B Proof of Lemma 46

Let Ti =
∏m

j=1 ℓi,j where ℓi,j are linear forms. We know that
∏m

j=1 Φ(ℓ1,j)|x1=0,x2=0
=

−
∏m

j=1 Φ(ℓ2,j)|x1=0,x2=0
̸= 0. Note that Φ(ℓi,j)|x1=0,x2=0

can be thought of as linear forms
over F in n−2 variables, and by using unique factorization of polynomials over F, without loss
of generality we can assume Φ(ℓ1,j)|x1=0,x2=0

= βjΦ(ℓ2,j)|x1=0,x2=0
for some 0 ̸= βj ∈ F. Since

Φ is an isomorphism, we get that Uj = sp{ℓ1,j , ℓ2,j} intersects U = sp{ℓ1, ℓ2} non-trivially.
Since Φ(ℓi,j)|x1=0,x2=0

̸= 0 and both U, Uj are 2 dimensional, we get that U ≠ Uj ⇒ U ∩ Uj

is 1 dimensional. We split the proof into two cases:

There exist two distinct spaces, say Ui, Uj such that U ∩ Ui = U ∩ Uj : This
implies U ∩Ui ⊂ Ui ∩Uj . The space Ui ∩Uj is 1 dimensional since Ui, Uj are distinct, say
Ui∩Uj = sp{ℓ}. Both sides of the containment U∩Ui ⊂ Ui∩Uj are 1 dimensional implying
Ui ∩ Uj = U ∩ Ui ⊂ U = sp{ℓ1, ℓ2}. This further implies that ℓ ∈ U ⇒ W ⊂ V(ℓ) = V .
There are ≤ d4 choices for such Ui, Uj and therefore d4 possibilities for such V .

∀ distinct Ui, Uj, U ∩ Ui ̸= U ∩ Uj : Vector space U ∩ Ui + U ∩ Uj is 2 dimensional,
since it is a sum of disjoint 1 dimensional spaces. U is also 2 dimensional ⇒ U =
U ∩ Ui + U ∩ Uj ⊂ Ui + Uj . Using statement of Proposition 5, we know that, 5 ≤
rank(f) = dim(sp{ℓi,j}) = dim(

∑m
j=1 Uj) ≤

∑m
j=1 dim(Uj). Since dim(Ui + Uj) ≤ 4,

∃ Uk such that Uk ̸⊂ Ui + Uj . Note that this would imply that Uk ∩ (Ui + Uj) has
dimension ≤ 1. Since U ⊂ Ui + Uj , we get that Uk ∩ U ⊂ Uk ∩ (Ui + Uj). Both sides are
1 dimensional. Writing Uk ∩ (Ui + Uj) = sp{ℓ} ⇒ ℓ ∈ U ⇒ W ⊂ V(ℓ) = V . There are
≤ d6 choices for Ui, Uj , Uk and so ≤ d6 possibilities for such V .

A is collection of all V s obtained above. |A| ≤ d4 + d6 and A satisfies the required conditions.
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C Proofs of Lemmas in Algorithm 6

C.1 Proof of Lemma 47
We prove each part one by one below. Let ℓ̂i =

∑n
j=1 αi,jxj , i ∈ [n] be the n linear

forms that were constructed using the uniformly randomly independently samples αi,j , i ∈
[n], j ∈ [n]. Recall that Φ maps xi 7→ ℓ̂i. Let Γ be a homomorphism from F[x1, . . . , xn]→
F[x1, x2, x3, x4, xi] that sets x5 = 0, . . . , xi−1 = 0, xi+1 = 0, . . . , xn = 0.

1. This is equivalent to showing that with probability 1− o(1), matrix (αi,j)(i,j)∈[n]×[n] is
invertible. This is further equivalent to showing that the determinant polynomial of this
matrix is non-zero which follows from Lemma 21.

2. Consider any isomorphism Ψ mapping ℓ1 7→ x1, ℓ2 7→ x2, then Ψ ◦Φ−1 is an isomorphism
mapping Φ(ℓ1) 7→ x1, Φ(ℓ2) 7→ x2. Further, Ψ(NonLin(f)) = Ψ ◦ Φ−1(Φ(NonLin(f))).
Setting x1 = 0, x2 = 0⇒ Ψ(NonLin(f))|x1=0,x2=0 = Ψ◦Φ−1(Φ(NonLin(f)))|x1=0,x2=0 ⇒
NonLin(f) vanishes on V(ℓ1, ℓ2) iff Φ(NonLin(f)) vanishes on subspace V(Φ(ℓ1), Φ(ℓ2)).
Since Φ is an isomorphism, irreducible factors of f remain irreducible on applying Φ,
thereby implying that Φ(NonLin(f)) = NonLin(Φ(f)) = NonLin(g).

3. Recall f = G× (T1 +T2), with G, T1, T2 being product of linear forms and gcd(T1, T2) = 1.
Since Φ is an isomorphism, we get that g = Φ(G)×(Φ(T1)+Φ(T2)). Since Φ is an isomorph-
ism, gcd(Φ(T1), Φ(T2)) = 1. Therefore we get gi = Γ(g) = Γ(Φ(G))(Γ(Φ(T1)) + Γ(Φ(T2))).
Next, consider linear forms ℓ =

∑n
j=1 ajxj and ℓ′ =

∑n
j=1 a′

jxj such that ℓ | T1 and
ℓ′ | T2. Applying Φ to these linear forms we get, Φ(ℓ) =

∑n
k=1

∑n
j=1 ajαj,kxk. Therefore

coefficients of x1, x2 in Γ(Φ(ℓ)) are
∑n

j=1 ajαj,1,
∑n

j=1 ajαj,2 respectively and those in
Γ(Φ(ℓ′)) are

∑n
j=1 a′

jαj,1,
∑n

j=1 a′
jαj,2. We argue that vectors (

∑n
j=1 ajαj,1,

∑n
j=1 ajαj,2)

and (
∑n

j=1 a′
jαj,1,

∑n
j=1 a′

jαj,2) are not scalar multiples with probability 1− o(1). This

is equivalent to showing that the determinant

∣∣∣∣∣
∑n

j=1 ajαj,1
∑n

j=1 ajαj,2∑n
j=1 a′

jαj,1
∑n

j=1 a′
jαj,2

∣∣∣∣∣ is non-zero.

If ℓ, ℓ′ are not scalar multiples, this determinant is not an identically zero polynomial
in the αj,k, j ∈ [n], k ∈ [2] and therefore probability (over the random choices of αj,k)
that the determinant is non-zero = 1− o(1). Therefore with probability 1− o(1), Γ(Φ(ℓ))
and Γ(Φ(ℓ′)) are not scalar multiples. Since ℓ, ℓ′ are arbitrary linear factors of T1, T2
respectively, by union bound with probability 1 − o(1), gcd(Γ(Φ(T1)), Γ(Φ(T2))) = 1
implying that all gi exhibit ΣΠΣ(2, 5, d,F) circuit. Since rank(f) = Ω(log2 d), we know
that dim(sp{linear form ℓ : ℓ | T1 × T2}) ≥ 5, therefore, by a similar argument (using
Lemma 21), we get that {Γ(Φ(ℓ)) : linear form ℓ | T1 × T2} spans a 5 dimensional space.
This set is same as {linear form ℓ : ℓ | Γ(Φ(T1))×Γ(Φ(T2))})} ⇒ rank(gi) = 5 ∀ i ∈ [5, n].

4. By effective Hilberts irreducibility theorem (Lemma 26), with probability 1− o(1) over
the αi,j , i ∈ [n], j ∈ [n], the irreudicible factors of Φ(f)(x1, . . . , xn) = f(Φ(x1), . . . , Φ(xn))
remain irreducible on setting x5 = 0, . . . , xi−1 = 0, xi+1 = 0, . . . , xn = 0 i.e. on applying
Γ. This implies that NonLin(Γ(Φ(f))) = Γ(NonLin(Φ(f))). The LHS is NonLin(gi)
and RHS is NonLin(g)|x5=0,...,xi−1=0,xi+1=0,...,xn=0 .

5. Let V(ℓ̂1, ℓ̂2) belong to S(NonLin(f)). Assume ℓ̂1 =
∑n

j=1 ajxj and ℓ̂2 =
∑n

j=1 bjxj ,
Then we get that Φ(ℓ̂1) =

∑n
k=1(

∑n
j=1 ajαj,k)xk and Φ(ℓ̂2) =

∑n
k=1(

∑n
j=1 bjαj,k)xk.

We define ck =
∑n

j=1 ajαj,k an dk =
∑n

j=1 bjαj,k for k ∈ [n]. Therefore Φ(ℓ̂1) =∑n
k=1 ckxk and Φ(ℓ̂2) =

∑n
k=1 dkxk. Now we define linear forms ℓ3 = d2Φ(ℓ̂1)− c2Φ(ℓ̂2)

and ℓ4 = −d1Φ(ℓ̂1) + c1Φ(ℓ̂2). Note that d2c1 − c2d1 is a polynomial in αj,k, j ∈
[n], k ∈ [2]. Like in the previous part, unless ℓ̂1, ℓ̂2 are LD this polynomial is not



G. Sinha 118:33

identically 0. Therefore with probability 1− o(1) over the uniformly randomly chosen
linear forms in Step 1, d2c1− c2d1 ≠ 0. This also means that ℓ3, ℓ4 are LI and V(ℓ3, ℓ4) =
V(Φ(ℓ̂1), Φ(ℓ̂2)). Analyzing ℓ3, ℓ4 we see that ℓ3 = (d2c1− c2d1)x1 +

∑n
k=3(d2ck− c2dk)xk

and ℓ4 = (d2c1 − c2d1)x2 +
∑n

k=3(dkc1 − ckd1)xk. Define ℓ′
1 = −

∑n
k=3

d2ck−c2dk

d2c1−c2d1
xk, and

ℓ′
2 = −

∑n
k=3

dkc1−ckd1
d2c1−c2d1

xk, further implying that V(ℓ1, ℓ2) = V(x1 − ℓ′
1, x2 − ℓ′

2) with
ℓ′

1, ℓ′
2 ∈ F[x3, . . . , xn]. Now since S(NonLin(f)) has size dO(1), by union bound, with

probability 1− o(1), we can prove all of this for every V(ℓ̂1, ℓ̂2) ∈ S(NonLin(f)).
Now, given any V(ℓ1, ℓ2) ∈ S(NonLin(g)), by Part 2 of this Lemma, we know that
V(ℓ1, ℓ2) ∈ S(NonLin(g)) iff V(Φ−1(ℓ1), Φ−1(ℓ2)) ∈ S(NonLin(g)). So we can use our
argument for ℓ̂1 = Φ−1(ℓ1), and ℓ̂2 = Φ−1(ℓ2), thereby completing the proof.

6. Let V(ℓ1, ℓ2) ∈ S(NonLin(g)) and ℓi
j = ℓj |x5=0,...,xi−1=0,xi+1=0,...,xn=0

. By previous part
we know that ∃ ℓ′

1, ℓ′
2 ∈ F[x3, . . . , xn] such that V(ℓ1, ℓ2) = V(x1 − ℓ′

1, x2 − ℓ′
2). Let Θ be

an isomorphism mapping x1−ℓ′
1 7→ x1, x2−ℓ′

2 7→ x2 and for j ∈ [3, n], xj 7→ xj . Similarly
let Θ′ be isomorphism on F[x1, x2, x3, x4, xi] mapping x1 − ℓ′′

1 7→ x1, x2 − ℓ′′
2 7→ x2 and

for j ∈ {3, 4, i}, xj 7→ xj . Finally let Γ be the homomorphism from F[x1, . . . , xn] to
F[x1, x2, x3, x4, xi] mapping xj 7→ 0 ∀ j ∈ [5, i − 1] ∪ [i + 1, n]. It is easy to see that
Γ ◦ Θ = Θ′ ◦ Γ. We know that NonLin(g) vanishes on V(x1 − ℓ′

1, x2 − ℓ′
2), therefore

Θ(NonLin(g))|x1=0,x2=0 = 0, implying that Γ(Θ(NonLin(g))|x1=0,x2=0) = 0. We know
that Γ fixes x1, x2 therefore we can set x1 = 0, x2 = 0 after applying Γ, thereby giving
Γ(Θ(NonLin(g)))|x1=0,x2=0 = 0. Γ ◦ Θ = Θ′ ◦ Γ ⇒ Θ′(Γ(NonLin(g)))|x1=0,x2=0 = 0.
Now, Part 4 of this lemma gives NonLin(gi) = Γ(NonLin(g)). Using this we get,
Θ′(NonLin(gi))|x1=0,x2=0 = 0. Therefore NonLin(gi) vanishes on V(x1 − ℓ1

′′, x2 − ℓ2
′′).

C.2 Proof of Lemma 48
Fix i ∈ [6, n]. Consider a pair of distinct tuples (x1 − ℓ1, x2 − ℓ2), (x1 − ℓ′

1, x2 − ℓ′
2) in Si.

By construction, ℓ1, ℓ2, ℓ′
1, ℓ′

2 ∈ F[x3, x4, xi]. So we assume that, ℓ1 = a3x3 + a4x4 + aixi,
ℓ2 = b3x3 + b4x4 + bixi, ℓ′

1 = a′
3x3 + a′

4x4 + a′
ixi and ℓ′

2 = b′
3x3 + b′

4x4 + b′
ixi. Therefore,

∆(ℓ1) = (a3 + αi,3ai)x3 + (a4 + αi,4ai)x4 + aixi, ∆(ℓ2) = (b3 + αi,3bi)x3 + (b4 + αi,4bi)xi + bixi,

∆(ℓ′
1) = (a′

3 + αi,3a′
i)x3 + (a′

4 + αi,4a′
i)x4 + a′

ixi, ∆(ℓ′
2) = (b′

3 + αi,3b′
i)x3 + (b′

4 + αi,4b′
i)x4 + b′

ixi

If (∆(ℓ1)|xi=0 , ∆(ℓ2)|xi=0) = (∆(ℓ′
1)|xi=0 , ∆(ℓ′

2)|xi=0), then we get a system of linear equations
in αi,3, αi,4 which can be simplified to get αi,3(ai − a′

i) = a′
3 − a3, αi,4(ai − a′

i) = a′
4 −

a4, αi,3(bi− b′
i) = b′

3− b3, αi,4(bi− b′
i) = b′

4− b4. Since tuples (ℓ1, ℓ2) and (ℓ′
1, ℓ′

2) are distinct,
at least one of (a′

3 − a3), (ai − a′
i), (a′

4 − a4), (bi − b′
i), (b′

3 − b3), (b′
4 − b4) is non-zero implying

that at least one linear equation is not identically zero. By Lemma 21, we then know that with
probability 1− o(1) over the uniformly random choices of αi,3, αi,4 the equation cannot be
zero. Therefore with probability 1− o(1), (∆(ℓ1)|xi=0 , ∆(ℓ2)|xi=0) ̸= (∆(ℓ′

1)|xi=0 , ∆(ℓ′
2)|xi=0).

Using Part 3 of Lemma 47, we know that rank(NonLin(gi)) = 5 implying that |Si| = dO(1).
So we can take a union bound over all pairs of tuples in Si. Finally, we take a union bound
over all i and guarantee that with probability 1− o(1), the statement in this lemma holds.
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