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Abstract
In this work, we initiate the study of the Minimum Circuit Size Problem (MCSP) in the quantum
setting. MCSP is a problem to compute the circuit complexity of Boolean functions. It is a
fascinating problem in complexity theory – its hardness is mysterious, and a better understanding of
its hardness can have surprising implications to many fields in computer science.

We first define and investigate the basic complexity-theoretic properties of minimum quantum
circuit size problems for three natural objects: Boolean functions, unitaries, and quantum states. We
show that these problems are not trivially in NP but in QCMA (or have QCMA protocols). Next,
we explore the relations between the three quantum MCSPs and their variants. We discover that
some reductions that are not known for classical MCSP exist for quantum MCSPs for unitaries and
states, e.g., search-to-decision reductions and self-reductions. Finally, we systematically generalize
results known for classical MCSP to the quantum setting (including quantum cryptography, quantum
learning theory, quantum circuit lower bounds, and quantum fine-grained complexity) and also find
new connections to tomography and quantum gravity. Due to the fundamental differences between
classical and quantum circuits, most of our results require extra care and reveal properties and
phenomena unique to the quantum setting. Our findings could be of interest for future studies, and
we post several open problems for further exploration along this direction.
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1 Introduction

The Minimum Circuit Size Problem (MCSP) is one of the central computational problems
in complexity theory. Given the truth table of a Boolean function f : {0, 1}n → {0, 1}
and a size parameter s (in unary) as inputs, MCSP asks whether there exists a circuit of
size at most s for f . While MCSP has been studied as early as the 1950s in the Russian
cybernetics program [45], its complexity remains mysterious: we do not know whether it is
in P or NP-hard. Meanwhile, besides being a natural computational problem, in recent years,
researchers have discovered many surprising connections of MCSP to other areas such as
cryptography [42], learning theory [12], circuit complexity [29], average-case complexity [18],
and others.

Quantum computing is of growing interest, with applications to cryptography [44],
machine learning [8], and complexity theory [28], etc. Inspired by the great success of MCSP
in classical computation and the flourishing of quantum computers, we propose a new research
program of studying quantum computation through the lens of MCSP. We envision MCSP
as a central problem that connects different quantum computation applications and provides
deeper insights into the complexity-theoretic foundation of quantum circuits.

1.1 The classical MCSP and its connections to other problems

It is immediate that MCSP ∈ NP because the input size is 2n so one can verify if a circuit
(given as the certificate/proof) computes the input truth table in time 2O(n). However, there
is no consensus on the complexity status of this problem – MCSP could be in P, NP-complete,
or NP-intermediate. Several works [37, 29] showed negative evidence for proving the NP-
hardness of MCSP using standard reduction techniques. We also do not know whether there
is an algorithm better than brute force search (see Perebor conjecture for MCSP [45]) or
whether there is a search-to-decision reduction or a self-reduction1 for MCSP2. On the other
hand, several variants of MCSP are NP-hard under either deterministic reductions [36, 19] or
randomized reductions [20, 23].

Researchers have discovered many surprising connections of MCSP to other fields in Theor-
etical Computer Science including cryptography, learning theory, and circuit lower bounds. To
name a few, Razborov and Rudich [42] related natural properties against P/poly with circuit
lower bounds and pseudorandomness. Kabanets and Cai [29] showed that MCSP ∈ P implies
new circuit lower bounds, and that MCSP ∈ BPP implies that any one-way function can be
inverted. Allender and Das [5] related the complexity class SZK (Statistical Zero Knowledge)
to MCSP. Carmosino, Impagliazzo, Kabanets and Kolokolova [12] showed that MCSP ∈ BPP
gives efficient PAC-learning algorithms. Impagliazzo, Kabanets and Volkovich [25] showed
that the existence of indistinguishable obfuscation implies that SAT reduces to MCSP under
a randomized reduction. Hirahara [18] showed that if an approximation version of MCSP is
NP-hard, then the average-case and worst-case hardness of NP are equivalent. Arunachalam,
Grilo, Gur, Oliveira and Sundaram [7] proved that MCSP ∈ BQP implies new circuit lower
bounds. All these results indicate that the MCSP serves as a “hub” that connects many
fundamental problems in different fields. Therefore, a deeper understanding of this problem
could lead to significant progress in Theoretical Computer Science.

1 Roughly, a problem is self-reducible if one can solve the problem with size n by algorithms for smaller
size.

2 It is worth noting that every NP-complete problem has search-to-decision reductions and self-reductions.
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2 Main results and technical overview

In this work, we consider three different natural objects that a quantum circuit can compute:
Boolean functions, unitaries, and quantum states. We start with giving the informal
definitions of the minimum circuit size problem for each of them. (See the full version for
formal definitions.)

▶ Definition 1 (MQCSP, informal). Given the truth table of a Boolean function f and a size
parameter s in unary, decide if there exists a quantum circuit C which has size at most s
and uses at most s ancilla qubits such that C computes f with high probability.

▶ Definition 2 (UMCSP, informal). Given the full description of a 2n-dimensional unitary
matrix U and a size parameter s in unary, decide if there exists a quantum circuit C which
has size at most s and uses at most s ancilla qubits such that C and U are close3.

▶ Definition 3 (SMCSP, informal). Let |ψ⟩ be an n-qubit state. Given size parameters s and
n in unary and access to arbitrarily many copies of |ψ⟩ (or the classical description of |ψ⟩),
decide if there exists a quantum circuit C which has size at most s using at most s ancilla
qubits such that C|0n⟩ and |ψ⟩ are close in terms of fidelity.

In the rest of this section, we first discuss several challenges and difficulties we encountered
in the study of MCSP when moving from the classical setting to the quantum setting. Next, we
give an overview of all the results and techniques. In particular, we focus on both interpreting
the new connections we establish as well as the technical subtleties when quantizing the
previous works in the classical setting. For a quick summary of the results, please take a
look at Table 1.

2.1 Challenges and difficulties when moving to the quantum setting
In the following, we summarize several fundamental properties of quantum circuits, unitaries,
and quantum states that induce problems and difficulties that would not appear in the
classical setting.

Quantum computation is generally random and erroneous. It is natural to consider
quantum circuits that approximate (rather than exactly computing) the desired unitary. One
immediate consequence is that we have to define the quantum MCSPs as promise problems
(with respect to the error)4, which is more challenging to deal with. Moreover, since unitaries
and quantum states are specified by complex numbers, we also need to properly tackle the
precision issue. These quantum properties make generalizing classical results to the quantum
setting non-trivial. For instance, some classical analyses (see [7] for an example) rely on the
fact that the classical circuits are deterministic after the random string is made public, while
any intermediate computation of a quantum circuit is inherently not deterministic.

Quantum circuits are reversible. This follows from the fact that every quantum gate is
reversible. While this seems to be a restriction for quantum circuits, we observe that this
enables search-to-decision reductions for UMCSP and SMCSP. Note that the existence of such
reduction is a longstanding open question for classical MCSP. This suggests that quantum
MCSPs can provide a new angle to leverage the reversibility of quantum circuits.

3 We say C and U are close if |(⟨ψ| ⊗ I)U†C(|ψ⟩|0⟩)| is large for all |ψ⟩.
4 The definitions above are not promise problems for simplicity. Check the full version for formal

definitions.
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The introduction of ancilla qubits. As quantum circuits are reversible, every intermediate
computation has to happen on the input qubits. Thus, it is very common to introduce ancilla
qubits which are extra qubits initialized to all zero and can be regarded as additional registers
for intermediate computation. Ancilla qubits introduce complications in quantum MCSPs.
First, the quantum circuit complexity of an object could be very different when the allowed
number of ancilla qubits is different. Second, the classical simulation time of a quantum
circuit scales exponentially in the number of input qubits plus the number of ancilla qubits.
Namely, when the number of ancilla qubits is super-linear, classical simulations would require
super-polynomial time5. An immediate consequence is that, unlike classical MCSP, MQCSP
is not trivially in NP when allowing a super-linear number of ancilla qubits. In addition, the
output of quantum circuits on ancilla qubits can be arbitrary quantum states in general.
This property makes certain reductions for quantum MCSPs fail when considering many
ancilla qubits.

Various universal quantum gate sets. The choice of the gate set affects the circuit com-
plexity of the given Boolean functions (and unitaries and states). There are various universal
quantum gate sets, and transforming from one to the other results in additional polylogar-
ithmic overhead to the circuit complexity by the Solovay-Kitaev Theorem. We note that
when considering certain hardness results, the choice of the gate set might matter. Take
the approximate self-reduction for SMCSP (in Theorem 12) as an example, we start from
constructing such reductions for a particular gate set. We then generalize the result to an
arbitrary gate set via the Solovay-Kitaev Theorem; however, it introduces additional over-
head to the approximation ratio. Another example is proving NP-hardness for multi-output
MQCSP, where we show that the problem is NP-hard when considering particular gate sets,
and it is still open whether the problem is NP-hard for all universal gate sets.

2.2 The Hardness of MQCSP and cryptography
We start with stating the hardness results of MQCSP and its implications in cryptography.

▶ Theorem 4 (Informal).
1. MQCSP is in QCMA ⊆ QMA.
2. If MQCSP can be solved in quantum polynomial time, then quantum-secure one-way

function (qOWF) does not exist.
3. If one can solve MQCSP efficiently, then all problems in SZK have efficient algorithms.
4. Suppose that quantum-secure indistinguishability obfuscator (iO) for polynomial-size

circuits exists. Then, MQCSP ∈ BQP implies NP ⊆ coRQP6.
5. Multiple-output MQCSP (under a gate set with some natural properties) is NP-hard under

randomized reductions.

We have discussed why MQCSP is not trivially in NP earlier. So, it is natural to wonder
what can be a tighter upper bound for MQCSP. Instead of considering classical verifier, we
allow the verifier to check the given witness circuit quantumly and thus are able to prove
that MQCSP is in QCMA (which is a quantum analogue of MA allowing efficient quantum
verifiers but classical witness).

5 The running time is measured with respect to the size of the truth table or the size of the unitary/quantum
state.

6 coRQP is a complexity class of quantumly solvable problems with perfect soundness and bounded-error
completeness.
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For item 2 – 5, we study whether some hard problems reduce to MQCSP. Classically,
many results use the fact that an MCSP oracle can break certain pseudorandom generators
to show reductions from hard problems to MCSP. A distinguisher can break a pseudorandom
generator by viewing that the string is a truth table of some Boolean function and using the
MCSP oracle to decide if the function has small circuit complexity7. We generalize this idea
to the quantum setting by observing that if the Boolean function has small classical circuit
complexity, then its quantum circuit complexity is also small. It is worth noting that the
second result implies efficient algorithms for some lattice problems if MQCSP is in BQP.

For item 5, we generalize the recent breakthrough of Ilango, Loff and Oliveira [23] on the
NP-hardness of MCSP. We note that the formal theorem statement depends on the gate set
choices of MQCSP. To prove this theorem, we follow the proof ideas in [23] and overcome
some additional obstacles that appear in the quantum world. The new obstacle comes from
(i) the quantum gate set is different from the one in the classical case; (ii) in the quantum
world, we need to deal with error terms. We carefully handle these issues and extend the
proof to the quantum setting.

2.3 MQCSP and learning theory
A central learning theory setting is (approximately) reconstructing a circuit for an unknown
function given a limited number of samples. Learning Boolean functions in the classical
setting was extensively studied (see, for example, a survey by Hellerstein and Servedio [17]);
however, relatively few explorations have been made under the quantum setting. There are
two natural quantum extensions: (i) learning a quantum circuit and (ii) adding quantumness
in the learning algorithm. We study both scenarios and provide generic connections between
MQCSP and the two settings

PAC learning for quantum circuits. Probabilistic approximately correct (PAC) learning [46]
is a standard theoretical framework in learning theory. There are several variants, but for
simplicity, we focus on the query model where a classical learning algorithm can query an
unknown n-bit Boolean function f on inputs x1, . . . , xm ∈ {0, 1}n and aim to output a
circuit approximating f with high probability. To have efficient PAC learning algorithms for
polynomial-size quantum circuits, we show that it is necessary and sufficient to have efficient
algorithms for MQCSP or its variants.

▶ Theorem 5 (Informal). The existence of an efficient PAC learning algorithm for BQP/poly
is equivalent to the existence of an efficient randomized algorithm for MQCSP.

Quantum learning. In the past two decades, there has been increased interest in quantum
learning (see a survey by Arunachalam and de Wolf [6]) due to the success of machine learning
and quantum computing. While there have been interesting quantum speed-ups for specific
learning problems such as principal component analysis [34] and quantum recommendation
system [30], it is unclear whether the quantumness can provide a generic speed-up in learning
theory. A recent result of Arunachalam, Grilo, Gur, Oliveira and Sundaram [7] suggested that
this might be difficult by showing that the existence of efficient quantum learning algorithms
for a circuit class would imply a breakthrough circuit lower bound. We further generalize
their result by showing the equivalence of efficient quantum PAC learning and the non-trivial
upper bound for MQCSP.

7 If the truth table is truly random, it corresponds to a random function and must have large circuit
complexity with high probability.

ITCS 2022
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▶ Theorem 6 (Informal). The existence of efficient quantum learning algorithms for PAC
learning a circuit class C is equivalent to the existence of efficient quantum algorithms for
C-MQCSP8.

The proof idea is to quantize the “learning from a natural property” paradigm of [12].
Briefly speaking, the converse direction “algorithms for MQCSP imply learning algorithms”
follows from the idea that one can use the Boolean function (the object to be learned) to
construct a PRG with the property that breaking the PRG implies a reconstructing algorithm
for f . Then, since an algorithm for MQCSP can break PRG, we obtain an algorithm for f .
Another direction follows from the observation that we can still apply the learning algorithm
given the truth table of the function. Specifically, for Theorem 5, it turns out that the
converse direction is straightforward because P/poly ⊂ BQP/poly while the forward direction
requires the number of ancilla bits to be O(n) due to the overhead from a classical simulation
for quantum circuits. For Theorem 6, the difficulty lies in the fact that a quantum circuit is
inherently random and one cannot arbitrarily compose quantum circuits as their wishes. To
circumvent these issues, we invoke the techniques in [7] which built up composable tools for
reconstructing a circuit from a quantum distinguisher.

2.4 MQCSP and quantum circuit lower bounds
The classical MCSP is tightly connected to circuit lower bounds. We generalize the results
of Oliveira and Santhanam [38], Arunachalam, Grilo, Gur, Oliveira and Sundaram [7], and
Kabanets and Cai [29] to MQCSP.

▶ Theorem 7 (Informal). Suppose that MQCSP ∈ BQP. Then
1. BQE ̸⊂ BQC[nk] for any constant k ∈ N9; and
2. BQPQCMA ̸⊂ BQC[nk] for any constant k ∈ N.

For item 1, we use MQCSP to construct a BQP-natural property against quantum circuit
classes. Then, with a quantum-secure pseudorandom generator, we can use a “win-win
argument” to show that BQE ̸⊂ BQC[nk] for any k > 0. The proof mainly follows from
[7, 38]. However, we extend their proofs to the quantum natural properties against quantum
circuit classes. One technical contribution is a diagonalization lemma for quantum circuits.

For item 2, we follow the idea in [29] to show that the maximum quantum circuit
complexity problem10 can be solved in exponential time with a QCMA oracle. The main
difference from the classical case is that we require a QCMA oracle instead of an NP one,
which follows from the fact that we assume MQCSP is in BQP11. Then, the statement follows
from the standard padding argument.

Another aspect of quantum circuit complexity is hardness amplification. Kabanets and Cai
[29] showed that MCSP can be used as an amplifier to generate many hard Boolean functions.
In this part, we show that with an MQCSP oracle, given one quantum extremely hard Boolean
function, there is an efficient quantum algorithm that outputs many quantum-hard functions.

8 C-MQCSP is MQCSP with respect to circuit class C.
9 BQC[nk] is the complexity class for problems that can be solved by O(nk)-size quantum circuits with

bounded fan-in, and BQE in the set of problems that can be solved in 2O(n) time by quantum computers.
Previously, Aaronson [1] showed that PPP ̸⊂ BQC[nk] unconditionally. However, the relations between
PPP, BQE, and BQPQCMA are still unclear. We also expect that one can generalize the result of
Impagliazzo, Kabanets and Volkovich [25] to show the circuit lower bound for promise-BQP relative to
an MQCSP oracle. We will update the result in the full version.

10 The problem is, given 1n, ask for a Boolean function f : {0, 1}n → {0, 1} that has the maximum
complexity.

11 Along this line, the result still holds if we consider MCSP ∈ BQP and maximum classical circuit
complexity.
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▶ Theorem 8 (Hardness amplification by MQCSP, informal). Assume MQCSP ∈ BQP. There
exists a BQP algorithm that, given the truth table of a Boolean function with quantum circuit
complexity 2Ω(n), outputs 2Ω(n) Boolean functions with m = Ω(n) variables such that each
function has quantum circuit complexity greater than 2m/(c+ 1)m for c some constant.

The proof of Theorem 8 closely follows the proof in [29]. The key ingredient is a quantum
Impagliazzo-Wigderson generator, which “quantizes” the construction in [26]. The quantum
Impagliazzo-Wigderson generator can transform the given quantum extremely hard function
to a quantum pseudorandom generator that fools quantum circuits of size 2O(n). Since we
assume MQCSP ∈ BQP, it means that we can construct a small quantum distinguishing
circuit to accept the truth tables of hard functions. And we can show that our quantum
Impagliazzo-Wigderson generator can fool the distinguishing circuit. Hence, most of the
outputs of the quantum pseudorandom generator will have high quantum circuit complexity.

To quantize the Impagliazzo-Wigderson generator, we construct a quantum-secure direct-
product generator, and also use the quantum Goldreich-Levin Theorem and quantum-secure
Nisan-Wigderson generator developed in [7].

Hardness magnification is an interesting phenomenon in classical circuit complexity
defined by [41]. It shows that a weak worst-case lower bound can be “magnified” into a
strong worst-case lower bound for another problem. (See a recent talk by Oliveira [39].) In
this part, we show that MQCSP also has a quantum hardness magnification.

▶ Theorem 9 (Hardness magnification for MQCSP, informal). If a gap version of MQCSP does
not have nearly-linear size quantum circuit, then QCMA cannot be computed by polynomial
size quantum circuits.

We note that this is a nontrivial theorem because even if we assume QCMA ⊆ BQC[poly(n)],
we can only show MQCSP ∈ BQC[poly(2n)], i.e., MQCSP has a polynomial-size quantum
circuit by the fact that MQCSP ∈ QCMA. But the theorem implies that some gap-version of
MQCSP has nearly-linear size circuit!

We prove the above theorem via a quantum antichecker lemma, whose classical version
was given by [40, 14]. And we observe that the two key ingredients: a delicate design of a
Boolean circuit and a counting argument can be quantized.

2.5 MQCSP and quantum fine-grained complexity
Fine-grained complexity theory aims to study the exact lower/upper bounds of some problems.
For example, most theorists believe 3-SAT is not in P, but we do not know if it can be
solved in 2o(n) time. Exponential Time Hypothesis (ETH) is a commonly used conjecture
in this area which rules out this possibility (see a survey by Williams [47]). Very recently,
[22] showed the fine-grained hardness of MCSP for partial function based on ETH. In the
quantum setting, [4, 11] proposed quantum fine-grained reductions and quantum strong
exponential time hypothesis (QSETH) to study the quantum hardness of problems in BQP.
In this part, we follow the works of [22, 4] and prove the quantum hardness of MQCSP for
partial functions based on the quantum ETH conjecture,which conjectures that there does
not exist a 2o(n)-time quantum algorithm for solving 3-SAT12. The following theorem showed
a conditional lower bound for MQCSP for partial functions, i.e., given the truth table of a
partial function f : {0, 1}n → {0, 1, ⋆}, and s > 0, decide if f can be computed by a quantum
circuit of size at most s.

12 Existing quantum SAT solvers are not much faster than Grover’s search; they need 2Ω(n)-time even for
3-SAT.

ITCS 2022
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▶ Theorem 10 (Fine-grained hardness of MQCSP⋆, informal). Assume Quantum ETH. Then,
we have MQCSP for partial functions cannot be computed in No(log log N)-quantum time.

To prove the above theorem, we basically follow the reduction path in [22], which gave a
reduction from a fine-grained problem studied by [35] to MQCSP for partial functions. But
we need to bypass two subtleties:

The proof of [22] relies on the structure of the classical read-once formula, but there is no
direct correspondence with quantum;
[35] only proved the classical hardness of the bipartite permutation independent set
problem, but we need quantum hardness result.

For the first issue, we prove an unconditional quantum circuit lower bound for that
function in the reduction. More specifically, we first show that if a small quantum circuit can
compute the partial function γ in the reduction, then that circuit is a quantum read-once
formula (defined by [48]); and vice versa. And then, we apply a “dequantization” result
by [16] to show that the quantum read-once formula can be converted to a classical read-
once formula with the same size. Then, by the structure of the “dequantized” read-once
formula, we finally conclude that deciding MQCSP for γ is equivalent to solving the bipartite
permutation independent set problem.

For the second issue, we use the quantum fine-grained reduction framework and give a
reduction from 3-SAT to the bipartite permutation independent set problem. Therefore,
the quantum hardness of MQCSP for partial function follows from the quantum hardness of
deciding 3-SAT conjectured by the quantum ETH.

2.6 Quantum circuit complexity for states and unitaries
In this section, we study UMCSP and SMCSP. For SMCSP in Definition 3, we consider two
types of inputs: quantum states and the classical description of the state. We consider the
inputs as quantum states since we generally cannot have the classical description of the
quantum state in the real world, and many related problems (such as shadow tomography [3],
quantum gravity [10], and quantum pseudorandom state [27]) have multiple copies of states as
inputs. Although this input format makes SMCSP harder, we are able to show that SMCSP
has a QCMA protocol13. Furthermore, the search-to-decision reduction and the self-reduction
in Theorem 12 hold for both versions of SMCSP. We first show hardness upper bounds for
UMCSP and SMCSP.

▶ Theorem 11 (Informal). (1) UMCSP ∈ QCMA. (2) SMCSP can be verified by QCMA
protocols.

To prove Theorem 11, we use the swap test to test whether the witness circuit C outputs
the correct states. This suffices to show that SMCSP has a QCMA protocol. To show that
UMCSP is in QCMA, checking if the circuit C and U agree on all inputs by using swap test
is infeasible since there are infinitely many quantum states in the 2n-dimensional Hilbert
space. If one only checked all the computational basis states (i.e., {|x⟩ : x ∈ {0, 1}n}), it is
possible that the circuit C and the given unitary U are not close on inputs in the form of
superposition states. This can come from the following two sources. (a) C can introduce
different phases on different computational basis states; (b) using ancilla qubits to implement
U results in entanglement between the output qubits and ancilla qubits, which may fail the
swap test.

13 Note that since SMCSP has quantum inputs, the problem is not in QCMA under the standard definition.
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To deal with these difficulties, we introduce an additional step in the test called “coherency
test”. This step tests the circuit output on all the initial states in the form of |a⟩ + |b⟩, where
|a⟩, |b⟩ are different computational basis states. We can prove that it forces the behavior of
C to be coherent on all the computational basis states, and forces the phases to be roughly
the same.

Reductions for UMCSP and SMCSP that are unknown to the classical MCSP. In
addition to the upper bounds, we also show interesting reductions for UMCSP and SMCSP.

▶ Theorem 12 (Informal).
Search-to-decision reductions: There exist search-to-decision reductions for UMCSP
and SMCSP when no ancilla qubits are allowed.
Self-reduction: SMCSP is approximately self-reducible.
A gap version of MQCSP reduces to UMCSP.

Classically, it is unknown whether MCSP is self-reducible or has search-to-decision
reductions. Ilango [21] proved that some variants of MCSP have search-to-decision reductions.
Recently, Ren and Santhanam [43] showed that a relativization barrier applies to the
deterministic search-to-decision reduction and self-reduction of MCSP. We prove the existence
of search-to-decision reductions by using the property that “quantum circuits are reversible”.
In particular, we guess the i-th gate, uncompute the gate from the state or the unitary,
and use the decision oracles to check whether the complexity of the new state or the new
unitary reduces. By repeating this process for all gates, we can find the desired circuits. This
approach suffices for the case where the quantum circuits use no ancilla qubits. On the other
hand, when the quantum circuits use ancilla qubits and are not forced to turn ancilla qubits
back to the all-zero state, this approach does not work. Consider UMCSP. The quantum
circuit may implement a unitary U ⊗ V . To find the circuit, the approach above needs to
start from U ⊗ V and do the uncomputation iteratively. However, V is unknown. SMCSP
has the similar issues.

For the self-reducibility of SMCSP, we show that one can approximate the circuit complex-
ity of an n-qubit state by computing the circuit complexities of (n− 1)-qubit states. Roughly,
we find a “win-win decomposition” of an n-qubit state such that its circuit complexity is
either close to the circuit complexity of an (n− 1)-qubit state or can be approximated by
two (n− 1)-qubit states.

Finally, we show a reduction related to MQCSP and UMCSP. The proof is by encoding a
Boolean function into a particular unitary and showing that the circuit complexity of that
unitary gives both upper and lower bounds for the circuit complexity of the Boolean function.

Implications of Hardness of SMCSP and UMCSP. For UMCSP, one application is related
to a question Aaronson asked in [2]: does there exist an efficient quantum process that
generates a family of unitaries that are indistinguishable from random unitaries given the
full description of the unitary? If there is an efficient algorithm for UMCSP, then there is no
efficient quantum process that generates unitaries indistinguishable from random unitaries
given the full unitary.

Moreover, several implications of MCSP carry to UMCSP by Theorem 12.

▶ Corollary 13 (Informal). Suppose UMCSP ∈ BQP. Then,
there is no efficient quantum process that generates a family of unitaries indistinguishable
from random unitaries given the full description of the unitary;
there is no qOWF;
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if we further assume the existence of quantum-secure iO, then NP ⊆ coRQP;
there is a BQP algorithm for hardness amplification,
BQE ̸⊂ BQC[nk] for all k ∈ N.

The above results follow from the fact that the gap version of MQCSP suffices to break
certain pseudorandom generators.

For SMCSP, we focus on the version where the inputs are copies of quantum states and
present its relationships to quantum cryptography, tomography, and quantum gravity.

▶ Theorem 14 (Informal).
1. If SMCSP has quantum polynomial-time algorithms, then there are no pseudorandom

states, and thus no quantum-secure one-way functions.
2. Assuming additional conjectures from physics and complexity theory, the existence of an

efficient algorithm for SMCSP implies the existence of an efficient algorithm for estimating
the wormhole’s volume.

3. If SMCSP can be solved efficiently, then one can solve the succinct state tomography
problem14 in quantum polynomial time.

The first result in Theorem 14 follows from the observation that we can use SMCSP algorithms
to distinguish whether the given states have large circuit complexities. This results in
algorithms for breaking pseudorandom states, and thus algorithms for inverting quantum-
secure one-way functions by [27]. It is worth noting that a recent work by Kretschmer [31]
showed some relativized results for the problem of breaking pseudorandom states. Since that
problem reduces to SMCSP, his results would provide another angle for understanding the
hardness of SMCSP. We show the second result under the model and assumptions considered
in [10]. Roughly speaking, the volumes of wormholes correspond to circuit complexities of
particular quantum states. Thus efficient algorithms for one implies solving the other one
efficiently if the correspondence can be computed efficiently. The third result mainly uses
the search-to-decision reduction in Theorem 12 to find the circuit that computes the state.

3 Discussion and open questions

We lay out the following three-aspect road map for the quantum MCSP program. For each
aspect, we present several results and also propose many open directions to explore. We
have also summarized all results in this work in Table 1.

First, we define the Minimum Quantum Circuit Size Problem (MQCSP) and study upper
bounds and lower bounds for its complexity. Furthermore, we explore the connections
between MQCSP and other areas of quantum computing such as quantum cryptography,
quantum learning, quantum circuit lower bounds, and quantum fine-grained complexity.

Then, we further extend MQCSP to study the quantum circuit complexities for quantum
objects, including unitaries and states.15 We want to investigate their hardness and connec-
tions to other areas in TCS. In this work, we show upper bounds and lower bounds for their
complexities, search-to-decision reductions (for UMCSP and SMCSP), a self-reduction (for
SMCSP), and reductions from MQCSP to UMCSP. In addition to connections generalized
from classical analogues (such as cryptography, learning, and circuit lower bounds), we also
find connections that might be unique in the quantum setting, such as tomography and
quantum gravity.

14 The succinct state tomography problem is that given many copies of a state with the promise that its
circuit complexity is at most certain s, the problem is to find a circuit that computes the state.

15 Aaronson has raised questions about quantum circuit complexity for unitaries or states in [2].
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For the last part, we want to turn around and ask what could happen when considering
quantum algorithms or quantum reductions for MCSP (and also for MQCSP, UMCSP, and
SMCSP)? In the previous two parts, we have already observed that efficient quantum
algorithms for these problems result in surprising implications to other fields. One can
further consider other influences of quantum algorithms to study quantum and classical
MCSPs. For example, can SAT reduce to MCSP under quantum reductions?

Following the three-aspect road map for the quantum MCSP program, there are many
open directions to explore. In particular, we are interested to understand the hardness of
these problems, the relationships between them, and their connections to other fields in
computer science.

3.1 Open problems: the complexity of quantum circuits
We start with open problems related to the hardness and relationships between quantum
MCSPs. The most basic questions are to understand the complexity of different quantum
MCSPs. As we have already seen, it is unclear if quantum MCSPs are in NP. Besides, we do
not know if NP- or QCMA-hard problems reduce to them.

▶ Open Problem 1. Are UMCSP, MQCSP, and SMCSP in NP? Are these problems NP-hard,
QCMA-hard, or C-hard for some complexity class C that is between QCMA and SZK?

We note that the case that makes these problems not known to be in NP is when
there are more than linearly many ancilla qubits. Therefore, if one can show that adding
superpolynomially many ancilla qubits does not lead to significant improvement on quantum
circuit complexity, then we are likely to put these problems in NP directly. Along this line,
we pose the following open question:

▶ Open Problem 2. For every n, s, t ∈ N with t ≤ s ≤ 2O(n), can we prove that BQC(s, t) ⊂
BQC(poly(s, t), O(n))?

For the hardness of UMCSP and SMCSP, One potential approach for proving NP-hardness
of UMCSP is as follows: Prove the NP-hardness of the gap version of certain variants of
MQCSP (such as sparse MQCSP or multiMQCSP), and then reduce it to UMCSP via the last
reduction in Theorem 12. The hardness of SMCSP seems to be slightly more mysterious than
UMCSP. One reason for this is that we do not know any relationship between SMCSP and
other quantum MCSPs, and thus the approach of reducing particular variants of quantum
MCSP to SMCSP does not directly work. This leads to another important open question:

▶ Open Problem 3. What are the relationships between UMCSP, MQCSP, and SMCSP?

To answer whether quantum MCSPs are NP-complete, we can also study these problems
from another angle, that is, check if quantum MCSPs have particular reductions that all
NP-complete problems have. In the previous section, we observed that quantum circuits have
some properties leading to search-to-decision reductions for UMCSP and SMCSP without
ancilla qubits and an approximate self-reduction for SMCSP. Therefore, we ask whether we
can have search-to-decision reductions and self-reductions for these quantum MCSPs.

▶ Open Problem 4. Are there search-to-decision reductions and self-reductions for quantum
MCSPs?

It is worth noting that our search-to-decision reductions fail when ancilla qubits are allowed.
This mainly follows from the fact that the circuit of the solution can be an non-identity
operator on the ancilla qubits in general. This could possibly be addressed by iterating all
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possible unitaries or states on an ϵ-net when the number of ancilla qubits are not large (e.g.,
at most log logn). However, we need new ideas when considering more ancilla qubits.

Moreover, it would be interesting to investigate the applications of these reductions. For
instance, we have seen that the search-to-decision reductions give algorithms with UMCSP
or SMCSP oracle additional power to obtain the circuits. This power may lead to interesting
applications.

▶ Open Problem 5. Is there any application of search-to-decision reductions or self-reductions
for quantum MCSPs?

The hardness of average-case quantum MCSPs (which inputs are given randomly) is
another interesting topic to explore. Hirahara [18] showed that there is a worst-case to
average-case reduction for the (gap version of) classical MCSP. We wonder if we can prove
that quantum MCSPs have worst-case to average-case reductions.

▶ Open Problem 6. Are there worst-case to average-case reductions for quantum MCSPs?

Note that there is negative evidence [9] showing that such classical reductions might not
exist for NP-complete problems16. The existence of such reduction could result in important
applications in cryptography, which we will discuss later.

Finally, we can also try to prove the hardness of quantum MCSPs under stronger assump-
tions or more powerful reductions.

▶ Open Problem 7. Assuming QETH or QSETH, is MQCSP, UMCSP, or SMCSP quantumly
hard?

▶ Open Problem 8. Does quantum reduction provide more power to show the hardness of
MCSP? Specifically, is NP ⊆ BQPMCSP or NP ⊆ BQPMQCSP?

3.2 Open problems: potential connections to other areas
In this work, in addition to generalizing several known connections for MCSP to quantum
MCSPs, we have also discovered several connections which could be unique for quantum
MCSPs. There are still many classically existing or unknown connections that we can explore.
One fascinating question is whether we can base the security of one-way functions on any of
these problems.

▶ Open Problem 9. Can we base the security of cryptographic primitives on MQCSP,
UMCSP, SMCSP, or some variants of these problems?

Note that since quantum MCSPs considered in this work are all worst-case problems, to
answer Problem 9, we probably need worst-case to average-case reductions discussed in
Problem 6. Moreover, Liu and Pass [32] recently showed that the existence of classical one-way
function is equivalent to the average-case hardness of a type of Kolmogorov complexity on
uniform distribution. However, the average-case hardness of MCSP on uniform distribution
is not known to imply one-wayness even classically, and the quantum version faces a similar
obstacle. Very recently, Ilango, Ren, and Santhanam [24] showed that the average-case
hardness of Gap-MCSP on a locally samplable distribution is equivalent to the existence
of one-way function. Liu and Pass [33] further generalized this result to show equivalence

16 However, there is no evidence for the existence of quantum worst-case to average-case reductions for
NP-complete since the analysis in [9] fails in the quantum setting. See [15] for related discussion.
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between the existence of one-way functions and the existence of sparse languages that are
hard-on-average (including Kolmogorov complexity, k-SAT, and t-Clique). It is natural to
ask whether their results can be generalized to quantum MCSPs. In addition to one-way
functions, We are interested in connections between quantum MCSPs and “quantum-only”
primitives, e.g., quantum iO, copy protection, quantum process learning, etc.

Along this line, as many quantum problems have quantum inputs, it is natural to consider
quantum MCSPs with quantum inputs. We have shown how SMCSP connects to problems
in quantum cryptography, quantum gravity, and tomography given quantum states as inputs.
This fact gives the possibility that MQCSP, UMCSP, and SMCSP with “succinct” quantum
or classical inputs may have surprising connections to other problems in quantum computing.
For instance, one can consider inputs which are quantum circuits that encode some objects
(e.g., unitaries). Then, the problem is to find another significantly smaller circuit. In [13],
Chakrabarti, Chou, Chung and Wu have studied this problem and show applications to
quantum supremacy.

Table 1 Summary of our results. A result with no star symbol is a direct extension from its
classical analog. A result with one star symbol * requires additional techniques. A result with two
star symbols ** is unique in the quantum setting.

Results Informal Theorem Index

MQCSP
(Def. 1)

MQCSP ∈ QCMA Theorem 4
MQCSP ∈ BQP ⇒ No qOWF Theorem 4

SZK ≤ MQCSP Theorem 4
multiMQCSP is NP-hard under a natural gate set Theorem 4

iO + MQCSP ∈ BQP ⇒ NP ⊆ coRQP Theorem 4
PAC learning for BQP/poly ⇔ MQCSP ∈ BPP * Theorem 5

BQP learning ⇔ MQCSP ∈ BQP * Theorem 6
MQCSP ∈ BQP ⇒ BQE ̸⊂ BQC[nk], ∀k ∈ N+ * Theorem 7

MQCSP ∈ BQP ⇒ BQPQCMA ̸⊂ BQC[nk], ∀k ∈ N+ Theorem 7
MQCSP ∈ BQP ⇒ Hardness amplification * Theorem 8

Hardness magnification for MQCSP Theorem 9
QETH ⇒ quantum hardness of MQCSP⋆ * Theorem 10

UMCSP
(Def. 2)

UMCSP ∈ QCMA ** Theorem 11
Search-to-decision reduction for UMCSP ** Theorem 12

gap-MQCSP ≤ UMCSP ** Theorem 12
UMCSP ∈ BQP

⇒ No pseudorandom unitaries and no qOWF
Corollary 13

iO + UMCSP ∈ BQP ⇒ NP ⊆ coRQP Corollary 13
UMCSP ∈ BQP ⇒ Hardness amplification in BQP Corollary 13

UMCSP ∈ BQP ⇒ BQE ̸⊂ BQP[nk], ∀k ∈ N Corollary 13

SMCSP
(Def. 3)

SMCSP can be verified via QCMA Theorem 11
Search-to-decision reduction for SMCSP ** Theorem 12

Self-reduction for SMCSP ** Theorem 12
SMCSP ∈ BQP

⇒ No pseudorandom states and no qOWF
** Theorem 14

Assume conjectures from physics
SMCSP ⇒ Estimating wormhole’s volume

** Theorem 14

Succinct state tomography ≤ SMCSP ** Theorem 14
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