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Abstract
One of the ultimate goals of symmetric-key cryptography is to find a rigorous theoretical framework
for building block ciphers from small components, such as cryptographic S-boxes, and then argue
why iterating such small components for sufficiently many rounds would yield a secure construction.
Unfortunately, a fundamental obstacle towards reaching this goal comes from the fact that traditional
security proofs cannot get security beyond 2−n, where n is the size of the corresponding component.

As a result, prior provably secure approaches – which we call “big-box cryptography” – always
made n larger than the security parameter, which led to several problems: (a) the design was too
coarse to really explain practical constructions, as (arguably) the most interesting design choices
happening when instantiating such “big-boxes” were completely abstracted out; (b) the theoretically
predicted number of rounds for the security of this approach was always dramatically smaller
than in reality, where the “big-box” building block could not be made as ideal as required by the
proof. For example, Even-Mansour (and, more generally, key-alternating) ciphers completely ignored
the substitution-permutation network (SPN) paradigm which is at the heart of most real-world
implementations of such ciphers.

In this work, we introduce a novel paradigm for justifying the security of existing block ciphers,
which we call small-box cryptography. Unlike the “big-box” paradigm, it allows one to go much
deeper inside the existing block cipher constructions, by only idealizing a small (and, hence, realistic!)
building block of very small size n, such as an 8-to-32-bit S-box. It then introduces a clean and
rigorous mixture of proofs and hardness conjectures which allow one to lift traditional, and seemingly
meaningless, “at most 2−n” security proofs for reduced-round idealized variants of the existing block
ciphers, into meaningful, full-round security justifications of the actual ciphers used in the real world.

We then apply our framework to the analysis of SPN ciphers (e.g, generalizations of AES),
getting quite reasonable and plausible concrete hardness estimates for the resulting ciphers. We also
apply our framework to the design of stream ciphers. Here, however, we focus on the simplicity of the
resulting construction, for which we managed to find a direct “big-box”-style security justification,
under a well studied and widely believed eXact Linear Parity with Noise (XLPN) assumption.

Overall, we hope that our work will initiate many follow-up results in the area of small-box
cryptography.
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1 Introduction

Block ciphers are working horses of cryptography, and are used everywhere. Not surprisingly,
we have many candidate constructions of block ciphers in the real world, including the
industry-standard AES. The vast majority of such constructions iterate some relatively
simple sequence of invertible transformations across multiple rounds and can be roughly
divided into two main paradigms [28]: Feistel networks [21] or substitution-permutation
networks (SPNs) [21, 35]. Simplifying somewhat, a Feistel round builds a keyed permutation
on 2n bits from a “good” keyed round function on n bits; while an SPN round applies w

“good” unkeyed permutations (so-called S-boxes) block-wise to its wn-bit input (for some
w ≥ 1), and then mixes the results with a keyed, non-cryptographic permutation on wn bits
(called D-box). Examples of block ciphers based on Feistel networks include DES, FEAL,
MISTY, and KASUMI; block ciphers based on SPNs include AES, Serpent, and PRESENT.

One of the biggest open problems in theoretical cryptography is to provide some theor-
etical justification about the security of this widespread approach of iterating “something
simple” for many rounds. Ideally, such justification would be unconditional and provably
secure. Unfortunately, obtaining such unconditional proofs is completely beyond our current
capabilities (and would immediately imply P ̸= NP , and more). The best we can do uncon-
ditionally (see [33] and the references therein) is to prove essential, but extremely limited,
security properties of block ciphers, such as resistance to linear or differential attacks. While
unconditional, these important results are insufficient for real-world applications of block
ciphers to encryption and authentication. As the result, in order to prove sufficiently strong
security properties of block ciphers, – such as security against chosen-plaintext/ciphertext
attacks, – all existing approaches justifying security of current constructions roughly consist
of 3 steps:
1. Abstraction: abstract and idealize some building block f inside the round function of the

corresponding cipher.
2. Proof: show formal security of the resulting block cipher for some minimal number of

rounds r, using a traditional reductionist approach.
3. Conjecture: make some kind of heuristic conjecture/assumption that, by increasing the

number of rounds well beyond the minimal number of rounds r predicted in the prior
step, existing real-world block ciphers are still secure, despite using much less idealized
constructions of the building block f .

So far, existing realizations of this “recipe” used what we call a big-box approach to
security. We detail this approach below in Section 1.1, where we show that it has several
serious deficiencies in terms of our ultimate goal of building a block cipher from small
components, such as cryptographic S-boxes. To address these problems, we introduce a
novel paradigm for justifying the security of existing block ciphers, which we call small-box
cryptography, described in Section 1.2. While the main motivation for small box-cryptography
comes from the design of block ciphers, the framework is very general and can be used to
build other primitives, such as hash functions, stream ciphers, pseudorandom functions, or
even one-way functions. In particular, the framework consists of two main steps:
1. Construction Step. This step itself consists of two components specific to the primitive

(e.g., block cipher, hash function, etc) we are building: domain extension and hardness
amplification. Despite being primitive-specific, it is largely syntactic, resulting in many
constructions that have the potential to be secure in the real world.
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2. Analysis Step. This step gives concrete exact security bounds/conjectures for the resulting
constructions. It consists of three parts. The first two parts are information-theoretic and
fully provable.1 They formally analyze the domain extension and hardness amplification
steps above within the existing techniques from “big-box” cryptography. The last step
introduces a new “big-to-small” conjecture, which allows one to lift these big-box results
to meaningful bounds/conjectures about the security of the resulting construction in
the real world. In essence (see Theorem 14), this conjecture states if a natural-looking
hardness amplification result gave a good security ϵ(n) against attackers running in time
T assuming n is “large” (n≫ log T , in particular), then the same construction will also
have security ϵ′(n) ≈ ϵ(n) even for much smaller values of n, despite the fact that the
supporting security proof critically breaks down in this case.2

We then apply our framework to the design of SPN-based block ciphers, which includes
AES, Serpent, and PRESENT, among others. While the design of SPN ciphers is complex
enough that we have no other ways to assess the soundness of our final security bounds, it
appears that our bounds are (a) useful/practical; and, yet, (b) not contradicted by existing
cryptanalysis. For example, instantiating our framework with a rather aggressive version
of the “big-to-small” conjecture, we get can get the following concrete security bounds for
generalization of AES (without key scheduler, for simplicity):

r-round variant of 128-bit AES with 8-bit S-boxes is (264, (5.28)−r)-secure.3

In particular, setting r = 10 (the number of real AES rounds), this would already yield
respectable one-in-hundred-million security, while setting r = 24 would give excellent 2−64

security. Thus, to the best of our knowledge, our framework gives the most accurate and
plausible theoretical justification for the security of SPN ciphers.

To complement our results, we also apply our framework to the design of pseudorandom
generators (PRGs; aka stream ciphers). We then look at the resulting PRG construction, and
analyze it from scratch, instead of applying the “Analysis Step” mentioned above (and, thus,
avoid using the new and not-well-understood “big-to-small” conjecture; although we also
analyze the resulting PRG in our new framework). Somewhat surprisingly, we show that not
only did we get a meaningful PRG by blindly following the “syntactic” route, but the resulting
construction was elegant enough to be analyzed using tools from big-box cryptography!
In particular, we show that the resulting PRG is secure under the well-studied variant of
the Learning Parity with Noise (LPN) assumption, called Exact LPN (XLPN) [27]. While
the resulting “collision” of big- and small-box cryptography is likely a coincidence, it gives
further evidence that the Construction Step of our framework often leads to plausibly-secure
constructions, and motivates the further study of the “big-to-small” conjecture(s) introduced
by this work.

1 In practice, the hardness amplification step is often used with correlated round keys, using some “key
schedule” heuristic. To model this case, we also need a plausible conjecture that the key schedule step
does not violate the information-theoretic security proven using fully independent round keys.

2 As we will see, the “big-to-small” conjecture looks very different from all previous (“big-box”) hardness
assumptions, and could be viewed as “one-way function” of small-box cryptography. While the particular
conjectures introduced here might be too strong/aggressive or require further fine-tuning, the framework
is general enough to accommodate future milder variants of this conjecture, still leading to meaningful
real-world guarantees, while addressing the limitations of big-box cryptography.

3 Here (T, ϵ)-security means that no T -time distinguisher can break the system with advantage greater
than ϵ.
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1.1 Big-Box Cryptography and Its Limitations
This approach follows the “abstraction-proof-conjecture” paradigm outlined above, but where
the idealized building blocks f “big”, meaning that its length n is proportional to block cipher
length N . For example, the seminal paper by Luby and Rackoff [30] showed that a 4-round
Feistel network yield a secure pseudorandom permutation on N = 2n bits when applied to
(independently keyed) round functions modeled as n-bit pseudorandom functions. Similarly,
one can oversimplify the design of SPN ciphers, by ignoring its fine-grained substitution-
permutation structure (arguably the “heart and soul” of the SPN design which goes back to
Shannon [35]), – and instead view them as key-alternating ciphers [20, 5, 9, 25], where one
models the entire SPN layer as a monolithic public permutation Π on N = n bits. With such
a higher-level abstraction, one can formally show that the r-round key-alternating cipher
is secure, for any r ≥ 1, in the random permutation model on N bits [20, 5, 9, 25], where
r = 1 corresponds to the famous Even-Mansour cipher [20]. The advantage of the big-box
approach is that one can formally prove exact security bounds which are exponentially small
in the block length N = O(n) of the underlying cipher E, and reduce the security of E to a
slightly simpler building block f . Also, such proofs rule out certain generic attacks against
the construction, and could generally be used as good “sanity checks” for the corresponding
designs. However, they come with two significant disadvantages:

First, since f is still “big’, they do not come close to theoretically explaining how to build
a block cipher from scratch, or, at least, from small components – which is the ultimate
goal of block cipher design. In fact, one could subjectively argue that, in the existing
constructions, the design of such a “large” component f is where “all the real action”
is happening. For example, designing the round function of Feistel ciphers is, by far,
the most intricate/interesting part of the design of DES, FEAL, MISTY, and KASUMI,
where a wrong choice can render the whole design insecure. Similarly, completely ignoring
the substitution-permutation structure of SPN ciphers (where the substitution is done
by a small S-box, and permutation is a simple non-cryptographic D-box), once again
ignores the heart of every SPN cipher, including AES.
Second, the actual building blocks used by the existing constructions are extremely far
from satisfying the idealized properties required for the provable security of this approach.
For example, the round functions of DES and other Feistel ciphers are nowhere close to
pseudorandom, while the simple 1-round SPN structure inside SPN ciphers is certainly
not a random public permutation. As a result, it is completely unclear to what extent
the provable results actually apply to the existing constructions. In fact, the number of
rounds r sufficient for security with an idealized building blocks f is always dramatically
lower than the number of rounds used (and needed!) in practice: there are no 4-round
Feistel ciphers, or 1-round SPN (or key alternating) ciphers currently used.
To put it differently, while the “proof” part of the big-box approach can lead to good-

looking bounds, the “abstraction” part is too coarse, while the “conjecture” part is really
big (and also somewhat unclear). In particular, since none of the existing constructions
have building blocks that are reasonably close to properties needed in theory, this approach
does not give any guidance or explanation about why the particular real-world choices of
implementing the “big-box” would be preferable to others, even with a significantly increased
number of rounds. For example, the analysis of key-alternating ciphers does not shed any
light as to why the round permutation build by the SPN structure is indeed much better than
some affine permutation, which would be insecure, irrespective of the number of rounds. In
other words, by keeping the box large, the big-box approach completely misses any theoretical
explanation behind (arguably) the most interesting design decisions the practitioners must
make when building actual ciphers.
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1.2 Getting Closer to Reality: Small-Box Cryptography
To address the serious problems with the big-box approach outlined above, our new4 approach
attempts to go much deeper inside the existing block cipher constructions, by only idealizing
a small (and, hence, realistic!) building block f , such as an S-box. For example, let us
recall that an SPN cipher on wn bit inputs (where w is a relatively large constant w ≥ 1), is
computed via repeated invocation of two basic steps: a substitution step in which a public
(unkeyed) “cryptographic” permutation f : {0, 1}n → {0, 1}n, called an S-box, is computed
in a blockwise fashion over the wn-bit intermediate state, and a permutation step in which a
keyed but “non-cryptographic” permutation π on {0, 1}wn is applied, called a D-box. Since
π is non-cryptographic and typically linear, we will not idealize any of its properties, and
work with D-box permutations π close to those used in practice. Hence, the only component
which can be idealized is the S-box f , which we will model as a random permutation.
Since the input length, n of f is small, such idealization is not unreasonable, which means
the final construction analyzed is really close to what is used in practice, and certainly
captures the heart of the SPN construction: namely, the actual SPN structure, as opposed to
key-alternating ciphers, where this structure is completely ignored!

Of course, given the huge conceptual advantages of the small-box approach over the
big-box approach in terms of the “abstraction” step, there is an important catch, as otherwise,
we would likely have an unconditional result (and proved P ̸= NP along the way). The
catch is that the best provable security one can conceivably get with such an approach is
only exponential in n, as the S-box was the only idealized source of hardness that we could
use. And since n≪ N was very small by design (say, at most 32 in existing constructions),
the actual bounds are not useful for practical use. At first, this admittedly serious deficiency
appears to invalidate the whole point of provable security with this approach, which might
have been the reason why so few papers followed this route prior to this work. However,

As one of the contributions of this work, we show that the seemingly useless bounds one gets
in the “proof” component of the “small-box” approach, can still lead to very reasonable final

results,

provided one properly models the “conjecture” component of this approach.

Small-Box Approach From the Sky. The approach is rather subtle and is carefully explained
in Section 4. In brief, it formalizes two clean and explicit hardness conjectures, termed
hardness amplification (Conjecture 13) and big-to-small (Conjecture 14). The hardness ampli-
fication conjecture, which is very plausible and can be sometimes proven even unconditionally
(under appropriate independence assumptions) using a beautiful hardness amplification result
of Maurer, Pietrzak, and Renner [31], states that the success probability ϵ of the distinguisher
can be driven down exponentially by cascading the block cipher with itself.5 Notice, such
cascading is indeed a common practice of every block cipher design, where increasing the
number of rounds (with independent or even correlated keys) is critical for improving the
security of the block cipher. In particular, we can get this success probability to an extremely
low level 2−wn by cascading the original cipher O(w) times.

4 As we detail in the related work Section 1.4, some of our ideas were already used in the prior work, but
not in the totality that we present here.

5 While we state this result for block ciphers, the framework of [31] is strong enough to study unconditional
hardness amplification for other primitives, such as PRGs (where one XORs several PRGs with
independent seeds).

ITCS 2022
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However, this conjecture is only meaningful in the “big-box” setting, when the size n

of our building block (e.g., S-box) is larger than the security parameter, as otherwise the
exponential in n bounds given by our “proof component” are meaningless. To go back to the
small-box case we care about, we notice that the success probability 2−wn achieved in the
big-box setting after cascading is also good and meaningful in the small-box case. In fact,
the big-to-small conjecture states that even though the hardness amplification argument
used to justify this conclusion crucially relied on the big-box assumption, the final conclusion
is actually true even in the small-box case! Unlike the hardness amplification step, which
appears very believable and even unconditionally true in certain settings, the big-to-small
conjecture is completely new and not formally studied. However, despite being new and
rather strong, it allows us to precisely state the kind of “leap of faith” one would be making
when using constant size small-boxes.

We discuss these issues in more detail in Section 4, here only stating the end result
of applying the 2 conjectures together. Here n0 = n0(a, α) is the constant defined in the
big-to-small conjecture (and could be really small; n0 = 8 in the case of AES), and we also
don’t explicitly state if cascading uses independent or correlated keys/building blocks (which
is part of the hardness amplification conjecture):

▶ Theorem 1 (Small-Box Cryptography; Informal). Let T be the desired attacker time bound,
and assume that r-rounds block cipher E of length wn utilizing idealized block f of size n is
(T, 2−αn)-secure, as long as n > a log T (for some constants a > 1 and α < 1). Then, under
Conjectures 13 and 14, for any n ≥ n0(a, α), cascading E for c = O(w/α) times will result
in a r′ = O(wr/α)-round block cipher E′ which is (T, O(T/2ℓ(n) + 2−wn))-secure,6 where
ℓ(n) is the key length of E′ under to corresponding cascading step (equal to c times the key
length of E when independent keys are used).

The theorem above formalizes the last, “conjecture” step of small-box cryptography to
get the following conclusion:

Under two clean and explicit hardness conjectures, one can get strong and meaningful
security bounds for popular block ciphers, by obtaining “seeming useless” (T, poly(T )/2n)
security bounds for reduced-round variants of these ciphers with idealized building blocks of
size n.

Moreover, the small-box approach explicitly explains why the number of rounds r′ used
in practical constructions is noticeably larger than the theoretically predicted number of
rounds r in the provably secure step: to drive the success probability of the distinguisher
significantly below the minimum 2−n level possible with the traditional information-theoretic
proof. Thus, we have eliminated both significant disadvantages of the big-box approach: not
guiding how to instantiate the “big” building blocks in practice, and giving inadequately low
predictions for the number of rounds r needed for real-world security.

1.3 Our Results
We believe our main result is conceptual: bring the attention of the cryptographic to the
deficiencies of “big-box” cryptography for the task of designing block ciphers and other
symmetric key primitives, which are usually built from scratch, from very small components

6 For simplicity we consider uniform attackers; for other (e.g., non-uniform) models, we can change the
conjectured T/2ℓ(n) term to reflect the best generic attack in this model; see [12] for such non-uniform
bounds for block ciphers.
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such as S-boxes. We also introduced a specific framework (which we called small-box
cryptography) which is one concrete attempt to address this problem. This framework
yields a rather syntactic way to derive candidate constructions conjectured to be secure
in the real world and then proposes an explicit way to get concrete security bounds for
the resulting constructions: by combining provably secure domain extension and hardness
amplification steps with a new and unstudied type of hardness assumptions we call “big-to-
small” conjectures.

We then apply this framework to the analysis of SPN ciphers (e.g, generalizations of
AES), getting quite reasonable and plausible hardness estimates for the resulting ciphers. We
also apply this framework to the design of stream ciphers. Here, however, we focus on the
simplicity of the resulting construction, for which we managed to find a direct “big-box”-style
security justification, under a well studied and widely believed XLPN assumption [27].

Overall, we certainly hope that our work will initiate many follow-up results in the
area of small-box cryptography, which will both refine the initial heuristics (such as more
refined analogs of our conjectured Theorem 1) outlined in this work, and add to a better
understanding of existing symmetric-key constructions, hopefully well beyond block/stream
ciphers.

1.4 Related Work
There are only a few prior papers looking at provable security of SPNs. The vast majority of
such work analyzes the case of secret, key-dependent S-boxes (rather than public S-boxes as
we consider here), and so we survey that work first.

SPNs with secret S-boxes. Naor and Reingold [34] prove security for what can be viewed
as a non-linear, 1-round SPN. Their ideas were further developed, in the context of domain
extension for block ciphers (see the further discussion below), by Chakraborty and Sarkar [8]
and Halevi [24].

Iwata and Kurosawa [26] analyze SPNs in which the linear permutation step is based on
the specific permutations used in the block cipher Serpent. They show an attack against
2-round SPNs of this form, and prove security for 3-round SPNs against non-adaptive
adversaries. In addition to the fact that we consider public S-boxes, our linear SPN model
considers generic linear permutations and we prove security against adaptive attackers.

Miles and Viola [33] study SPNs from a complexity-theoretic viewpoint. Two of their
results are relevant here. First, they analyze the security of linear SPNs using S-boxes that
are not necessarily injective (so the resulting keyed functions are not, in general, invertible).
They show that r-round SPNs of this type (for r ≥ 2) are secure against chosen-plaintext
attacks.7 They also analyze SPNs based on a concrete set of S-boxes, but in this case they
only show security against linear/differential attacks (a form of chosen-plaintext attack),
rather than all possible attacks, and only when the number of rounds is r = Θ(log n).

SPNs with public S-boxes. The work of Cogliati et al. [11] analyzed SPNs with public S-
boxes. In fact, this paper will basically give us the “domain extension” (n→ wn) component
of our “Analysis Step”, when we apply small-box cryptography to SPNs. Unlikely our work,
however, the work of [11] did not advocate the hardness amplification to go beyond 2−n

security, or derived a concrete framework to assess the security of SPNs in the real world.

7 In contrast, [11] showed that 2-round, linear SPNs are not secure against a combination of chosen-
plaintext and chosen-ciphertext attacks when w ≥ 2.

ITCS 2022
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The earlier work by Dodis et al. [17] studied the indifferentiability [32] of confusion-
diffusion networks, which can be viewed as unkeyed SPNs.

As observed earlier, the Even-Mansour construction [20] of a (keyed) pseudorandom
permutation from a public random permutation can be viewed as a 1-round, linear SPN in
the degenerate case where w = 1 (i.e., no domain extension) and all-round permutations are
instantiated using simple key mixing. Security of the 1-round Even-Mansour construction
against adaptive chosen-plaintext/ciphertext attacks, using independent keys for the initial
and final key mixing, was shown in the original paper [20]. Kilian and Rogaway [29] and
Dunkelman, Keller, and Shamir [18] showed that security holds even if the keys used are the
same. As we mentioned, these results are insufficient for us, as we need a much larger (at
least security parameter) domain expansion factor w.

Cryptanalysis of SPNs. Researchers have also explored cryptanalytic attacks on generic
SPNs [2, 3, 4, 14]. These works generally consider a model of SPNs in which round
permutations are secret, random (invertible) linear transformations, and S-boxes may be
secret as well; this makes the attacks stronger but positive results weaker. In many cases
the complexities of the attacks are exponential in n (though still faster than a brute-force
search for the key), and hence do not rule out asymptotic security results. On the positive
side, Biryukov et al. [2] show that 2-round SPNs (of the stronger form just mentioned) are
secure against some specific types of attacks, but other attacks on such schemes have been
identified [14].

Hardness Amplification. Harness amplification, going back to the seminal paper of Yao [37],
amplifies the security of a given cryptographic primitive, typically by combining c inde-
pendent copies of this primitives, and ensuring that the attacker must break all such copies.
Traditionally, it is studied in the computational setting (e.g. [7, 6, 15, 10, 19, 23]), where
one starts with (T, ϵ)-security, and gets (T ′, ϵ′)-security, where ϵ′ ≈ ϵc. Unfortunately, such
complexity-theoretic results, while extremely beautiful, have an inherent limitation that
T ′ ≤ Tϵ′ ≈ Tϵc. This means that the increased security comes at the price of a huge
degradation in the run-time of the attacker, making these beautiful results completely useless
for small-box cryptography. See [16] for more discussion.

Fortunately, hardness amplification has also been studied in the information-theoretic
setting [31, 36], where the attacker is computationally unbounded but has a limited number of
queries T to appropriate idealized oracles. In this setting, the security can be proven without
much degradation in the parameter T , and this is the setting we use in our framework.

Random Local Functions. Goldreich [22] suggested designing a one-way function by re-
peatedly applying a certain local predicate f (which could be viewed as “S-box”) to carefully
chosen subsets of input bits. This influential work led to many follow-up constructions (see [1]
and references therein) of how to build various “local” cryptographic primitives in this way,
and argue about their security. At a high level, these results could be viewed as a different
instantiation of small-box cryptography, which is incomparable to our proposal. Namely, our
proposal focuses on capturing real-world designs where security is obtained by repetition and
suggests modeling f as a random function/permutation in the Analysis Step. In contrast,
the study of local cryptography is more focused on achieving small input locality (which is
not our concern), as a result explicitly trying to avoid naive hardness amplification (which
is expensive for locality). In other words, the two approaches happen to use “S-boxes” for
completely different goals. It would be interesting to see if some interesting connection can
be found between the two approaches to “small-box cryptography”.



Y. Dodis, H. Karthikeyan, and D. Wichs 56:9

2 Applying Big-Box Cryptography to PRGs

In this section, we present our construction of a pseudorandom generator. We then prove its
security under the eXact Linear Parity with Noise (XLPN) assumption. The construction,
by itself, may not be the best PRG construction from this assumption, as it relies on large
public parameters, which is unnecessary if one’s goal to build a “big-box” PRG from XLPN.
Of course, our point is to explicitly build and analyze cryptographic primitives from a “small”
(but still polynomial size) S-box, which naturally mandates seemingly large parameters when
viewed from the big-box perspective. Hence, the main purpose of our PRG construction is
to introduce the small-box framework, before we look at the more complicated example of
block ciphers in Section 4. In particular, unlike the case of block ciphers, the example will
be simple enough that we can directly apply the “big-box” analysis to it (in the common
reference string model, modeling our S-box).

2.1 Syntax and Security of PRG

A PRG is a primitive that is often used to produce random-looking string from a short,
randomly chosen seed.

▶ Definition 2 (Pseudorandom Generator). Let n ∈ N be the security parameter. Then, an
efficiently computable function G : {0, 1}n → {0, 1}ℓ(n) for ℓ(n) > n is an (T, ϵ)-secure PRG
if for all adversaries A running in time T , the following holds:∣∣∣∣ Pr

s←Un

[A(G(s)) = 1]− Pr
R←Uℓ(n)

[A(R) = 1]
∣∣∣∣ ≤ ϵ

2.2 Our Construction

Recall, the goal of small-box cryptography is to analyze the direct construction of various
primitives from “small” (constant- or polynomial-, but not exponential-) sized S-boxes. In
the case of a PRG, it is natural to think of such an S-box as a Boolean function f modeled
as a random function in the analysis. This is without loss of generality, as any non-Boolean
S-box f ′ : {0, 1}a → {0, 1}b is equivalent to a Boolean S-box f : {0, 1}a+log b → {0, 1}, where
f(x∥i) represents the i-th output bit of f ′(x). Further, it will be convenient for the notation
to write the domain of this Boolean function as {0, 1}n+log ℓ, where ℓ is the desired output of
our PRG, and n is the “small” leftover part. E.g., when n = 8 and ℓ = 256, we get (still
“small”) 16-to-1 S-box.

For our “big-box” analysis, it will also be convenient to define a truth-table matrix for f

as an ℓ×N matrix M, and think of this matrix as public parameters (or common random
string, crs) of our PRG construction:

M =


f(1 ∥ 0) . . . f(N ∥ 0)
f(1 ∥ 1) . . . f(N ∥ 1)

...
. . .

...
f(1 ∥ ℓ− 1) . . . f(N ∥ ℓ− 1)


where N = 2n.
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Let F = {f : {0, 1}n+log ℓ → {0, 1}} be the set of all “S-box” functions f above. We now
define a family of PRGs G = {G̃f : {0, 1}nc → {0, 1}ℓ | f ← F}, which takes an additional
“hardness” parameter c, and will expand a cn-bit input x = (x1, . . . , xc) into an ℓ-bit output
y as follows:

y = G̃f (x1, . . . , xc) =


f(x1 ∥ 0)⊕ f(x2 ∥ 0)⊕ . . .⊕ f(xc ∥ 0)
f(x1 ∥ 1)⊕ f(x2 ∥ 1)⊕ . . .⊕ f(xc ∥ 1)

...
f(x1 ∥ ℓ− 1)⊕ f(x2 ∥ ℓ− 1)⊕ . . .⊕ f(xc ∥ ℓ− 1)


Note on parameters. We need ℓ ≥ nc + 1 in order to ensure that our PRG is expanding,
which lower bounds the domain length of the S-box by (n + log(nc + 1)) = O(log c), if
we think of n = O(log c). This is still a pretty good trade-off. Indeed, in both of our big-
and small-box analyses (done in Sections 2.3 and 3), c will be the “security” parameter
of the construction. So our security will scale – under appropriate hardness assumptions –
exponentially in c. While the bit-size of the S-box input has only logarithmic dependence on
the security parameter c. In particular, while the overall size of the S-box ℓ · 2n ≈ c · (n2n) is
noticeably greater than the PRG input size c · (n + log ℓ) ≈ c · (n + log c), it is still polynomial
in the security parameter c (assuming n = O(log c)), and can be read by the attacker in its
entirety.

2.3 Big-Box Analysis of G̃

In this section, we will undertake a big-box analysis of G̃ by proving its security from
well-studied assumption, a variant of the LPN problem. The variant we consider is called
the Exact LPN problem. This was first proposed and employed in proof of security by Jain
et al. [27]. Much like the original LPN problem, the XLPN problem has a search and a
decisional variant. It has been shown that the search variant of this problem is equivalent to
the search version of the original LPN problem. Additionally, the hardness of the decisional
XLPN problem is polynomially related to the search LPN problem.

▶ Definition 3 (Decisional Exact LPN (XLPN) Assumption). For 0 < τ < 1
2 , q, m ∈ N, the

(q, m)-XLPNτ problem is (T, ϵ)-hard if for every adversary A running in time T , the following
holds:∣∣∣∣ Pr

s,A,x

[
A(A, A⊤s⊕ x) = 1

]
− Pr

A,y
[A(A, y) = 1]

∣∣∣∣ ≤ ϵ

where s← Zm
2 , A← Zm×q

2 , x← Zq
2,c and y← Zq

2. Here, Zq
2,c is the uniform distribution of

q dimension binary vectors of weight c = τ · q.

To this end, we will prove the following theorem:

▶ Theorem 4. Under the (q = N, m = N − ℓ)-XLPNτ assumption, the family of PRGs
G = {G̃f : {0, 1}nc → {0, 1}ℓ|f ← F} is secure and provided c = 2n · τ and ℓ ≥ nc + 1, for
0 < τ < 1

2 .

Discussion on parameters. Note that the length doubling PRG has an error-rate of
1/O(log n), which is worse than a constant, but much better than 1/O(

√
N) needed for

public-key encryption. Finally, by suitably setting the parameters, we get the following
result:
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▶ Corollary 5. For any polynomial N , let ℓ = N/2 and c = ℓ/(2 log N) = N/(4 log N). Then,
there exists a family of length-doubling PRG under the (N, N/2)-XLPNτ assumption where
τ = 1/O(log N).

We defer the proof of the above theorem to Section A. However, we discuss some instructive
intuitions for the proof. Recall that in the PRG security game, the adversary A either
receives G̃(X) for X← {0, 1}nc or y← {0, 1}ℓ. To break this game, A would have to identify
c values x1, . . . , xc that evaluates to the output that it has received, and in this setting y is
a set of ℓ parity check equations.

In other words, if A finds a vector x ∈ ZN
2 such that wt(x) = c and Mx = y, then with

high probability, A received the real value and not the random value.
With this insight, it is useful to view this problem via the context of linear binary codes.

In such a case, M can be considered as a parity check matrix and y is the syndrome of x.
However, this only works if M is of full row rank. Recall that a matrix M has a full row
rank. if each of the rows of the matrix is linearly independent. Fortunately, we know that
with overwhelming probability, a randomly sampled binary matrix has full rank.

In other words, given a random parity-check matrix M of size ℓ×N , we need to decode a
random error vector x, from the ℓ parity check equations, i.e., Mx = y, such that wt(x) = c.
Further, we get that

(
N
c

)
< 2ℓ =⇒ c log N < ℓ < N

Finally, given a parity-check matrix M, one can efficiently calculate a corresponding
generator matrix A. Note that A ∈ Z(N−ℓ)×N

2 and MA⊤ = 0, by definition.

3 Applying Small-Box Cryptography to PRGs

In the previous section, we presented the construction of a PRG, using an idealized primitive
f , and proved its security under the XLPN assumption. In this section, we arrive at the same
construction, but by religiously following the small-box framework. Recall, our recipe for
small-box cryptography consists of two steps – the construction step and then the analysis
step, each of which consists of several small steps. We detail each below.

3.1 Construction Step
The construction step of small-box cryptography consists of two smaller sub-steps: domain
extension and hardness amplification. Although both of these steps are primitive-specific (e.g.,
different from PRGs and block ciphers), they are largely syntactic and require little-to-no
technical expertise.

Domain Extension Step. Normally, the ideal object (S-box) gives a direct construction of
the given primitive, but for “tiny” input/output domain. For example, in the PRG case the
S-box f : {0, 1}n+log ℓ → {0, 1} is a trivial “PRG” from (n + log ℓ) bits to 1 bit. Of course,
being non-expanding, this is not interesting in terms of functionality, but it will be obviously
“secure” when we think of n as “big” and f as a “big” random oracle in subsequent sections.

To make the primitive interesting in terms of functionality even in the small-box world,
the purpose of the domain extension step is to amplify the length of either the input, the
output, or both to be large even in the “small” box world. In the case of PRG, the interesting
parameter is the desired PRG output length ℓ, which we think as “big”.8 So our goal here is
to extend the output domain from {0, 1} to {0, 1}ℓ.

8 This explains our strange-looking choice of notation to denote the input length of our S-box as (n + log ℓ)
rather than just ℓ. Of course, this is just matter of convenience of notation: if the S-box size was n′, we
would have to subtract log ℓ from it, and instead assume n′ = log ℓ + n for a new parameter n.
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In the big-box world, one would amplify the output size by a factor of ℓ by expanding
the PRG seed length by a factor of ℓ and concatenating the ℓ outputs of the base PRG. Here
we do almost the same thing, except we don’t need to pay in the seed length, and use our
idealized modeling of our base PRG f as a random oracle rather than a “mere” PRG. This
is consistent with the design intuition that a good S-box has all the idealized properties one
would need for the construction to work. Namely, we can construct the range-extended PRG
G as follows: G : {0, 1}n → {0, 1}ℓ:

G(x) = (f(x ∥ 0), . . . , f(x ∥ ℓ− 1)) (1)

where ∥ denotes concatenation. Intuitively, we simply “waste” log ℓ bits of the seed to
enumerate over the ℓ desired output bits.

Hardness Amplification Step. As we can see, the improved functionality – in this case,
output size – came at the expense of decreased security (which is, of course, expected). For
the PRG example above, the seed length was (n + log ℓ) bits, but now is only n bits, which
means it is definitely easier to break (we will formalize this quantitatively in Section 3.2).

The goal of the hardness amplification step is to amplify security – not just to the level
we started from – but hopefully well beyond, so that we can afford to make n “small” and
still have good looking security bound (this is somewhat subtle, and will be explained in
the analysis step in Section 3.2). The hardness amplification step is usually parameterized
by the hardness parameter c, which we can also think of as a security parameter of our
final construction. For the case of PRGs, the standard hardness amplification is simply
the bit-wise XOR operation, applied to c independent copies of our (already “domain-
extended”) PRG. Intuitively, while each individual PRG might only be slightly secure, by
XOR-ing c independent copies the potential biases of the final PRG decay exponentially in
c. This was formally analyzed in the computational setting by Dodis et al. [15] and in the
information-theoretic setting by Maurer et al. [31].

With this in mind, we can define the following PRG G̃ : {0, 1}nc → {0, 1}ℓ:

G̃(x1, . . . , xc) = G(x1)⊕ . . .⊕G(xc)

This PRG can also be rewritten as follows, if we unwrap the definition of G from
Equation (1):

G̃(x1, . . . , xc) =


f(x1 ∥ 0)⊕ f(x2 ∥ 0)⊕ . . .⊕ f(xc ∥ 0)
f(x1 ∥ 1)⊕ f(x2 ∥ 1)⊕ . . .⊕ f(xc ∥ 1)

...
f(x1 ∥ ℓ− 1)⊕ f(x2 ∥ ℓ− 1)⊕ . . .⊕ f(xc ∥ ℓ− 1)

 (2)

This is the same construction as the one in Section 2.2, but now obtained using two
relatively syntactic steps. In each step, we intuitively think of f as a “big” random oracle to
justify the soundness of this step (and we formalize this below), but the actual construction
makes sense even in the “small-box” world! This dichotomy will be the point of the analysis
step we present in the next section.

3.2 Analysis Step
On a high-level, the analysis step of small-box cryptography will consist of two components.
The first component is provable, typically information-theoretically. It involves the analysis
of the security of the final object (G̃, in the case of PRG, or SPN cipher in the case of
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block ciphers) in the corresponding idealized model for the building block f (random oracle
model, in the case of PRG, and random permutation model in the case of SPNs). The proof
will critically use the assumption that the size of f is larger than the running time T of
the attacker A so that A cannot query f on all inputs. However, the final security bound
one gets will be “syntactically meaningful” even in the small-box world, when the size of f

becomes polynomial. Then the second component of the analysis will involve a new type of
conjecture, which we term Big-to-Small conjecture, which was never considered prior to this
work, and which allows one to get good exact security bounds for the final construction in
the small-box world. We detail these below for the simple case of PRGs.

Idealized Big-box Proof. Here we are arguing the security of our final PRG G̃ in the
random oracle model for the S-box f . Normally, one would try to do it modularly, by
separately analyzing the domain extension step, followed by the hardness amplification step.
Indeed, this is how we will do the analysis in the case of SPNs, where a direct analysis of the
entire construction appears extremely cumbersome. Here, however, the PRG construction is
so simple, that we do a direct proof for the security of G̃ in the random oracle model for f .

Recall that in the basic PRG security game, an adversary has to distinguish between
G̃(x) and a random ℓ-bit string, for a random seed x = (x1, . . . , xc), by making at most q

queried to the random oracle f . We obtain the following simple lemma:

▶ Lemma 6. Let f : {0, 1}n+log ℓ → {0, 1} be modeled as a random oracle. Then, G̃ :
{0, 1}nc → {0, 1}ℓ is (q/N)c-secure PRG where N = 2n, and q is the number of oracle
queries made to f .

Proof. Let us define the variable qj to be the number of calls to f of the form f(·, j) for
j = 0, . . . , ℓ− 1. Let x1, . . . , xc be n-bit strings, randomly sampled as the seeds. Now, define
an event Badj as the event that a PPT attacker A invoked f(x1, j), . . . , f(xc, j). Now, note
that the the probability that A invoked exactly one of these seeds with j is at most qj/2n.
Therefore, Pr[Badj ] ≤ (qj/2n)c.

Define by E the event that any of Bad1, . . . , Badℓ−1 occurred. Then, we know that

Pr[E ] =
ℓ−1∑
j=0

Pr[Badj ] = 1
N c

ℓ−1∑
j=0

qc
j ≤

( q

N

)c

Now, note that if E did not happen, then the adversary has no distinguishing advantage
between real or random. Therefore, the distinguishing advantage of A in the PRG game is
(q/N)c. ◀

Removing the dependence on q in ϵ. We need one other syntactic, but extremely important
step. For reasons to be clear when we move to the Big-to-small conjecture, we cannot afford
to have a dependence on a number of oracle queries q in our security bound for ϵ. Instead, we
will re-write our bound, but in a way that pushed the dependence on q into the lower bound
for the S-box input parameter n. Concretely, if we (temporarily) assume that n ≥ 10 log q

(or, equivalently, q ≤ 2n/10), then ϵ(n) ≤ 2−0.9nc = N−0.9c.
Finally, we will now no longer assume that the attacker A is computationally unbounded,

but instead upper bound its running time by some parameter T ≥ q, and say that our PRG
is (T, ϵ)-secure if no such attacker can break it with an advantage more than ϵ. With this
change, we get the following restatement on our bound in Lemma 6 which will be convenient
for our Big-to-small conjecture.
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▶ Theorem 7. If n ≥ 10 log T and f : {0, 1}n+log ℓ → {0, 1} is modeled as a random oracle,
then G̃ : {0, 1}nc → {0, 1}ℓ given in Equation (2) is a (T, N−0.9c)-secure PRG, where N = 2n.

Big-to-Small Conjecture. Our analysis in the sections thus far have assumed that n is
sufficiently large, i.e., “big n”. Formally, Theorem 7 assumed that n > 10 log T . However,
the construction of G̃ is interesting even when n is much smaller. Indeed, we only need
cn < ℓ to get a meaningful expansion. Moreover, even the final security bound N−0.9c is
pretty good (while not established, of course!) for quire reasonable values of n and c. For
example, setting c = n = 8 and ℓ = 128, we get a PRG with seed length cn = 64, output
length ℓ = 128, and conjectured security (2−64)−0.9 ≈ 2−57, from a reasonably small Boolean
S-box on 15 bits (or, equivalently, a more “balanced” S-box from 12-to-8 bits, which is quite
reasonable to build). This would be fantastic, if true!

Of course, such security makes no sense, as it does not depend on the running time
T of the distinguisher. Indeed, we could have replaced n ≥ 10 log T with the bound
n ≥ 1000000 log T , and basically get optimal security ≈ 2−nc using a cn-bit seed, without
doing any work. Nevertheless, we conjecture that bounds such as the one in Theorem 7 are
hopefully meaningful for real-world security of the corresponding ciphers, provided one also
includes some term corresponding to “brute-force attacks” running in time T . For example,
the best generic (non-uniform) attacks against PRGs with cn-bit key [13] have an advantage
roughly T/N c/2 using non-uniform attackers using time and space T .

A particularly strong Big-to-small conjecture9 would then state that the best way to
attack constructions of the type we present is either by doing a brute-force search with
advantage T/N c/2 ignoring the fine-grained structure of our PRG, or we could have a generic
attack on the structure of our PRG, ignoring its key size. And since with such a strong
conjecture we have T/N c/2 ≫ N−0.9c, we are effectively saying that the brute-force attack is
the best we can do for our cipher.

Of course, we could make weaker conjectures, and perhaps invest more time in the
cryptanalysis of the resulting cipher. But the “mega-conjecture” of our approach is as follows:

Big-to-Small (Meta-)Conjecture: If the idealized big-box analysis shows (T, N−αc)-
hardness when n > a log T (for some a > 1 and α < 1) for the c-time iterated construction
of a given primitive, then the construction is also (T, N−αc + ϵ(T ))-secure for any n ≥ n0,
where n0 = n0(a, α) ≪ log T is a constant, and ϵ(T ) accounts for a term involving a
brute-force search component in time T .

▶ Conjecture 8 (Big-to-Small Conjecture; Informal). Assume a PRG G′ of seed length ℓ(n)
is (T, ϵ′(n))-secure, where ϵ′(n) > T/2ℓ(n), when using ideal building component of length
n ≥ a log T (for some a > 1). Then, for some constant n0 = n0(a), the “scaled down” version
of G′ of seed length ℓ(n0) using building block f of size n ≥ n0 is still (T, O(ϵ′(n))-secure.

We defer a more precise discussion on such a conjecture, its practicality, and its impact
after a similar analysis of SPNs in Section 4.3, as this is our most interesting case.

We note, however, that we would not be surprised that such a strong conjecture could
be false in its generality. For example, analogous conjecture is clear false for related
unpredictability primitives, such as one-way functions (OWF) constructed using direct product
with independent inputs: F (x1, . . . , xw) = f(x1), . . . , f(xw). Namely, when scaling the input
length n to OWF f from security parameter to constant, we clearly make the resulting

9 Of course, we have no chance of proving such a conjecture, as it clearly implies one-way functions.



Y. Dodis, H. Karthikeyan, and D. Wichs 56:15

combined function F insecure, by iterative inverting each xi one by one. However, it currently
appears that funding natural counter-examples for indistinguishability primitives (like PRGs
and block ciphers) is quite non-obvious, even if one starts with artificial constructions not
motivated by what is done in practice. Moreover, once the corresponding primitive is built
using the natural hardness amplification step applied c times (e.g., cascade for block ciphers,
or XOR for PRGs), the big-to-small conjecture becomes quite plausible. Indeed, we believe it
could be true (while beyond our reach formally), at least with a weaker security term N−a′c

for a′ < a (when the non-cascaded version has security N−a). Further, the we would not be
surprised if the brute-force component ϵ(T ) could be improved by future cryptanalysis to be
somewhat below the naive brute-force search.

To sum up, while many aspects of our framework are still being nailed down, we hope
this work will motivate further explorations of small-box cryptography, including its promise
and limitations.

4 Applying Small-Box Cryptography to SPNs

As our next result, we demonstrate the use of our framework to obtain concrete security
bounds for SPN block ciphers.10 In Section 4.1 we remind the reader of the syntax of (linear)
SPNs. In Section 4.2 we show how we can obtain essentially the same construction by
combining a “domain extension step” with the “hardness amplification” step. Namely, the
former could be viewed as reduced-round SPN for which we will use the results of [11], which
showed that 3-round linear SPNs achieve O(T 2/2n) security in the random permutation
model (as a way to model the S-box, and under pretty mild restrictions on the linear D-box
design). As stated before, a D-box is keyed, non-cryptographic permutation on wn bits.
The latter step of “hardness amplification” could be viewed as cascading the cipher with
independent (or correlated) keys to increase the number of rounds to get below 2−n security
barrier (in the “big-box” world). These analyses are done in Sections 4.3. Finally, Section 4.3
formalizes an appropriate “big-to-small” conjecture to go to the “small-box” world, and
Section 4.4 brings everything together to justify Theorem 1 and get the concrete (conjectured)
security bounds advertised in the Introduction.

4.1 Pseudorandom Permutations and SPNs

Pseudorandom Permutation. We now look at the security of a Pseudorandom Permutation
(PRP).

▶ Definition 9 (Pseudorandom Permutation). Let n ∈ N be the security parameter. Then,
an efficiently computable keyed-permutation Ek : {0, 1}n → {0, 1}n where k ← {0, 1}s is an
(T, ϵ)-secure PRP if for all adversaries A running in time T , the following holds:∣∣∣∣ Pr

k←{0,1}s

[
AEk(·)() = 1

]
− Pr

P←P

[
AP (·)() = 1

] ∣∣∣∣ ≤ ϵ

where P is the set of all permutations over {0, 1}n. Note that if the construction uses an
ideal object, then A gets oracle access to this primitive as well.

10 Although we only apply our result to the SPN design, the discussion below is rather general, and can be
applied to any r-round design E which uses some idealized building block f of (potentially small) size n.
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Substitution-Permutation Networks. A substitution-permutation network (SPN) is a keyed
permutation defined by the two transformations that it repeatedly invokes. The first
transformation is what is called an “S”-box where one computes, block by block, a public,
cryptographic permutation. The second transformation uses a keyed, non-cryptographic
permutation. The repeated invocation is determined by the rounds of the SPN. In addition,
the distribution of the keys for the keyed-permutation is also included in this definition,
though in practice, the keys are actually derived from a single master key through a key
schedule.

Formally, an r-round SPN taking inputs of length wn where w ∈ N is the width of the
network, is defined by:
1. r + 1 keyed permutations {πi : Ki × {0, 1}wn → {0, 1}wn}r

i=0,
2. a distribution K over K0 × · · · ×Kr, and
3. a permutation f : {0, 1}n → {0, 1}n.
The actual construction is as follows:

x1 := π0(k0, x).
For i = 1 to r do:

1. yi := S(xi), where S (x[1] ∥ · · · ∥x[w]) def= f(x[1]) ∥ · · · ∥ f(x[w]).
2. xi+1 := πi(ki, yi).
The output is xr+1.

where (k0, . . . , kr) ∈ K0 × · · · ×Kr are the round keys and x ∈ {0, 1}wn is the input.
Note that if f is efficiently invertible and each πi is efficiently invertible (given the

appropriate key), then one can simply reverse the process, given the round keys, to obtain
the original input x.

Linear SPNs. In practice, majority of SPNs are what we call linear. Such SPNs correspond
to the setting where the D-Boxes (i.e., the keyed permutations πi) are defined as follows:
πi(ki, y) = ki + y, where each ki = Ti(k) with Ti being a linear transformation, and k being
the “main” key. A simple example of such linear SPN corresponds to the case there each Ti

is the identity function, meaning the original key k = (k0, . . . , kr) is (r + 1)wn-bit long, and
consists of (r + 1) independent sub-keys of length wn each. However, we could have more
compact key schedules T = (T0, . . . , Tr), where the main key k will be much smaller (and
each function Ti possibly expanding). Indeed, such linear SPNs were analyzed by Cogliati et
al. [11] (see Lemma 10 and Lemma 11 below).

Figure 1 is a pictorial representation of a 3-round Linear SPN with unspecified linear
transformations T0, T1, T2, T3.

4.2 Construction Step
In this section, we show how the defined SPN can be “syntactically” obtained through a
process of two steps – domain extension and hardness amplification.

Domain Extension Step. In this step, we view the S-box as an idealized block (random
permutation), and our goal is to find the minimal number of rounds r for which SPNs
(with appropriately chosen linear D-boxes) are (T, 2−Ω(n))-secure in the random permutation
model. This is exactly the question studied by [11], who showed that minimal such r = 3,
and we will use their concrete results in Section 4.3.
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wn-bit input

f f f fff f f ff

f ffff f ffff

n-bit f -box input

f ffff f ffff

k0 = T0(k)

k1 = T1(k)

k3 = T3(k)

k2 = T2(k)

Figure 1 A 3-round Linear SPN with key schedule (T0, T1, T2, T3) expanding k to rounds keys
(k0, k1, k2, k3), where ki = Ti(k) for i = 0, 1, 2, 3.

Hardness Amplification Step. First, since we are in the big world, we imagine the size n

of the “small-box” f is made large enough so that exponential in n security is meaningful.
For example, one could imagine SPN ciphers with large S-boxes (say, of several hundred
bits long), even though they yield block ciphers of much higher block length wn than we
might need (say, thousand bits or more). Then one can ask the question if the security of
such “blown up” ciphers (still with idealized f) gets significantly better when one starts to
increase the number of rounds r well beyond what is needed for their minimal security, by
cascading the block cipher with itself, with independently generated keys. This is exactly the
question of hardness amplification of block ciphers studied by [31, 36]; their result states that
by cascading c independent, (T, ϵ)-secure ciphers, one still gets (T, ϵ′)-security which decays
exponentially in c: ϵ′ ≈ ϵc, but for our purposes any weaker exponential dependence on c

(e.g., ϵ′ = ϵc/100) will be enough to get a meaningful result, at the price of lesser efficiency.
We give a more precise analysis in Section 4.3.

In summary, by doing this c-cascading step applied to the basic 3-round SPN predicted
secure by [11] in the big-box world, we effectively obtain 3c-round SPN, which was exactly
our goal.

4.3 Analysis Step

Soundness of Domain Extension. As our next step, we analyze the soundness of hardness
amplification in the big-box world, when we still model f as a “big” ideal object. As for
the PRG case, we do it in the information-theoretic setting, where the running time of the
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attacker is unbounded, and only the number of oracle queries q is still bounded. Unlike the
PRG case, the direct analysis of both domain extension and hardness amplification together
appears extremely involved. Instead, we do it in a modular fashion, starting with the analysis
of domain extension.

Fortunately for us, this question has been studied by Cogliati et al.[11]. They study the
security of an SPN as a strong-pseudorandom permutation. Specifically, they show that
a 2-round SPN is insecure with linear D-boxes but a 3-round SPN is secure, with caveats.
Formally, these are the results for the 3-Round SPN which we present here, without proof.
We invite the readers to refer to the original work for a complete discussion on the two
Lemmas that we will use below.
▶ Lemma 10 (Security of 3-Round SPN, Corollary 1 [11]). For w > 1, there exists a 3-
round linear SPN k0 = k3 = k for uniform k ∈ {0, 1}wn and set k1 = k2 = 0wn which is
ϵ(q) = O(q2/2n)-secure, where q is the number of queries made by the distinguisher.
▶ Lemma 11 (Security of 3-Round SPN, Corollary 2 [11]). Let w > 1, k′ be a uniform n-bit
key, and ai for i = 1, . . . , w are distinct non-zero elements of finite field F = GF(2n). Then,
there exists a 3-round linear SPN with k0[i] = k3[i] = ai · k′, k1 = k2 = 0wn which is
ϵ(q) = O(q2/2n)-secure.
Lemma 10 deals with the minimal security of the 3-round scheme. However, one can reduce
the key length from wn to n (saving a factor of w), and Lemma 11 shows such reduction in
key length still leaves the construction almost as secure, by utilizing a more aggressive key
schedule.

Provable Hardness Amplification with Independent Keys. We begin by unconditionally
proving the hardness amplification that we need (under appropriate independence assump-
tions) using a beautiful hardness amplification result of Maurer, Pietrzak, and Renner [31].
This is proved for a cascade of c block ciphers E1, . . . , Ec which use both independent keys
and independent ideal components f . For the case of SPNs, this means independent S-boxes
with independent round keys. (We comment on how to relax this assumption later in the
section.)

In the language of [31], imagine we have two indistinguishable “random systems” F and
H, where:

F provides two oracles, where the first oracle is the ideal building block f of length n,
and the second oracle is the (keyed) block-cipher construction Ef

k utilizing f as an oracle
and using a secret key k. Denote such block cipher by E = Ef

k , and F = (f, E). Note,
both forward and backward queries to E are allowed (and the same is true for f when f

is a random permutation S-box).
H provides two oracles, where the first oracle is still the ideal building block f of length
n, but the second oracle is a random independent wn-bit permutation P . Denote such
H = (f, P ). Note, both forward and backward queries to P are allowed (and the same is
true for f when f is a random permutation S-box).

Assume further that no computationally unbounded distinguisher D making at most q queries
to either F or H (for simplicity we do not split q into the number of primitive queries to f

and construction queries to either E or P ) can distinguish F from H with advantage greater
than ϵ = ϵ(q). Let us denote this by ∆q(F, H) ≤ ϵ.

Now, let F1, . . . , Fc be c independent copies of F , and H1, . . . , Hc be c independent
copies of H. Let C be the construction such that, for L1, . . . , Lc being each either Fi or Hi,
C(L1, . . . , Lc) implements c + 1 oracles, as follows. If we let Li = (fi, Qi) (where Qi is either
a random permutation Pi or Ei), then

C(L1, . . . , Lc) = (f1, ..., fc, Q1 ◦Q2 ◦ ... ◦Qc)
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where ◦ is the composition of permutations. Namely, C is the c-time cascade of the c

block ciphers Ei or random permutations Pi, which also provides oracle access to the c

independent building blocks f1, . . . , fc. Let us also denote the c-cascade of our c block ciphers
by E′ = E1 ◦ · · · ◦ Ec, and the c-cascade of random permutations Pi by P ′ = P1 ◦ · · · ◦ Pc,
which by itself is just another random permutation.

It is easy to see that this construction C has a property that is called neutralizing by [31]:
whenever at least one of the Hi’s is such that Li = Hi (the ideal system), meaning that Qi

is a fresh random permutation Pi, then

C(L1, .., Lc) = (f1, ...., fc, P ′) = C(H1, ..., Hc),

because the composition becomes random if at least one of the permutations is random.
Under such conditions, the amplification result proven in [31] states that

∆q(C(F1, . . . , Fc), C(H1, ..., Hc)) = ∆q((f1, ...., fc, E′), (f1, ...., fc, P ′))
≤ 2c−1ϵc < (2ϵ)c (3)

We can now apply Equation (3) to the 3-round linear SPN construction, where the
building block f is an n-bit random permutation, and the security value ϵ(q) = O(q2/2n)
is established by Lemma 10. We then get that the resulting 3c-round SPN construction
uses c independent S-boxes f1 . . . fc (one per each 3 rounds) and c independent wn-bit keys
K1 . . . Kc, and achieves (q, ϵ′c(q))-security against q queries (to either the construction of the
S-boxes), where ϵ′c(q) = O((q2/2n)c).

In fact, to reach the same conclusion with a shorter key length, we could use Lemma 11
in place of Lemma 10. In this case, we get the final key of length only cn≪ cwn, so we save
the domain expansion factor w. Thus, although we still need c independent S-boxes, for now,
this version and could be viewed as a relatively advanced form of key scheduling, with very
strong provable security guarantees.

Removing the dependence on q in ϵ. As with the case of PRGs, we cannot use these results
as is, and need to do some manipulation of the bounds to move the dependence on the number
of queries q from ϵ on q to the size of the S-box f . Let n ≥ 20(log q + 1) (or, equivalently,
2q2 ≤ 2n/10). Then 2ϵ(n) = 2q2/2n = 2−0.9n, and hence ϵ′c(q) ≤ (2ϵ(n))c = 2−0.9nc = N−0.9c.

Finally, we will now no longer assume that the attacker A is computationally unbounded,
but instead upper bound its running time by some parameter T ≥ q, and say that our SPN
cipher is (T, ϵ)-secure if no such attacker can break it with an advantage more than ϵ. With
this change, we get the following restatement on our bound above.

▶ Theorem 12. If n ≥ 20(log T +1), then the 3c-round SPN construction using c independent
S-boxes and c independent (either wn-bit or n-bit, depending on variant) round keys is
(T, N−0.9c)-secure.

Conjectured Hardness Amplification with Correlated Keys. Unfortunately, the hardness
amplification result of [31] crucially relies on the complete independence of the c S-boxes
f1, . . . , fc and c independent round keys. In particular, unlike the much simpler PRG setting,
where we managed to analyze the whole PRG construction in one go, for the case of SPNs,
we currently cannot prove such strong results when the S-boxes are shared across the cascade,
or keys are more correlated. The best provable result in this setting is the “computational
hardness amplification” of Tessaro [36], but that comes with huge degradation in the number
of oracle queries q allowed by the “cascade distinguisher”, leading to concrete bounds which
are not useful.
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In general, though, we would like to apply an appropriate hardness amplification step in
practical settings, where different cascading ciphers use correlated rather than independent
keys (via a key schedule used in most actual designs), or when correlated or even identical
building blocks f (e.g., S-boxes) are used in different cascaded ciphers. For such pragmatic
settings, we do not have any provable results such as [31], and hence we state the hardness
amplification step as a “conjecture” rather than “theorem” below. In particular, the concrete
choice of cascading (not spelled out in the statement) is part of the conjecture. For simplicity,
we also choose the final security level we desire to be 2−wn, which is definitely enough for
practical use, but the statement easily extends to any security level below 2−n.

▶ Conjecture 13 (Hardness Amplification; Informal). Let T be the desired attacker time bound,
and assume that r-rounds block cipher E of length wn utilizing idealized block f of size n

is (T, 2−αn)-secure, as long as n > a log T (for some constants a > 1 and α < 1). Then,
provided n > a log T , cascading E for c = O(w/α) times will result in a r′ = O(wr/α)-round
block cipher E′ which is (T, O(T/2ℓ(n) + 2−wn))-secure, where ℓ(n) is the key length of E′

under to corresponding cascading step (equal to c times the key length of E when independent
keys are used).

Ignoring the cost of the brute-force key search (against uniform attackers, for simplicity)
T/2ℓ(n) (which is expected to be negligible for our choice of parameters), the hardness
amplification conjecture states that using a building block f of size n would yield better-than-
exponential-in-n security 2−wn for sufficiently many more (still constant, assuming expansion
w = O(1)) rounds, provided the box size n is sufficiently large.

Big-to-Small Conjecture. But now it seems natural to assume/conjecture that such a final
result not only holds for “big” n but might even be true for “small” n! Namely, back to the
original small-box f , we can reasonably conjecture security 2−wn (plus brute-force search)
for a sufficiently large constant number of rounds r′ = O(rw) without assuming that this is
only true when n is large. Namely, the amplified security level 2−wn is so good even if n is
small, that we optimistically hope that it holds even in the small-box world, even though the
supporting hardness amplification argument is no longer valid.

As discussed in Section 3.2, we will propose one of the strongest variants of such a
conjecture. The motivation behind such a strong variant is that it gives us great security in
case it happens to be true for practically used ciphers. As before, the conjecture will give a
meaningful result for our purposes as long as one can decrease the size n of the “small-box”
below the threshold of log T , for T independent of n. The constant n0 = n0(a) below could
be really small (e.g., n0 = 8 in the case of AES), and is part of the conjecture. We also
notice that we are not making this conjecture for all (even potentially artificial) block ciphers
E′, but only for specific E′ resulting from applying the hardness amplification step to the
basic block cipher E (for which we get our provably secure results).

▶ Conjecture 14 (Big-to-Small Conjecture; Informal). Assume a block cipher E′ with key
length ℓ(n) is (T, ϵ′(n))-secure, where ϵ′(n) > T/2ℓ(n), when using ideal building component
of length n ≥ a log T (for some a > 1). Then, for some constant n0 = n0(a), the “scaled
down” version of E′ using building block f of size n ≥ n0 is still (T, O(ϵ′(n))-secure.

We discuss this very strong conjecture below but notice that Conjectures 13 and 14
immediately imply the statement of Theorem 1 from the Introduction.

How Reasonable is “Big-to-Small” Conjecture? At first, this conjecture seems like a
complete “cheat”, as we simply assume that the conclusions attained by some security
arguments crucially relying on the big-box assumption n ≫ log T , might still hold in the
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small-box world when n is a constant. But let us observe a couple of things. First, we
already mentioned that we do not need such a strong conjecture: many weaker conjectures
will yield meaningful variants of Theorem 1, provided they allow one to decrease the size n

of the “small-box” below the threshold value log T . Second, since the construction of E′ is
the same for all n, it is natural that its security smoothly changes with n, without any huge
jumps at certain levels, as long as the exhaustive key search is infeasible (this is why we
assumed ϵ′(n) > T/2ℓ(n)). In particular, under this reasonable assumption, we certainly allow
the assumed success probability ϵ′(n) to grow as the box f becomes smaller. So the only
really big assumption is the fact that we kept the running time of the attacker at the same
level T , even though when T becomes larger than 2n, the attacker can suddenly evaluate
our ideal component f (e.g., S-box) on all 2n inputs. Third, given our current inability to
built unconditionally block ciphers from only small components, it seems that some kind
of “big-to-small” conjecture must be required, but we tried to make it as crisp and clean as
we could, while additionally proving as many things around it as possible with the existing
techniques. And, finally, the kinds of constructions we get when applying this conjecture to
the SPN ciphers are exactly the SPN ciphers used in practice, and believed to be secure. So
one can use this conjecture as a clean and formal way to isolate exactly the kind of “leap of
faith” we are making in the real world in assuming these ciphers are secure.

Aside from these reasonable, but still rather limited, justifications at this stage we don’t
have any other theoretical justification for this strong “Big-to-Small Conjecture”, and view
this as an exciting direction for future research. In particular, given that coupling this
strong conjecture with (rather mild and believable) hardness amplification step gives us
the amazing conclusion of Theorem 1, which in turn implies plausible security for many
SPN-based ciphers, we believe studying this new and non-standard conjecture is extremely
reasonable and well-motivated.

4.4 Putting the Pieces Together
As mentioned earlier, Dodis et al.[11] proved results that addressed the problem of “domain
extension” of block ciphers. In particular, they showed that a 3-round SPN is (T, 2−αn)-
secure when n > 2 log T/(1− α) (so that T 2/2n ≤ 2−αn). Thus, cascading it c times gives
us 3c-round SPN with conjectured (T, T/2ℓ(n) + 2−Ω(cn))-security, where ℓ(n) is our final key
length, and this is true even for small values of n (governed by constant n0 which is part of the
conjecture). To get this close to the practical SPN designs, let us write T = 2t, and assume
we use correlated key schedule with final key length ℓ(n) = wn, and, for simplicity, ideal
hardness amplification is true even with best possible α ≈ 1. Then we get (very ambitious)
conjectured (2t, 2t−wn + 2−cn)-security in 3c rounds. In particular, optimistically setting
n = 8 and wn = 128 for the case of AES, we could get ambitious (2t, 2t−128 + 2−8c)-security
in 3c rounds. Assume c ≤ 8 and t = 64 is good enough for practical use, we simplify this to
an amazingly simple, but powerful, conclusion of our small-box cryptography framework:

3c-round variant of 128-bit AES with 8-bit S-boxes which is (264, 2−8c)-secure

In particular, setting c = 10/3, would already yield respectable one-in-hundred-million
security in 10 rounds (the number of real AES rounds), while setting c = 8 would give
excellent 2−64 security in 24 rounds.

While the above “back-of-the-envelope” calculations were a bit ad hoc and likely quite
optimistic, they demonstrate several very attractive features of our framework, especially
in comparison to its “big-box” counterpart. First, such calculations can be easily made
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(although more research is needed in estimating or conjecturing the right constants hid-
den/underspecified in Theorem 1). Second, such calculations give meaningful conjectured
security of actually used ciphers. Third, for the first time, we see that our conjectured bounds
– even when ambitiously good – were on the pessimistic side, predicting either more rounds
or a lower level of conjectured security than what is believed in practice. This is exactly
what we expect from a sound theory, as we don’t want such a theory to make predictions
contradicted by reality.

5 Conclusion and Open Problems

We introduce the framework of small-box cryptography, which allows us to extend the
(seemingly meaningless) provable security bounds for small values n into meaningful bounds
for the iterated version of the corresponding cipher. Applying this framework to existing SPN
ciphers, we get the most accurate theoretical justification for the security of these ciphers.
While applying it to PRGs, we get a construction for which we can get an alternative proof
from a well-studied assumption.

A number of interesting open questions remain. First, we have many open-ended questions
regarding the soundness of our small-box approach, most important of which is a better
understanding of the “big-to-small” Conjecture 14. It would also be interesting to apply
the small-box framework to the Feistel ciphers, by going deeper into the design of its round
function, so that we get much more meaningful justification regarding the design of existing
such ciphers, including DES, FEAL, MISTY and KASUMI.

Second, it is interesting to understand the best way to get concrete security bounds using
the current framework. For example, unlike the setting of “big-box” cryptography, where
the improved security directly translates to smaller key length, in the setting of small-box
cryptography the effect is much less understood, and likely significantly less important. For
example, even proving optimal O(q/2n) security instead of O(q2/2n) security for our reduced-
round SPN simply changes the constant a from the hardness amplification Conjecture 13
from a = 2/(1 − α) to a = 1/(1 − α). This in turns might slightly decrease the minimal
value of S-box size n0(a) in big-to-small Conjecture 14, but at the present we have no good
understanding how practically important this change would be. In other words, proving
“beyond-birthday” results in the small-box approach is certainly interesting on a technical
level, but might not matter too much in terms of applying the framework to the existing
ciphers.
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A Proof of Theorem 4

Proof. With the above intuition, we can prove the hardness amplification result through
a sequence of hybrids, and reducing the problem to a variant of the LPN problem. In the
proof we denote the uniform distribution of binary vectors of length N and weight c by ZN

2,c.

Hybrid H0. A receives Mx for x← ZN
2,c and M← Zℓ×N

2 .

Hybrid H1. A receives Mx⊕MA⊤s where A is the generator matrix corresponding to the
parity check matrix M← Zℓ×N

2 . A ∈ Z(N−ℓ)×N
2 , s← ZN−ℓ

2 , and x← ZN
2 with wt(x) = c

Note that Hybrids H0 and H1 are identically distributed because of the property that
MA⊤ = 0

Hybrid H2. A receives Mx⊕MA⊤s where M is the parity check matrix corresponding to
the generator matrix A← Z(N−ℓ)×N

2 s← ZN−ℓ
2 , and x← ZN

2 with wt(x) = c

Note that the difference between Hybrids H1 and H2 only lies in the order of sampling
M, A. In H1, we sample M and then compute A, while in H2 we do the opposite.

Hybrid H3. A receives Me where M is the parity check matrix corresponding to the
generator matrix A← Z(N−ℓ)×N

2 and e← ZN
2 .

▷ Claim 15. If (N, m = N − ℓ)-XLPNτ is (t, ϵ)-hard, then the distinguishing advantage
between H2 and H3 for any PPT adversary A is at most ϵ provided c = N · τ

Proof. Let us assume that there is A2 that can distinguish between H2 and H3. We will
construct A1 that uses A2 to win the ranked LPN game.

Challenger samples A ← Z(N−ℓ)×N
2 , s ← ZN−ℓ

2 , and x ← ZN
2 with wt(x) = c. It then

sets e0 = A⊤s ⊕ x and e1 ← ZN
2 . It tosses a bit and sends to A1, (A, e = eb). A1 then

generates the corresponding PCM M for A and runs A2 on Me. It is easy to verify that if
b = 0, A1 simulates perfectly H2 and if b = 1, it simulates H3 perfectly. A1 merely forwards
A2’s guess as its own. This concludes the proof. ◁

Hybrid H4. A receives Me where M← Zℓ×N
2 and e← ZN

2 .
Note that the difference between hybrids H3 and H4 is again the order of sampling. In the

former, A is sampled and then M is computed, whereas in the latter M is directly sampled.

Hybrid H5. A receives y← Zℓ
2

Hybrids H4, H5 are identically distributed and therefore are statistically indistinguishable.
◀
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