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Abstract
This paper addresses two deficiencies of models in the area of matching-based market design. The first
arises from the recent realization that the most prominent solution that uses cardinal utilities, namely
the Hylland-Zeckhauser (HZ) mechanism [22], is intractable; computation of even an approximate
equilibrium is PPAD-complete [32, 8]. The second is the extreme paucity of models that use cardinal
utilities, in sharp contrast with general equilibrium theory.

Our paper addresses both these issues by proposing Nash-bargaining-based matching market
models. Since the Nash bargaining solution is captured by a convex program, efficiency follow; in
addition, it possesses a number of desirable game-theoretic properties. Our approach yields a rich
collection of models: for one-sided as well as two-sided markets, for Fisher as well as Arrow-Debreu
settings, and for a wide range of utility functions, all the way from linear to Leontief.

We also give very fast implementations for these models which solve large instances, with
n = 2000, in one hour on a PC, even for a two-sided matching market. A number of new ideas were
needed, beyond the standard methods, to obtain these implementations.
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1 Introduction

Within the area of matching-based market design, the most prominent solution that uses
cardinal utilities2 is the Hylland-Zeckhauser (HZ) mechanism [22]. It is based on creating
parity between demand and supply, i.e., it uses the power of a pricing mechanism, which gives
it attractive properties: the allocations produced satisfy Pareto optimality and envy-freeness
[22] and the mechanism is incentive compatible in the large [21].

A serious drawback of HZ, from the viewpoint of practical applicability, is lack of
computational efficiency: the recent papers [32] and [8] show that the problem of computing
even an approximate equilibrium is PPAD-complete. More precisely, [32] showed membership

1 Corresponding author
2 For a brief comparison of cardinal and ordinal utilities for matching markets, see Section 1.4.
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in PPAD and remarked that it will not be surprising if intractability sets in even for the
highly special case in which utilities of agents come from a trivalued set, say {0, 1

2 , 1}; for
bivalued sets, they gave an efficient algorithm. Next, [8] showed PPAD-hardness even for the
case that utilities of agents come from a four-valued set; the trivalued case is open.

The second issue addressed by this paper is a deficiency of the area of matching-based
market design itself, namely the extreme paucity of models that use cardinal utilities.
This stands in sharp contrast with general equilibrium theory, which has defined and
extensively studied several fundamental market models to address a number of specialized
and realistic situations. HZ can be seen as corresponding to the most elementary model in
that theory, namely the linear Fisher model. A model corresponding to the linear Arrow-
Debreu market model was also studied by Hylland and Zeckhauser [22]; however, they ended
their investigation on finding instances that do not admit an equilibrium. Considering these
difficulties, studying further generalizations made little sense. In particular, we are not aware
of any two-sided matching market models that use cardinal utilities.

Our paper addresses both these issues by proposing Nash-bargaining-based matching
market models. As is well known, the Nash bargaining solution is captured as in optimal
solution to a convex program. Therefore, if for a specific game, a separation oracle can be
implemented in polynomial time, then using the ellipsoid algorithm, one can get as good
an approximation as desired in time that is polynomial in the number of bits of accuracy
required [20, 33]. For all models defined in this paper, the constraints of the convex program
are linear, thereby ensuring zero duality gap and easy solvability.

The game-theoretic properties of the the Nash bargaining solution include: it satisfies
Pareto optimality and symmetry, and since it maximizes the product of the utilities of
agents, the allocations it produces are remarkably fair. The latter has been noted by several
researchers [7, 2, 27] and has been further explored under the name of Nash Social Welfare
[10, 9]. Compared to HZ, we have sacrificed envy-freeness for this fairness property – the
two are incomparable, with neither dominating the other. We have also sacrificed incentive
compatibility in the large, but have gained efficient solvability. Clearly, without the latter,
the nice properties of HZ have little meaning, since the mechanism is unusable except for
extremely small instances, perhaps not exceeding n = 10.

Another major gain from the move to Nash bargaining is that it yields a plethora of
matching market models, not only one-sided but also two-sided; for the Fisher as well as the
Arrow-Debreu settings, with the latter being not much harder than the former. Furthermore,
our models cover a large range of utility functions, all the way from linear to Leontief.

For the two reasons given above, namely computational efficiency and richness of models,
we have proposed a shift from a pricing mechanism to a Nash-bargaining-based mechanism
for matching market models. The following two questions arise: Is this shift a principled one,
i.e., is there a fundamental connection between the two types of models? Is either type of
mechanism reducible to the other? Section 1.1 provides answers to these questions.

We note that the origins of the idea of operating markets via Nash bargaining go back to
[31]. For the linear case of the Arrow-Debreu market model, instead of seeking allocations via
a pricing mechanism, [31] formulated it as a Nash bargaining game and gave a combinatorial,
polynomial time algorithm for solving the underlying convex program.

As is well known, polynomial time solvability is often just the beginning of the process
of obtaining an “industrial grade” implementation. Towards this end, we give very fast
implementations as well as experimental results for all five of our one-sided market models
and the most basic two-sided model; the more general two-sided markets are analogous to
the rest of the one-sided markets. In particular, our implementation can solve very large
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instances, with n = 2000, in one hour even for a two-sided matching market. In Section 1.3
we have described how the standard methods needed to be adapted to the special intricacies
of our settings, in order to obtain these very fast implementations.

In contrast, an HZ equilibrium, in particular, the equilibrium price, is not captured by any
known mathematical construct, regardless of its computational complexity. The only known
method for conducting an exhaustive search for obtaining an HZ equilibrium is algebraic cell
decomposition [4]; its use for computing HZ equilibria was studied in [3]. Each iteration of
this method is time-consuming. This, together with the exhaustive search required, makes it
viable for only very small values of n, not exceeding 10.

The recent computer science revolutions of the Internet and mobile computing led to the
launching of highly impactful and innovative matching markets such as Adwords, Uber and
Airbnb, and in turn led to a major revival of the area of matching-based market design, e.g.,
see [16]. It is safe to assume that innovations will keep coming in the future and that new
models, with good algorithmic properties, may be needed at any time in the future. Our
work was motivated by these considerations.

1.1 The Connection between HZ and Nash-Bargaining-Based Models
In this section, we answer the two questions raised above by attempting a comparative study
of one-sided matching markets under the two types of models. The answer to the second
question is “No” since under an affine transformation of the utilities of agents, the Nash
bargaining solution and an HZ equilibrium change in fundamentally different ways: Whereas
the former solution undergoes the same affine transformation (see Section 2.1), the latter
remains unchanged, as shown in [32]. The answer to the first question is “Yes”, due to the
connection established in [30]. We provide a brief synopsis of the argument below.

First consider the linear Fisher market model defined in Section 2.2. The setup of the
linear Fisher problem (LFP) is identical, except that the agents don’t have any money, so
this is not really a market model. The problem is to design a polynomial time mechanism for
distributing all the goods among the agents so that the allocation satisfies Pareto optimality.

max
∑
i∈A

log(
∑
j∈G

uijxij)

s.t.
∑
i∈A

xij ≤ 1 ∀j ∈ G,

x ≥ 0.

(1)

[30] give two such mechanisms. The first is to give each agent 1 Dollar, thereby trans-
forming LFP to the linear Fisher market model, and ask for an equilibrium allocation, which
satisfies Pareto optimality. This can be obtained in polynomial time, via a combinator-
ial algorithm [11], or by expressing it as a convex program. The latter is the celebrated
Eisenberg-Gale convex program [14], given in (1).

The second is to view LFP as a Nash bargaining problem; Pareto optimality is one of
the axioms which it satisfies, see Section 2.1. This is done by defining a convex, compact
set N ⊆ Rn

+, called the feasible set, and a point c ∈ N , called the disagreement point, see
Section 2.1 for details. In this case, c = 0, and N will consist of all possible vectors of utilities
to the n agents that can be obtained by partitioning 1 unit each of all m goods among the
agents. It is easy to see that the resulting convex program will be precisely Eisenberg-Gale
convex program. Therefore, the two mechanisms are identical!

ITCS 2022
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LFUPHZ 1LFPricing NB

Figure 1 Figure illustrating connection between HZ and NB.

Next, [30] define the linear Fisher unit demand problem (LFUP) to be LFP with the
additional requirements that m = n and that each agent should get a total of one unit of
goods. As a result, every feasible allocation is a fractional perfect matching over the n agents
and n goods.

Now it turns out that when LFUP is solved via the pricing mechanism, it is identical
to HZ, and when it is solved via the Nash bargaining mechanism it is identical to 1LF, i.e.,
our most basic Nash-bargaining-based model, see Section 3.1. This establishes a strong
connection between HZ and the Nash-bargaining-based models and is illustrated in Figure 1.

1.2 Our Results
In Section 3.1, we give four basic models for one-sided matching markets covering a wide
range of utility functions. For each model, we also give a natural application. In Section 3.2
we give a model for the most basic two-sided matching market. This model can be easily
enhanced to four more models in a manner analogous to the other four one-sided matching
market models given in Section 3.1.

In Section 4, we give convex programs capturing the Nash-bargaining-based solution for
all the models mentioned above. These convex programs can be solved to ϵ precision in time
that is polynomial in the size of the input and log 1/ϵ via ellipsoid-based methods [18, 33].

In Section 5, we present two solution schemes for solving these convex programs. Our
methods, namely cutting-plane method [24, 33] and Frank-Wolfe method [17, 23], rely on
linear approximations of the convex programs. We present enhancement techniques as well
as an overview of the way structural properties of these problems can be exploited.

To demonstrate the effectiveness of these methods in handling large-scale instances of
the problems, we performed extensive computational experiments in Section 6 and tested
the algorithms on instances of up to 2000 agents/goods and 10 segments for the piecewise
linear utility functions. In particular, the Frank-Wolfe algorithm is well-suited for matching
market models with linear utilities, and is capable of producing sparse optimal solutions.
The cutting-plane algorithm is able to produce optimal or near-optimal solutions for the
more challenging problems of one-sided market models with non-linear utility functions.

1.3 Ideas Needed beyond Standard Methods
Our solution methods, namely cutting-plane algorithm and Frank-Wolfe (FW) algorithm,
rely on iterative linear approximations of convex programs for the one-sided and two-sided
market models. For efficient implementation of these algorithms, one needs to pay attention
to the structural properties of these models as described below.

We implement a central cutting-plane algorithm (CCP), which not only guarantees a
linear convergence rate, but also produces more effective cuts, since central points are more
likely to be in the relative interior of the feasible region. Additionally, straightforward
implementations of CCP are often prone to numerical instabilities. For instance, if the cut
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coefficients are of different scales, the solvers may not handle the cuts properly. We avoid
this by choosing proper scales for the cut coefficients. Secondly, since the objective function
of the convex programs involves the logarithm function, we require positive utilities for each
agent at each iteration of CCP. However, since CCP is an outer-approximation algorithm, it
is possible that in an iteration of CCP, the utilities of some agents may become zero, which
makes the solution unbounded, and one cannot extract a cut based on this solution. We
resolve this issue by taking a convex combination of the current point and some feasible
interior point. The latter point is obtained by choosing the closest feasible point to the
current point on the line segment from current point to the interior point.

We also implement a Frank-Wolfe algorithm for solving instances of the matching markets
with linear utilities. An interesting property of these models is that once the nonlinear
objective function of the respective convex programs are replaced by linear functions, the
resulting problems can be solved as matching problems. The solution produced by FW is
therefore a sparse convex combination of a set of integral perfect matchings.

1.4 Related Results
Recently [32] gave the first comprehensive study of the computational complexity of HZ.
They gave an example which has only irrational equilibria; as a consequence, this problem
is not in PPAD. They showed membership of the exact equilibrium computation problem
in FIXP and approximate equilibrium in PPAD. They also gave a combinatorial, strongly
polynomial time algorithm for computing an equilibrium for the case of dichotomous utilities,
i.e., 0/1 utilities, and they extended this result to the case of bivalued utilities, i.e., each
agent’s utility for individual goods comes from a set of cardinality two, though the sets may
be different for different agents.

Next, [8] showed PPAD-hardness even for the case that utilities of agents come from a
four-valued set; the trivalued case is open.

The success of our implementations, using available solvers, naturally raises the question
of finding efficient combinatorial algorithms for our proposed market models. The subsequent
paper [30] has given such algorithms, based on the techniques of multiplicative weights update
(MWU) and conditional gradient descent (CGD), for several of our one-sided and two-sided
models. They also defined and developed algorithms for the non-bipartite matching market
model which has applications to the roommate problem. Lastly, they gave the connection
between HZ and the Nash-bargaining-based models stated in Section 1.1.

The extension of one-sided matching markets to the setting in which agents have initial
endowments of goods, called the Arrow-Debreu setting, has several natural applications
beyond the original Fisher setting, e.g., allocating students to rooms in a dorm for the next
academic year, assuming their current room is their initial endowment. The issue of obtaining
such an extension of the HZ scheme, was studied by Hylland and Zeckhauser. However, this
culminated in an example which inherently does not admit an equilibrium [22].

As a recourse, [12] introduced the notion of an α-slack Walrasian equilibrium. This is a
hybrid between the Fisher and Arrow-Debreu settings in which agents have initial endowments
of goods and for a fixed α ∈ (0, 1], the budget of each agent, for given prices of goods, is
α + (1 − α) ·m, where m is the value for her initial endowment. Via a non-trivial proof,
using the Kakutani Fixed Point Theorem, they proved that an α-slack equilibrium always
exists. A pure Arrow-Debreu model was proposed in [19] by suitably relaxing the notion
of an equilibrium to an ϵ-approximate equilibrium. Their proof of existence of equilibrium
follows from that of [12].

ITCS 2022
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An interesting recent paper [2] defines the notion of a random partial improvement
mechanism for a one-sided matching market. This mechanism truthfully elicits the cardinal
preferences of the agents and outputs a distribution over matchings that approximates every
agent’s utility in the Nash bargaining solution.

In recent years, several researchers have proposed Hylland-Zeckhauser-type mechanisms
for a number of applications, e.g., see [6, 21, 25, 26]. The basic scheme has also been
generalized in several different directions, including two-sided matching markets, adding
quantitative constraints, and to the setting in which agents have initial endowments of goods
instead of money, see [12, 13].

Ordinal vs cardinal utilities. Under ordinal utilities, the agents provide a total preference
order over the goods and under cardinal utilities, they provide a non-negative real-valued
function. Both forms have their own pros and cons and neither dominates the other. Whereas
the former is easier to elicit from agents, the latter is far more expressive, enabling an agent to
not only report if she prefers good A to good B but also by how much. [1] exploit this greater
expressivity of cardinal utilities to give mechanisms for school choice which are superior to
ordinal-utility-based mechanisms.

Example 1, taken from [19], provides a very vivid illustration of the advantage of cardinal
utilities over ordinal ones in one-sided matching markets.

▶ Example 1. The following example illustrates the advantage of cardinal vs ordinal utilities.
The instance has three types of goods, T1, T2, T3, and these goods are present in the proportion
of (1%, 97%, 2%). Based on their utility functions, the agents are partitioned into two sets
A1 and A2, where A1 constitute 1% of the agents and A2, 99%. The utility functions of
agents in A1 and A2 for the three types of goods are (1, ϵ, 0) and (1, 1− ϵ, 0), respectively,
for a small number ϵ > 0. The main point is that whereas agents in A2 marginally prefer T1
to T2, those in A1 overwhelmingly prefer T1 to T2.

Clearly, the ordinal utilities of all agents in A1∪A2 are the same. Therefore, a mechanism
based on such utilities will not be able to make a distinction between the two types of agents.
On the other hand, the HZ mechanism, which uses cardinal utilities, will fix the price of
goods in T3 to be zero and those in T1 and T2 appropriately so that by-and-large the bundles
of A1 and A2 consist of goods from T1 and T2, respectively.

2 Preliminaries

2.1 The Nash Bargaining Game
An n-person Nash bargaining game consists of a pair (N , c), where N ⊆ Rn

+ is a compact,
convex set and c ∈ N . The set N is called the feasible set – its elements are vectors
whose components are utilities that the n players can simultaneously accrue. Point c is the
disagreement point – its components are utilities which the n players accrue if they decide
not to participate in the proposed solution.

The set of n agents will be denoted by A and the agents will be numbered 1, 2, . . . n.
Instance (N , c) is said to be feasible if there is a point in N at which each agent does strictly
better than her disagreement utility, i.e., ∃v ∈ N such that ∀i ∈ A, vi > ci, and infeasible
otherwise. In game theory it is customary to assume that the given Nash bargaining problem
(N , c) is feasible; we will make this assumption as well.

The solution to a feasible instance is the point v ∈ N that satisfies the following four
axioms:
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1. Pareto optimality: No point in N weakly dominates v.
2. Symmetry: If the players are renumbered, then a corresponding renumber the coordinates

of v is a solution to the new instance.
3. Invariance under affine transformations of utilities: If the utilities of any player are

redefined by multiplying by a scalar and adding a constant, then the solution to the
transformed problem is obtained by applying these operations to the particular coordinate
of v.

4. Independence of irrelevant alternatives: If v is the solution to (N , c), and S ⊆ Rn
+ is a

compact, convex set satisfying c ∈ S and v ∈ S ⊆ N , then v is also the solution to (S, c).

Via an elegant proof, Nash proved:

▶ Theorem 2 (Nash [28]). If the game (N , c) is feasible then there is a unique point
in N satisfying the axioms stated above. Moreover, this point is obtained by maximizing
Πi∈A(vi − ci) over v ∈ N .

Nash’s solution to his bargaining game involves maximizing a concave function over a
convex domain, and is therefore the optimal solution to the following convex program.

max
∑
i∈A

log(vi − ci)

s.t. v ∈ N
(2)

As a consequence, if for a specific game, a separation oracle can be implemented in
polynomial time, then using the ellipsoid algorithm one can get as good an approximation to
the solution of this convex program as desired in time polynomial in the number of bits of
accuracy needed [20, 33].

2.2 Fisher Market Model
The Fisher market model consists of a set A = {1, 2, . . . n} of agents and a set G =
{1, 2, . . . , m} of infinitely divisible goods. By fixing the units for each good, we may assume
without loss of generality that there is a unit of each good in the market. Each agent i has
money mi ∈ Q+.

Let xij , 1 ≤ j ≤ m represent a bundle of goods allocated to agent i. Each agent i has a
utility function u : Rm

+ → R+ giving the utility accrued by i from a bundle of goods. We will
assume that u is concave and weakly monotonic. Each good j is assigned a non-negative
price, pj . Allocations and prices, x and p, are said to form an equilibrium if each agent
obtains a utility maximizing bundle of goods at prices p and the market clears, i.e., each
good is fully sold to the extent of one unit and all money of agents is fully spent. We will
assume that each agent derives positive utility from some good and for each agent, there is a
good which gives her positive utility; clearly, otherwise we may remove that agent or good
from consideration.

2.3 Arrow-Debreu Market Model
The Arrow-Debreu market model, also known as the exchange model differs from Fisher’s
model in that agents come to the market with initial endowments of good instead of money.
The union of all goods in initial endowments are all the goods in the market. Once again, by
redefining the units of each good, we may assume that there is a total of one unit of each
good in the market. The utility functions of agents are as before. The problem now is to

ITCS 2022
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find non-negative prices for all goods so that if each agent sells her initial endowment and
buys an optimal bundle of goods, the market clears. Clearly, if p is equilibrium prices then
so is any scaling of p by a positive factor.

2.4 Hylland-Zeckhauser Scheme

Let A = {1, 2, . . . n} be a set of n agents and G = {1, 2, . . . , n} be a set of n indivisible goods.
The goal of the HZ scheme is to allocate exactly one good to each agent. However, in order
to use the power of a pricing mechanism, which endows the HZ scheme with the properties
of Pareto optimality and incentive compatibility in the large, it casts this one-sided matching
market in the mold of a linear Fisher market as follows.

Goods are rendered divisible by assuming that there is one unit of probability share of
each good, and utilities uijs are defined as in a linear Fisher market. Let xij be the allocation
of probability share that agent i receives of good j. Then,

∑
j uijxij is the expected utility

accrued by agent i. Each agent has 1 dollar for buying these probability shares and each
good j has a price pj ≥ 0.

Beyond a Fisher market, an additional constraint is that the total probability share
allocated to each agent is one unit, i.e., the entire allocation must form a fractional perfect
matching in the complete bipartite graph over vertex sets A and G. Subject to these
constraints, each agent buys a utility maximizing bundle of goods. Another point of
departure from a linear Fisher market is that in general, an agent’s optimal bundle may cost
less than one dollar, i.e., the agents are not required to spend all their money. Since each
good is fully sold, the market clears. Hence these are defined to be equilibrium allocation
and prices.

Clearly, an equilibrium allocation can be viewed as a doubly stochastic matrix. The
Birkhoff-von Neumann procedure then extracts a random underlying perfect matching in
such a way that the expected utility accrued to each agent from the integral perfect matching
is the same as from the fractional perfect matching. Since ex ante Pareto optimality implies
ex post Pareto optimality, the integral allocation will also be Pareto optimal.

3 Nash-Bargaining-Based Models

3.1 One-Sided Matching Markets

We will define four one-sided matching market models based on our Nash bargaining approach.
For each model, we will also give a standard application. For the case of linear utilities,
we have singled out the Fisher and Arrow-Debreu versions, namely 1LF and 1LAD, since
we will study both in some detail later in the paper. For more general utility functions
we have defined only the Arrow-Debreu version; the Fisher version is obtained by setting
disagreement utilities to zero. It is easy to see that the fourth one generalizes the first three;
however, the earlier ones involve less notation and have an independent standing of their
own, hence necessitating all four definitions.

Our one-sided matching market models consist of a set A = {1, 2, . . . n} of agents and a
set G = {1, 2, . . . , n} of infinitely divisible goods; observe that there is an equal number of
agents and goods. There is one unit of each good and each agent needs to be allocated a
total of one unit of goods. Hence the allocation needs to be a fractional perfect matching, as
defined next.
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▶ Definition 3. Let us name the coordinates of a vector x ∈ Rn2

+ by pairs i, j for i ∈ A and
j ∈ G. Then x is said to be a fractional perfect matching if

∀i ∈ A :
∑

j

xij = 1 and ∀j ∈ G :
∑

i

xij = 1.

As mentioned in Section 2, an equilibrium allocation can be viewed as a doubly stochastic
matrix, and the Birkhoff-von Neumann procedure [5, 34] can be used to extract a random
underlying perfect matching in such a way that the expected utility accrued to each agent
from the integral perfect matching is the same as from the fractional perfect matching.
1) Under the linear Fisher Nash bargaining one-sided matching market, abbreviated 1LF,

each agent i ∈ A has a linear utility function, as defined in Section 2.2. Corresponding
to each fractional perfect matching x, there is a vector vx in the feasible set N ; its
components are the utilities derived by the agents under the allocation given by x. The
disagreement point is the origin. Observe that the setup of 1LF is identical to that of
the HZ mechanism; the difference lies in the definition of the solution to an instance. Its
standard application is matching agents to goods.

2) Under the linear Arrow-Debreu Nash bargaining one-sided matching market, abbreviated
1LAD, each agent i ∈ A has a linear utility function, as above. Additionally, we are
specified an initial fractional perfect matching xI which gives the initial endowments of
the agents. Each agent has one unit of initial endowment over all the goods and the total
endowment of each good over all the agents is one unit, as given by xI . These two pieces
of information define the utility accrued by each agent from her initial endowment; this is
her disagreement point ci. As stated in Section 2.1, we will assume that the problem is
feasible, i.e., there is a fractional perfect matching, defining a redistribution of the goods,
under which each agent i derives strictly more utility than ci. Each vector v ∈ N is as
defined in 1LF. Henceforth, we will consider the slightly more general problem in which
are specified the disagreement point c and not the initial endowments xI . There is no
guarantee that c comes from a valid fractional perfect matching of initial endowments.
However, we still want the problem to be feasible. This model is applicable when agents
start with an initial endowment of goods and exchange them to improve their happiness.

3) The separable, piecewise-linear concave Arrow-Debreu Nash bargaining one-sided matching
market, abbreviated 1SAD, is analogous to 1LAD, with the difference that each agent
has a separable, piecewise-linear concave utility function, hence generalizing the linear
utility functions specified in 1LAD. Economists model diminishing marginal utilities via
concave utility functions. Since we are in a fixed-precision model of computation, we have
considered separable, piecewise-linear concave (SPLC) utility functions.
We next define these functions in detail. For each agent i and good j, function f j

i : R+ →
R+ gives the utility derived by i as a function of the amount of good j she receives.
Each f j

i is a non-negative, non-decreasing, piecewise-linear, concave function. The overall
utility of buyer i, ui(x), for bundle x = (x1, . . . , xn) of goods, is additively separable over
the goods, i.e., ui(x) =

∑
j∈G f j

i (xj).
We will call each piece of f j

i a segment. Number the segments of f j
i in order of decreasing

slope; throughout we will assume that these segments are indexed by k and that Sij is the
set of all such indices. Let σijk, k ∈ Sij , denote the kth segment, lijk denote the amount
of good j represented by this segment; we will assume that the last segment in each
function is of unbounded length. Let uijk denote the rate at which i accrues utility per
unit of good j received, when she is getting an allocation corresponding to this segment.
Clearly, the maximum utility she can receive corresponding to this segment is uijk · lijk.
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We will assume that uijk and lijk are rational numbers. Finally, let Si
σ be the set of all

indices (j, k) corresponding to the segments in all utility functions of agent i under the
given instance, i.e.,

Si
σ = {(j, k) | j ∈ G, k ∈ Sij}.

4) The non-separable piecewise-linear concave Arrow-Debreu Nash bargaining one-sided
matching market, abbreviated 1NAD, differs from 1SAD in that agents’ utility functions
are now assumed to be non-separable, piecewise-linear concave. These utility functions
are very general and can be used to capture whether goods are complements or substitutes
and much more.
These functions are defined next. For each agent i, the parameter l(i) specifies the
number of hyperplanes used for defining the utility of i. The latter, ui(x), for bundle
x = (x1, . . . , xn) of goods is defined to be

ui(x) = min
k≤l(i)

∑
j∈G

ak
ijxij + bk

i

 ,

where ak
ij and bk

i are non-negative rational numbers. Furthermore, bk
i = 0 for at least one

value of k so that the utility derived by i from the empty bundle is zero.
Leontief utilities is a fundamental special case of non-separable piecewise-linear concave
utilities under which agents want goods in specified ratios. It is used for modeling utilities
when goods are complements. In this case, for each agent i, we are specified a set Si ⊆ G

of goods she is interested in, and

ui(x) = min
j∈Si

{
xij

aij

}
,

where aij > 0 are rational numbers.

In Section 4 we prove that each of the matching markets defined above admits a convex
program.
▶ Remark 4. Throughout this paper, we will index elements of A, G and Sij by i, j and
k, respectively. When the domain of i, j or k is not specified, especially in summations, it
should be assumed to be A, G and Sij , respectively.

3.2 Two-Sided Matching Markets
Our two-sided matching market model consist of a set A = {1, 2, . . . n} of workers and a set
J = {1, 2, . . . , n} of firms. For uniformity, we have assumed that there is an equal number of
workers and firms, though the model can be easily enhanced and made more general. Our
goal is to find an integral perfect matching between workers and firms. In this setting, it is
natural to assume that each side has a utility function over the other side, making this a
two-sided matching market.

As before, we will relax the problem to finding a fractional perfect matching, x, followed
by rounding as described above. We will explicitly define only the simplest case of two-sided
markets; more general models follow along the same lines as one-sided markets.

Under the linear Fisher Nash bargaining two-sided matching market, abbreviated 2LF,
the utility accrued by agent i ∈ A under allocation x,

ui(x) =
∑
j∈J

uijxij ,
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where uij is the utility accrued by i if she were assigned job j integrally. Analogously, the
utility accrued by job j ∈ J under allocation x,

wj(x) =
∑
i∈A

wijxij ,

where wij is the utility accrued by j if it were assigned to i integrally.
In keeping with the axiom of symmetry under Nash bargaining, we will posit that the

desires of agents and jobs are equally important and we are led to defining the feasible set
in a 2n dimensional space, i.e., N ⊆ R2n

+ . The first n components of feasible point v ∈ N
represent the utilities derived by the n agents, i.e., ui(x)s, and the last n components the
utilities derived by the n jobs, i.e., wj(x), under a fractional perfect matching x. Under
2LF, the disagreement point is the origin, and we seek the Nash bargaining point. A convex
program of 2LF is given in (7).

4 Convex Programs for the Models

We start by presenting convex programs for 1LF and 1LAD, namely (3) and (4). These differ
only in that the latter has the parameters ci in the objective function. For convenience, we
define X to be the set of feasible fractional perfect matchings as defined in Definition 3.

max
∑
i∈A

log(vi)

s.t. vi =
∑

j

uijxij ∀i ∈ A,

x ∈ X

(3)

max
∑
i∈A

log(vi − ci)

s.t. vi =
∑

j

uijxij ∀i ∈ A,

x ∈ X

(4)

Program (5) is a convex program for 1SAD.

max
∑
i∈A

log(vi − ci)

s.t. vi =
∑

j

∑
k

uijkxijk ∀i ∈ A,

∑
j

∑
k

xijk = 1 ∀i ∈ A,

∑
i

∑
k

xijk = 1 ∀j ∈ G,

xijk ≤ lijk ∀i ∈ A,∀j ∈ G,∀k ∈ Sij ,

xijk ≥ 0 ∀i ∈ A,∀j ∈ G,∀k ∈ Sij

(5)
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Program (6) is a convex programs for 1NAD.

max
∑
i∈A

log(vi − ci)

s.t. vi ≤
∑

j

ak
ijxij + bk

i ∀i ∈ A,∀k ≤ l(i),

x ∈ X , v ∈ Rn
+

(6)

Program (7) is a convex program for 2LF.

max
∑
i∈A

log(vi) +
∑
j∈J

log(vj)

s.t. vi =
∑

j

uijxij ∀i ∈ A,

vj =
∑

i

wijxij ∀j ∈ J,

x ∈ X

(7)

5 Solution Methods

We present two solution methods for solving instances of the convex programs given in
Section 4: (a) Cutting-plane algorithm, and (b) Frank-Wolfe algorithm. Both algorithms
rely on linear approximations of these problems and converge to the optimal solution in
polynomial time. For simplicity of exposition, we focus on the simpler models 1LAD (and
1LF) and 2LF to describe the algorithms. We will explain how these algorithms can be
extended to other models.

5.1 Cutting-plane Algorithm
The underlying principle in the cutting-plane method for convex programs with nonlinear
objective function is to outer-approximate the epigraph of the objective function through a
series of linear programs [24, 33]. Let f(v) =

∑
i∈A log(vi − ci) be the objective function in

1LAD. Since f is concave in v, for a given solution v̂ we have:

f(v) ≤ f(v̂) +∇f(v̂)⊤(v − v̂) = f(v̂)− n +
∑
i∈A

vi − ci

v̂i − ci
(8)

Therefore, we can rewrite 1LAD as the following semi-infinite linear program (SILP):

max η

s.t. η ≤ f(v̂) +∇f(v̂)⊤(v − v̂) ∀v̂ ∈ N ,

(x, v) ∈ S,

(9)

where N is the set of vectors v̂ such that v̂i > ci, and S is the set of feasible assignments.
Observe that replacing N with N̂ ⊂ N in (9) yields an LP which is a relaxation of the SILP
(9). A natural way of solving SILP (9) is to start with a manageable subset N̂ and grow this
set until the upper bound produced by the LP is sufficiently close to the optimal solution
[24]. However, instead of solving such relaxed LPs and obtaining optimal corner points of
the hypograph approximations, it is customary to solve modified forms of these LPs to find
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Algorithm 1 Central cutting-plane algorithm for solving 1LAD.

1 Find an initial solution (v(0), x(0));
2 Initialize N̂ ← {v(0)}; f ← f(v(0)); t← 1;
3 (v∗, x∗)← (v(0), x(0));
4 while not converged do
5 Solve LP (10) to obtain the center (v(t), x(t), η(t)) and radius σ(t);
6 N̂ ← N̂ ∪ {v(t)};
7 if f < f(v(t)) then
8 f ← f(v(t)); (v∗, x∗)← (v(t), x(t));
9 t← t + 1;

the center of the hypograph approximations. Let f be a lower bound on the optimal value
of f (e.g., obtained using a feasible allocation). As described by [15], we may construct a
cutting plane through the center of the hypograph approximation by solving

max σ

s.t. η ≥ f + σ,

η ≤ f(v̂) +∇f(v̂)⊤(v − v̂)− σ∥(1,∇f(v̂))∥2 ∀v̂ ∈ N̂ ,

(x, v) ∈ S,

(10)

which yields radius σ and center (v, x, η) of the largest ball that can be inscribed inside the
hypograph approximation [29]. Algorithm 1 describes the proposed Central Cutting-Plane
(CCP) algorithm for solving instances of 1LAD. As the algorithm iterates, we improve the
lower bound f and add new cuts to tighten the hypograph approximation. Consequently,
the inscribed ball shrinks (i.e., the sequence of hypresphere radii {σ(t)}∞

t=0 converges to 0),
and {(v(t), x(t))}∞

t=0 converges to the optimal solution with a linear rate as described in
Theorem 5 below.

▶ Theorem 5. Central Cutting Plane Algorithm 1 converges to the optimal solution of 1LAD
with linear rate.

Proof. Strict concavity of the objective function in 1LAD implies existence of a unique
optimal solution. This guarantees a linear convergence rate as described in Theorem 7 in
[15]. ◀

To assess the convergence of Algorithm 1 numerically, we use the optimality gap in (11) and
terminate the algorithm once this gap falls below a given optimality gap threshold.

Gap = σ(t)

|η(t)|
. (11)

5.1.1 Enhancement techniques
Cut generation. To produce effective cuts and to improve the lower bound quickly, instead
of cutting off the current solution (v(t), x(t)), we cut off an intermediate point (ṽ, x̃) =
α̃(v(t), x(t)) + (1− α̃)(v∗, x∗), where α̃ ∈ (0, 1] is an appropriately-chosen scalar and (v∗, x∗)
is the current incumbent solution. To guarantee convergence, α̃ must be chosen such
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that the produced cut cuts off (ṽ, x̃), that is η(t) > f(ṽ) − n +
∑

i∈A
v

(t)
i

−ci

ṽi−ci
. At each

iteration of Algorithm 1, we initialize α̃ via line search between v(t) and v∗, that is α̃ =
arg maxα∈[0,1] f(αv(t) + (1− α)v∗).

Avoiding unboundedness. Since the objective function in the convex programs is of the
form

∑
i∈A log(vi− ci), we require vi− ci > 0 for each agent i at each iteration of CCP to be

able to produce a cut (note that cut coefficients are 1/(v̂i − ci)). However, since CCP is an
outer-approximation algorithm, it is possible that in an iterate of CCP, v̂i − ci = 0 for some
agent i, which makes the solution v̂ unbounded, and we cannot extract a cut based on this
solution. We resolve this issue by taking the convex combination of (v̂, x̂) and some feasible
interior point (v̄, x̄). We do this by choosing the closest feasible point to the (v̂, x̂) on the line
segment from (v̂, x̂) to (v̄, x̄), that is by choosing smallest α such that αv̄i +(1−α)v̂i−ci ≥ ϵ

for each i and a small ϵ, which yields α = min
i∈A:v̂i=ci

{ ϵ
v̄i−ci

}.

Scaling of η. Another important aspect in stabilizing CCP is choosing comparable coeffi-
cients for the variables. For a given solution v̂, coefficient of η in a cut of the form (9) is
1, while the coefficients of the v-variables are ( 1

v̂i−ci
)i∈A, which can be much larger than 1

depending on the value of v̂. For instance, when entries of the utility matrices are binary
and ci > 0, then v̂i − ci < 1, and it is possible that 1

v̂i−ci
≫ 1 for some agents, making the

cut coefficients unbalanced. An LP solver using floating point arithmetic might not handle
unbalanced cuts properly. To balance the cut, we replace η with η = θγ, where θ > 0 is
a fixed scalar and γ acts as the new variable in place of η. With this change of variable,
coefficient of σ in the cuts becomes ∥(θ,∇f(v̂))∥2. In our implementation, we choose θ as the
largest coefficient of the v-variables in the first cut produced, that is θ = 1/ mini∈A{v̂i − ci}.
Note that we may dynamically change θ, but we use the same initial θ for stabilizing all
subsequent cuts.

Reoptimization. At each iteration of Algorithm 1, we add a single constraint of the form
(8) to the current LP approximation of 1LAD. Using the Dual Simplex algorithm, we can
reuse the information obtained in the previous iteration (e.g. the basis), and thus avoid
solving the LPs from scratch at each iteration.

5.1.2 Extension to other models
Algorithm 1 extends to 2LF, 1SAD, and 1NAD easily by replacing the objective function
and the constraints with the suitable function and constraints, respectively. For instance, for
2LF, the cutting planes take the form of

η ≤
∑
i∈A

log(v̂i) +
∑
j∈G

log(v̂j)− 2n +
∑
i∈A

vi

v̂i
+

∑
j∈G

vj

v̂j
.

Note that, in 2LF, we may eliminate the xij variables such that both uij and wij are zero.
In 1SAD and 1NAD the constraints that define S are updated accordingly.

5.2 Frank-Wolfe Algorithm
Frank-Wolfe (FW) method [17, 23] is one of the simplest and earliest known iterative
algorithms for solving non-linear convex optimization problems of the form

max
x∈X

f(x),
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Algorithm 2 Frank-Wolfe algorithm for solving 1LAD.

1 Set t← 0 and find an initial perfect matching x(0);
2 while not converged do
3 Compute gij = ∂

∂xij
f(x(t)) = uij

v
(t)
i

−ci

, where v
(t)
i =

∑
j∈G uijx

(t)
ij ;

4 Compute perfect matching x̂(t) by solving the following problem:

x̂(t) = arg max
x∈X

∑
i∈A

∑
j∈G

gijxij

5 Compute the step-size γ(t) using the following line search

γ(t) = arg max
γ∈[0,1]

f
(

(1− γ)x(t) + γx̂(t)
)

6 Update x(t+1) = (1− γ(t))x(t) + γ(t)x̂(t);
7 t← t + 1;

where f is a concave function and X is a compact convex set. The underlying principle
in Frank-Wolfe method is to replace the non-linear objective function f with its linear
approximation f̃(x) = f(x(0)) +∇f(x(0))⊤(x − x(0)) at a trial point x(0) ∈ X , and solve a
simpler problem

max
x∈X

f̃(x),

to produce an “atom” solution x̂. The algorithm then iterates by performing line search
between x(0) and x̂ to produce the next trial point x(1) as a convex combination of x(0)

and x̂. Algorithm 2 presents the FW algorithm for solving instances of 1LAD, in which the
objective function f is defined as f(x) =

∑
i∈A log(

∑
j∈G uijxij − ci) and the feasible region

is defined as

X = {x ∈ Rn2

+ :
∑
j∈G

xij = 1 ∀i ∈ A,
∑
i∈A

xij = 1 ∀j ∈ G}.

Producing an atom. Frank-Wolfe method is particularly useful when X is a polyhedron
and one can exploit its combinatorial properties. In the case of 1LAD (also 1LF and 2LF),
the feasible region X corresponds to a matching polyhedron. Hence, at each iteration of
Algorithm 2, the atom is an integral perfect matching produced by solving a matching
problem. The optimal solution produced by FW is therefore a convex combination of these
integral perfect matchings.

Convergence. In general, Frank-Wolfe algorithm admits a sublinear convergence rate
[17, 23], that is, after O( 1

ϵ ) many iterations, the iterate x(t) is an ϵ-approximate solution to
problem 1LAD.

▶ Theorem 6 (Jaggi [23]). Frank-Wolfe Algorithm 1 converges to the optimal solution of
1LAD with sublinear rate.
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Furthermore, as discussed in [23], concavity of f implies that at iteration t of Al-
gorithm 2,

∑
i,j gij(x̂(t)

ij −x
(t)
ij ) ≥ f(x∗)−f(x(t)), where x∗ is the optimal solution. Therefore,∑

i,j gij(x̂(t)
ij − x

(t)
ij ) provides an upper bound on the optimality gap of iterate x(t), and we

may numerically assess convergence of the FW algorithm using

Gap =
∑

i,j gij(x̂(t)
ij − x

(t)
ij )

|f(x(t))|
. (12)

Extension to other models. As in the cutting-plane method, Algorithm 2 may be extended
to other models. For 2LF, it suffices to compute the gradient gij as ∂

∂xij
f(x(t)) = uij/v

(t)
i +

wij/v
(t)
j . For 1SAD and 1NAD, however, while the general framework can be extended, since

the feasible region no longer defines a matching polyhedron, finding a new atom x̂(t) is not
straightforward. Our primary computational experiments show that a naïve implementation
of Frank-Wolfe algorithm does not scale for large instances of these problems.

6 Computational Results

To assess the scalability of the proposed algorithms, we conducted extensive computational
experiments on instances of various difficulty levels for each matching market model. We
coded our algorithms in C# and solved the LPs using the ILOG Concert library and CPLEX
12.10 solver. All experiments were conducted on a Dell desktop equipped with Intel(R)
Xeon(R) CPU E5-2680 v3 at 2.50GHz with 8 Cores and 32 GB of memory running a 64-bit
Windows 10 operating system. We used the Dual Simplex method for solving the LPs in
Algorithm 1 by setting the RootAlgorithm parameter to Cplex.Algorithm.Dual. Although
the matching problems in Algorithm 2 can be solved by specialized algorithms, after primary
experiments, we found that using a general-purpose LP solver such as the Primal Simplex
method benefits from better warm-start mechanism making the overall implementation
simpler. We used the primal simplex method by setting the parameter RootAlgorithm to
Cplex.Algorithm.Primal. We terminated Algorithms 1 and 2 upon reaching either an
optimality gap of 10−7, running time of 3600 seconds, or after 1000 iterations.

6.1 Computational Results for 1LAD, 1LF and 2LF
We start by presenting the results for matching market models with linear utility functions.
We performed computational experiments on 1LAD, 1LF and 2LF by producing random
utility matrices u (and w in 2LF) as follows. We considered two general scenarios: (a) binary,
in which the entries of matrices u and w were drawn from {0, 1}, and (b) nonbinary, in
which entries of matrices u and w were general integer values. In both scenarios, uij was
set to 0 with probability 1 − ρ, where ρ ∈ { 1

20 , 1
3 , 2

3} represents the density of the utility
matrix. For the nonbinary case, positive values of uij were drawn uniformly from the set
{1, 2, . . . , 20}. In 1LAD, the parameters ci were uniformly chosen from the set { ū

3 , ū
4 , 0},

where ū = 1
4 maxij{uij} to ensure feasibility.

Tables 1, 2 and 3 present the computational results for models 1LAD, 1LF and 2LF,
respectively. In these tables, values under columns “Time”, “Gap” and “Iter.” represent the
running time (in seconds), optimality gap (as per equations (11) and (12)) and the number
of iterations, respectively. Each entry represents average value over 5 randomly generated
instances for each pair of n (number of agents/goods) and ρ (density of the utility matrices).
In these tables, whenever a column is missing, it means the corresponding values were 0
across all experiments.
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Table 1 Computational results for 1LAD.

binary nonbinary
n ρ Time (CCP) Time (FW) Time (CCP) Iter. (CCP) Time (FW) Iter. (FW)
10 0.33 0.008 0.000 0.008 15.5 0.000 3.0

0.67 0.003 0.000 0.000 4.2 0.003 1.6
20 0.33 0.006 0.000 0.006 15.2 0.006 7.8

0.67 0.006 0.000 0.003 4.6 0.003 2.2
50 0.33 0.003 0.000 0.013 14.0 0.013 3.2

0.67 0.013 0.003 0.013 5.4 0.025 2.2
100 0.33 0.037 0.009 0.053 14.0 0.081 6.6

0.67 0.060 0.000 0.065 5.2 0.116 8.6
200 0.05 0.079 0.094 0.120 70.0 0.210 11.2

0.33 0.106 0.116 0.097 16.4 0.359 6.0
0.67 0.081 0.141 0.204 1.0 0.134 1.0

500 0.05 0.125 0.025 0.421 31.0 0.610 7.5
0.33 0.881 0.669 1.480 1.0 0.833 1.0
0.67 3.489 0.960 1.422 1.0 1.120 1.0

1000 0.05 0.609 0.088 2.728 29.5 16.555 11.0
0.33 9.802 3.422 3.437 1.0 3.463 1.0
0.67 32.402 11.756 8.964 1.0 15.104 1.0

2000 0.05 3.726 0.438 9.468 5.0 9.525 11.0
0.33 82.599 27.088 24.307 1.0 24.703 1.0
0.67 274.854 90.766 65.958 1.0 74.131 1.0

Both CCP and FW are able to solve all the 1LAD and 1LF instances and the majority
of the 2LF instances to optimality within the given time/iteration limits. We observe that
even the largest instances of one-sided market models 1LAD and 1LF are solved in less
than two minutes, while instances of 2LF prove to be computationally more challenging;
still, the optimality gaps are negligible for large instances of 2LF. FW outperforms CCP in
larger instances in terms of computation time, particularly in 1LF and 1LAD, and the lower
computation time of FW suggests its capacity for handling even larger instances.

Table 2 Computational results for 1LF.

binary nonbinary
CCP FW CCP FW

n ρ Time Iter. Time Iter. Time Iter. Time Iter.
10 0.33 0.008 28.0 0.000 3.6 0.000 15.0 0.027 205.3

0.67 0.003 1.0 0.000 1.0 0.000 3.2 0.000 3.6
20 0.33 0.009 1.0 0.000 1.0 0.006 13.6 0.012 69.0

0.67 0.003 1.0 0.000 1.0 0.003 4.4 0.003 4.8
50 0.33 0.012 1.0 0.003 1.0 0.009 14.6 0.022 36.6

0.67 0.025 1.0 0.003 1.0 0.012 8.4 0.013 11.0
100 0.33 0.056 1.0 0.003 1.0 0.069 18.6 0.094 16.8

0.67 0.078 1.0 0.009 1.0 0.125 17.0 0.106 16.6
200 0.05 0.083 1.0 0.008 1.0 1.352 67.2 0.218 84.2

0.33 0.136 1.0 0.101 1.0 1.753 26.2 0.267 17.0
0.67 0.278 1.0 0.144 1.0 0.422 1.0 0.410 1.0

500 0.05 0.149 1.0 0.025 1.0 0.397 29.0 0.758 21.5
0.33 0.755 1.0 0.687 1.0 1.354 1.0 0.844 1.0
0.67 2.849 1.0 0.994 1.0 1.380 1.0 1.120 1.0

1000 0.05 0.562 1.0 0.087 1.0 5.961 49.5 11.633 18.5
0.33 5.843 1.0 3.400 1.0 3.844 1.0 3.568 1.0
0.67 16.917 1.0 11.844 1.0 9.250 1.0 15.208 1.0

2000 0.05 4.196 1.0 0.425 1.0 14.500 7.0 12.103 15.5
0.33 38.568 1.0 27.181 1.0 27.557 1.0 24.630 1.0
0.67 143.406 1.0 90.941 1.0 73.198 1.0 73.724 1.0
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Table 3 Computational results for 2LF.

binary nonbinary
CCP FW CCP FW

n ρ Time Gap Iter. Time Gap Iter. Time Gap Iter. Time Gap Iter.
10 0.33 0.023 0.00% 1.0 0.070 0.00% 396.0 0.016 0.00% 38.3 0.151 0.02% 1001.0

0.67 0.012 0.00% 1.0 0.009 0.00% 1.0 0.009 0.00% 24.2 0.038 0.00% 348.6
20 0.33 0.028 0.00% 1.0 0.141 0.00% 684.0 0.041 0.00% 54.6 0.317 0.01% 939.8

0.67 0.009 0.00% 1.0 0.000 0.00% 1.0 0.022 0.00% 38.0 0.056 0.00% 175.8
50 0.33 0.037 0.00% 1.0 0.003 0.00% 3.0 0.350 0.00% 134.6 1.342 0.01% 622.8

0.67 0.053 0.00% 1.0 0.003 0.00% 1.0 0.078 0.00% 50.8 0.141 0.00% 120.6
100 0.33 0.134 0.00% 1.0 0.010 0.00% 1.0 1.381 0.00% 196.6 2.743 0.01% 348.0

0.67 0.228 0.00% 1.0 0.016 0.00% 1.0 0.265 0.00% 33.4 0.537 0.00% 37.6
200 0.05 2501.869 0.02% 1000.0 57.796 0.07% 1000.0 224.755 0.00% 1000.0 257.177 0.04% 1000.0

0.33 0.275 0.00% 1.0 0.109 0.00% 1.0 6.143 0.00% 188.0 8.663 0.00% 148.8
0.67 0.303 0.00% 1.0 0.128 0.00% 1.0 1.573 0.00% 54.8 9.025 0.00% 38.0

500 0.05 3608.480 0.00% 388.5 166.305 0.01% 1000.0 2638.611 0.00% 1000.0 1090.482 0.03% 1000.0
0.33 1.146 0.00% 1.0 0.797 0.00% 1.0 23.548 0.00% 150.0 17.095 0.00% 59.8
0.67 3.198 0.00% 1.0 1.625 0.00% 1.0 12.360 0.00% 66.0 39.471 0.00% 24.6

1000 0.05 3616.122 0.00% 262.0 773.132 0.11% 1000.0 3678.832 0.00% 656.0 3393.494 0.02% 913.0
0.33 7.692 0.00% 1.0 9.244 0.00% 1.0 153.357 0.00% 131.3 363.582 0.00% 37.0
0.67 22.061 0.00% 1.0 17.431 0.00% 1.0 105.834 0.00% 56.0 412.022 0.00% 20.2

2000 0.05 3636.086 0.00% 154.0 1781.018 0.06% 895.6 3608.648 0.00% 227.5 3617.831 0.08% 120.0
0.33 40.645 0.00% 1.0 68.122 0.00% 1.0 923.272 0.00% 109.0 2540.135 0.00% 26.7
0.67 172.478 0.00% 1.0 126.075 0.00% 1.0 811.562 0.00% 44.0 3384.356 0.00% 18.3

6.2 Computational Results for 1SAD and 1NAD

We generated random instance for 1SAD by constructing piece-wise linear concave utility
functions each with K segments of equal size 1

K . To ensure that the slopes of the segments
for each pair (i, j) (i.e., uijk) are non-decreasing (i.e., uij1 > uij2 > · · · > uijK), we first
generated K random values σijk uniformly drawn from the set {1, . . . , 20}, and then set
uijk =

∑K
l=k σijl. For compatibility of experiments, we scaled the uijk values such that

the area below the utility function is equal to 1
2 ṽ, where ṽ is uniformly drawn from the set

{1, . . . , 20}.
For 1NAD, we considered K hyperplanes of the form

∑
j∈G ak

ijxij + bk
i for each i ∈ A,

and generated the coefficients ak
ij by multiplying 2

3 with a value uniformly drawn from the
set {0, 1, . . . , 20}, and generated the intercept bk

i by multiplying 1
3 with a value uniformly

drawn from the set {0, 1, . . . , 20}. If bk
i > 0 for all k, then we randomly set one of them to 0.

Tables 4 and 5 present the computational results respectively for 1SAD and 1NAD across
different choices of n and K using CCP Algorithm 1. As expected, in both models, as K

increases the problems become more challenging, yet the CCP algorithm is able to find the
optimal solution or yield a small optimality gap in both cases. Interestingly, 1SAD instances
are significantly easier to solve than 1NAD instances, and CCP is able to solve all 1SAD
instances up to 2000 agents and 10 segments to optimality within less than 10 minutes. This
highlights the capacity of CCP for solving even larger instance of 1SAD.
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