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Abstract
We investigate the computational complexity of computing the Hausdorff distance. Specifically,
we show that the decision problem of whether the Hausdorff distance of two semi-algebraic sets
is bounded by a given threshold is complete for the complexity class ∀∃<R. This implies that the
problem is NP-, co-NP-, ∃R- and ∀R-hard.
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1 Introduction

The question of “how similar are two given objects” occurs in numerous settings. One
typical tool to quantify their similarity is the Hausdorff distance. Two sets have a small
Hausdorff distance if every point of one set is close to some point of the other set and vice
versa. As a matter of fact, the Hausdorff distance appears in many branches of science. To
illustrate the range of use cases, we consider two examples, for illustrations see Figure 1.
In mathematics, the Hausdorff distance provides a metric on sets and henceforth also a
topology. This topology can be used to discuss continuous transformations of one set to
another [17]. In computer vision and geographical information science, the Hausdorff distance
is used to measure the similarity between spacial objects [37, 45], for example the quality
of quadrangulations of complex 3D models [52]. In this paper, we study the computational
complexity of the Hausdorff distance from a theoretical perspective.

Figure 1 Left: Continuous deformation of a cup into a doughnut [22]. Right: Quadrangulation of
a smooth surface used for rendering [52].
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48:2 The Complexity of the Hausdorff Distance
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Figure 2 How similar are these sets?

Definition. The directed Hausdorff distance between a non-empty set A ⊆ Rn and a
non-empty set B ⊆ Rn is defined as

d⃗H(A,B) := sup
a∈A

inf
b∈B

∥a− b∥.

The directed Hausdorff distance between A and B can be interpreted as the smallest value
ε ≥ 0 such that the (closed) ε-neighborhood of B contains A. Hence, it nicely captures the
intuition of how much B has to be blown up to contain A. Note that d⃗H(A,B) and d⃗H(B,A)
do not need to be equal, consider Figure 2: While A ⊂ B and thus d⃗H(A,B) = 0, it holds
that d⃗H(B,A) > 0. The (undirected) Hausdorff distance is symmetric and defined as

dH(A,B) := max
{
d⃗H(A,B), d⃗H(B,A)

}
.

In this paper, we investigate the computational complexity of deciding whether the Hausdorff
distance of two sets is at most a given threshold.

Semi-algebraic sets. The algorithmic complexity of computing the Hausdorff distance
clearly depends on the type of their underlying sets. If we are given the sets in a way that we
cannot even decide if they are empty, it seems near impossible to compute their Hausdorff
distance. However, if the sets consists of finitely many points, their Hausdorff distance can
easily be computed by checking all pairs of points. In practice, we are often somewhere
between those two extreme situations. For instance, the sets could be a collection of disks in
the plane or cubic splines, describing a surface in three dimensions, see also Figure 3.

Figure 3 The Hausdorff distance can appear in simpler or more complicated settings. Left: Two
finite point sets (black and white) in the plane. Middle: Two sets of blue and red disks in the plane.
Right: Two surfaces in 3-space with different meshes, image taken from [52].

In this paper, we focus on semi-algebraic sets defined over the ring of integers, i.e., sets
that can be described by polynomial inequalities with integer coefficients. For simplicity, we
just write semi-algebraic set, and silently assume all coefficients of defining polynomials are
integers. Formally, a semi-algebraic set is the finite union of basic semi-algebraic sets. A
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basic semi-algebraic set S is specified by two families of polynomials P and Q with integer
coefficients such that

S =
{
x∈Rn

∣∣ ∧
P ∈P

P (x) ≤ 0 ∧
∧

Q∈Q
Q(x) < 0

}
.

Semi-algebraic sets cover clearly the vast majority of practical cases. Simultaneously, one
deals with polynomials even in supposedly simple cases, i.e., when considering cubic splines.

Concrete example. The following example was made up on the spot by Bernd Sturmfels at
a workshop in Saarbrücken in 2019. The two polynomials

f(x, y) := x4 + y4 + 12x3 + 2y3 − 3xy + 11
g(x, y) := 7x4 + 8y4 − 1

define the sets A = {(x, y) ∈ R2 | f(x, y) = 0} and B = {(x, y) ∈ R2 | g(x, y) = 0}. For an
illustration of A and B, consider the blue and green curve in Figure 4, respectively.

a2

A
a1

b2 b1

B

Figure 4 The Hausdorff distance between the compact semi-algebraic sets (in blue and green) is
attained at points (a2, b2) such that the segment a2b2 is orthogonal to the tangents at a2 and b2.
While the segment a1b1 is longer than a2b2, the pair (a1, b1) does not realize the Hausdorff distance
because the segment a1b1 crosses both A and B.

It can be argued using convexity and continuity that the Hausdorff distance is attained
at points a ∈A, b ∈B such that the segment ab is orthogonal to the tangents at a and b.
This yields a set of polynomial equations in four variables. The system has 240 complex
solutions, eight of which are real. These 240 solutions can be computed using computer
algebra systems based on Gröbner bases. For some of the real solutions (a, b), the segment
ab crosses A and B, for example a1b1 as in Figure 4. Among the remaining solutions the
points a2 ≈ (−11.48362,−6.1760), b2 ≈ (−0.56460,−0.43583) realize the Hausdorff distance
of approximately 12.33591. This approach does not easily generalize to general semi-algebraic
sets. In the next paragraph, we present a slower, but more general method.

General decision algorithm. We consider a situation where we are given two semi-algebraic
sets A and B as well as a threshold t; for simplicity, we assume here (only in this paragraph)
that A and B are closed. The statement d⃗H(A,B) ≤ t can be encoded into a logical sentence

SoCG 2022



48:4 The Complexity of the Hausdorff Distance

Φ of the form ∀a∈A .∃b∈B : ∥a− b∥2 ≤ t2, where ∥x∥ denotes the Euclidean norm of the
vector x. We can decide the truth of this sentence by employing sophisticated algorithms
from real algebraic geometry that can deal with two blocks of quantifiers [12, Chapter 14].
These algorithms are so slow that they would probably not work in the above example. Our
main result roughly states that in general there is little hope for an improvement. To state
this formally, we continue by defining suitable complexity classes.

Algorithmic complexity. Let φ be a quantifier-free formula in the first-order theory of the
reals, i.e., a formula formed over the alphabet Σ = {Z,+, ·,=,≤, <,∨,∧,¬} together with
symbols for the variables. Details on how formulas are encoded are described in Section 2.
The Universal Existential Theory of the Reals (UETR) asks to decide the truth
value of a sentence

Φ := ∀X ∈Rn .∃Y ∈Rm : φ(X,Y ).

An instance of UETR belongs to Strict-UETR if the corresponding formula φ is over the
alphabet Σ = {Z,+, ·, <,∨,∧}, i.e., if every atom is a strict inequality and negations do not
occur. The complexity classes ∀∃R and ∀∃<R contain all decision problems for which there
exists a polynomial-time many-one reduction to UETR and Strict-UETR, respectively.
We propose to pronounce the complexity class ∀∃R as “UER” or “forall exists R” and ∀∃<R
as “Strict-UER” or “strict forall exists R”. Let us emphasize that we work in the bit-model
of computation; all inputs have finite precision and their overall length determines the size of
the problem instance. To the best of our knowledge, ∀∃R was first introduced by Bürgisser
and Cucker [19, Section 9] under the name BP0(∀∃) (in the constant-free Blum-Shub-Smale-
model [16]). The notation ∀∃R arised later in [27] extending the notation from Schaefer
and Števankovič [48]. The class co-∀∃<R = ∃∀≤R was first studied by D’Costa, Lefaucheux,
Neumann, Ouaknine and Worrel [25].

Concerning the relation of these complexity classes, it is easy to see that ∀∃<R is contained
in ∀∃R. It is an intriguing open problem if those two classes coincide or are different. If the
two classes are indeed different, this would imply NP ̸= PSPACE so we do not expect such
a proof any time soon. It is also conceivable that some extensions of known results in real
algebraic geometry can be used to show ∀∃R = ∀∃<R.

Problem and results. We now have all ingredients to state our problem and main results.
Let ΦA(X) and ΦB(X) be two quantifier-free formulas defining the semi-algebraic sets
A = {x∈Rn | ΦA(x)} and B = {x∈Rn | ΦB(x)}, and let t∈Q be a rational number. The
Hausdorff problem asks whether dH(A,B) ≤ t. Here the dimension n of the ambient space
of A and B is part of the input (there is a polynomial-time algorithm for every fixed n, see
the related work in Section 1.1). Our main result determines the algorithmic complexity.

▶ Theorem 1. The Hausdorff problem is ∀∃<R-complete.

Note that prior to our result, it was not even known if computing the Hausdorff distance
was NP-hard. As ∀∃<R contains NP, co-NP, ∃R and ∀R, we also get hardness for all of those
complexity classes. Theorem 1 answers an open question posed by Dobbins, Kleist, Miltzow
and Rzążewski [27].

One may wonder whether it is crucial for our results that the Hausdorff problem asks
for the distance to be at most t rather than below t. We remark that all our proofs work with
tiny modifications also for the case of a strict inequality. Furthermore, our results also hold
for the directed Hausdorff distance. Note that one can compute the undirected Hausdorff
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distance trivially, by computing twice the directed Hausdorff distance. Thus intuitively, the
directed Hausdorff distance is computationally at least as hard. Yet, this is not a many-one
reduction, as we need to compute the directed Hausdorff distance twice.

In the proof of ∀∃<R-hardness for Theorem 1, we create instances with some additional
properties. In particular, we can guarantee a gap, i.e., the Hausdorff distance is either below
the threshold t or at least t · 22Ω(d) , where d denotes the number of variables of ΦA and ΦB .
Thus our result also rules out approximation algorithms.

▶ Corollary 2. Let A and B be two semi-algebraic sets in Rd and f(d) = 22o(d) . Then there
is no polynomial-time f(d)-approximation algorithm to compute dH(A,B), unless P = ∀∃<R.

We remark that our proof provides hard instances, where the threshold t is strictly larger
than zero. By scaling of A and B, we can assume t = 1 without loss of generality. It is natural
to wonder if ∀∃<R-hardness also holds for the case of t = 0. This question is equivalent to
checking whether the closure of two semi-algebraic sets is equal, i.e., dH(A,B) = 0 if and
only if A = B. Computing the closure of a semi-algebraic set is non-trivial. In particular, it
is not enough to replace all occurrences of < by ≤. Yet testing, if two semi-algebraic sets are
equal is likely slightly easier.

▶ Theorem 3. Deciding if two semi-algebraic sets are equal is ∀R-complete.

Because the proof is rather simple, we present it at this point.

Proof. Given quantifier-free formulas ΦA(X) and ΦB(X), it holds that A = B if and only if
∀X ∈Rn : ΦA(X) ⇐⇒ ΦB(X). This shows ∀R-membership. To see ∀R-hardness, note that
Ψ := ∀X ∈Rn : φ(X) is equivalent to {x ∈ Rn : φ(x)} = Rn. ◀

1.1 Related work
This subsection reviews previous work concerning two directions. First, we discuss the
complexity of computing the Hausdorff distance for special sets. Afterwards, we investigate
previous work on the complexity class ∀∃R.

Computing the Hausdorff distance. The notion of the Hausdorff distance was introduced
by Felix Hausdorff in 1914 [32]. Most of the early works focused on the Hausdorff distance
for finite point sets. For a set of n points and a set of m points in any fixed dimension, the
Hausdorff distance can be easily computed by checking all pairs, i.e., in time O(mn). In the
plane, this can be improved to O((n+m) log(m+ n)) by using Voronoi diagrams [7]. In fact,
this method can be extended to sets consisting of pairwise non-crossing line segments in the
plane, e.g., simple polygons and polygonal chains fulfill this property. If the polygons are
additionally convex, their Hausdorff distance can even be computed in linear time [11].

More generally, the Hausdorff distance can be computed in polynomial time whenever
the two sets can be described by a simplicial complex of fixed dimension. Based on the
PhD thesis of Godau [30], Alt et al. [8, Theorem 3.3] show how to compute the directed
Hausdorff distance between two sets in Rd consisting of n and m k-dimensional simplices in
time O(nmk+2) (assuming d is constant). Using a Las Vegas algorithm for computing the
vertices of the lower envelope, similar ideas yield an approach with randomized expected
time in O(nmk+ε) for k > 1 and every ε > 0 [8, Theorem 3.4]. They additionally present
algorithms with better randomized expected running times for sets of triangles in R3 and
point sets in Rd.

SoCG 2022
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Given two semi-algebraic sets A,B ⊆ Rn, the Hausdorff problem can be encoded as a
sentence of the form ∀X∃Y : φ(X,Y ) with Θ(n) variables, where φ is quantifier-free. Such
a sentence can be decided in time roughly equal to (sd)O(n2) [12, Theorem 14.14] where d
denotes the maximum degree of any polynomial of φ and s denotes the number of atoms.

In other contexts the two sets are allowed to undergo certain transformations (e.g.
translations) such that the Hausdorff distance is minimized [18]. See Alt [9] for a survey.

Universal existential theory of the reals. As mentioned above, the complexity class ∀∃R
was first studied by Bürgisser and Cucker who prove complexity results for many decision
problems involving circuits [19]. For example, they study functions f : Rn → R that are
given by arithmetic circuits. They show that it is ∀∃R-complete to decide if such f is
surjective. Dobbins, Kleist, Miltzow, and Rzążewski [28, 27] consider ∀∃R in the context of
area-universality of graphs. A plane graph is area-universal if for every assignment of reals
to the inner faces of a plane graph, there exists a straight-line drawing such that the area
of each inner face equals the assigned number. Dobbins et al. conjecture that the decision
problem whether a given plane graph is area-universal is complete for ∀∃R. They support
this conjecture by proving hardness for several related notions [27]. Additionally, for future
research directions, they present a number of candidates for potentially ∀∃R-hard problems.
Among them, they stated a question motivating this paper as an open problem, namely
whether the Hausdorff problem is ∀∃R-complete. The other candidates exhibit intrinsic
connections to the notions of imprecision, robustness and extendability.

We point out that the computational complexity may also become easier when asking
universal-type questions. For example, it is ∃R-complete to decide whether a graph is a unit
distance graph, i.e., whether it has a straight-line drawing in the plane in which all edges have
the same length [47]. On the other hand, the decision problem whether for all reasonable
assignments of weights to the edges, a graph has a straight-line drawing in which the edge
lengths correspond to the assigned weight lies in P [14]. Similarly, it is ∃R-complete to decide
for a given planar graph for which some vertices are fixed to the boundary of a polygon
(with holes) whether there exists a planar straight-line drawing inside the polygon [33]. The
case of simple polygons is open. In contrast, there is a polynomial time algorithm to test if a
given graph G and a contained cycle C admit for every simple polygon P , representing C, a
straight-line drawing of G inside P [39].

The sister class ∃∀R was recently investigated by D’Costa et al. [25]. They show that
it is ∃∀≤R-complete to decide for a given rational matrix A and a compact semi-algebraic
set K ⊆ Rn, whether there exists a starting point x ∈ K such that xn := Anx is contained
in K for all n ∈ N . This and similar problems are generally referred to as escape problems.

The complexity class ∀∃R is a natural extension of the complexity class ∃R (pronounced
as “exists R”, “ER”, or “ETR”), which is defined similarly to ∀∃R, but without universally
quantified variables. The complexity class ∃R has gained a lot of interest in recent years,
specifically in the computational geometry community. It gains its significance because
numerous well-studied problems from diverse areas of theoretical computer science and
mathematics have been shown to be complete for this class. Famous examples from discrete
geometry are the recognition of geometric structures, such as unit disk graphs [35], segment
intersection graphs [34], visibility graphs [21], stretchability of pseudoline arrangements [38,
50], and order type realizability [34]. Other ∃R-complete problems are related to graph
drawing [33], Nash-Equilibria [15, 29], geometric packing [6], the art gallery problem [3],
convex covers [2], non-negative matrix factorization [49], polytopes [26, 43], geometric
embeddings of simplicial complexes [4], geometric linkage constructions [1], training neural
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networks [5], and continuous constraint satisfaction problems [36]. For more information
on the complexity class ∃R, we refer to Matoušek’s lecture notes [34], and the surveys by
Schaefer [46] and Cardinal [20].

General solution strategies. We sometimes see that researchers make the dichotomy
between tractable and intractable algorithmic problems. More precisely, when there exists a
polynomial time algorithm the underlying problem is considered to be tractable. In contrast,
in case of NP-hardness the underlying problem is considered intractable. Although most
researchers are aware that this dichotomy does not match actual practical performance, it is
often seen as a good enough yardstick.

In the last decades, a more nuanced perspective emerged. This new perspective ac-
knowledges that there is a whole range of mathematical assumptions and models and that
depending on the specific situation, different models can be more or less accurate [44]. One
example is the so-called smoothed analysis of algorithms [51]. The underlying idea is that
practical instances are subject to small noise. This small noise may tame a very difficult
instance. In this context, we discuss four complexity classes: NP, ∃R, Πp

2, and ∀∃R.
NP Despite NP-hardness, huge practical instances can often be solved very fast. Prominent

examples are ILPs that can be solved optimally using off the shelf solvers. Note that it
is also possible to generate adversarial instances of moderate size for which no good
tools exist.

∃R Problems in ∃R are considerably harder. Still, we can often solve ∃R-complete problems
using suitable discretizations or using gradient descent. However, both methods usually
have no guarantees to ever terminate. Furthermore, they may give solutions that are
arbitrarily far from the optimum. Methods from real algebraic geometry are applicable
if polynomials are explicitly given and contain only few variables, say around ten.

Πp
2 Describes problems on the second level of the polynomial time hierarchy [10]. We

do not know many problems on this level, compared to the number of NP-complete
problems. Due to the two blocks of quantifiers there are no effective general purpose
tools like ILP-solvers. On the positive side, due to the combinatorial nature, it is
possible to use exhaustive search.

∀∃R This class combines the difficulties of ∃R and Πp
2. Note that we cannot even use gradient

descent for problems in this class. Due to the continuous nature of the problem it is
also not possible to use a simple brute-force algorithm. Furthermore, methods from
real algebraic geometry cannot even solve small instances with up to say ten variables.
The two different quantifiers limit those already impractical methods even further.

We want to point out that this classification of difficulty should not be taken dogmatically.
For many algorithmic problems worst-case complexity is not an adequate model to explain
practical performance. We rather take the perspective that this mathematical classification
is a crude yardstick which measures algorithmic difficulty from the worst-case perspective.
For each individual problem one has to judge, if the worst-case perspective is accurate.

1.2 Techniques and proof overview
In this subsection, we present the general idea behind the hardness reduction for the
Hausdorff problem. The goal is to convey the intuition and to motivate the technical
intermediate steps needed. The sketched reduction is oversimplified and thus neither in
polynomial time nor fully correct. We point out both of these issues and give first ideas on
how to solve them.

Let Φ := ∀X ∈Rn .∃Y ∈Rm : φ(X,Y ) be a Strict-UETR instance. We define two sets

A := {x∈Rn | ∃Y ∈Rm : φ(x, Y )} and B := Rn

SoCG 2022



48:8 The Complexity of the Hausdorff Distance

and ask whether dH(A,B) = 0. If Φ is true, then A = Rn and we have dH(A,B) = 0 because
both sets are equal. Otherwise, if Φ is false, then there exists some x∈Rn for which there
is no y∈Rm satisfying φ(x, y) and we conclude that A ̸= Rn. In general we call the set of
all x∈Rn for which there is no y ∈Rm satisfying φ(x, y) the counterexamples ⊥(Φ) of Φ.
One might hope that ⊥(Φ) ̸= ∅ is enough to obtain dH(A,B) > 0, but this is not the case.
To this end, consider the formula Ψ := ∀X ∈ R .∃Y ∈ R : XY > 1, which is false. The
set ⊥(Ψ) = {0} contains only a single element, so we have A = R \ {0} and B = R. However,
their Hausdorff distance also evaluates to dH(A,B) = 0. We conclude that above reduction
does not (yet completely) work, because it maps a yes- and a no-instances of Strict-UETR
to a yes-instance of Hausdorff.

We solve this issue by blowing up the set of counter examples. Specifically, Theorem 10
establishes a polynomial-time algorithm to transform a Strict-UETR instance Φ into an
equivalent formula Φ′ such that the set of counterexamples is either empty (if Φ′ is true)
or contains an open ball of positive radius (if Φ′ is false). The radius of the ball serves as
a lower bound on the Hausdorff distance dH(A,B). Thus a reduction starting with Φ′ is
correct. As a key tool for this step, we restrict the variable ranges from Rn and Rm to small
and compact intervals. Figure 5 presents an an example on how such a range restriction may
enlarge the set of counterexamples from a single point to an interval.

x

y

x

y(a) (b)

Figure 5 Consider the formula ∀X ∈R . ∃Y ∈R : XY > 1. (a) Each point (x, y)∈R2 in the blue
open region satisfies xy > 1. Only for x = 0 (in red) no suitable y ∈R exists. (b) Restricting the
range of Y to [−1, 1], then for all x∈ [−1, 1] (in red) no y with xy > 1 exists.

We highlight that such a restriction of the variable ranges is not possible for general UETR
formulas. However, we can exploit the fact that Strict-UETR formulas are ∀-strict; a
negation- and implication-free formula is ∀-strict if each atom involving universally quantified
variables is a strict inequality. Being ∀-strict is a key property of many of the formulas
considered throughout the paper, both for ∀∃<R-hardness and -membership. We think that
the special property of blown up counterexamples can prove useful in future reductions to
show ∀∃<R-hardness of other problems because it makes handling the no-instances easier.

A further challenge is given by the definition of the sets A and B. While the description
complexity of B depends only on n, the definition of A contains an existential quantifier.
This is troublesome because our definition of the Hausdorff problem requires quantifier-
free formulas as its input, and in general there is no equivalent quantifier-free formula of
polynomial length which describes the set A [24]. We overcome this issue by taking the
existentially quantified variables as additional dimensions into account; it will be useful
to scale them to a tiny range, so that their influence on the Hausdorff distance becomes
negligible. Therefore instead of the above, in Section 5 we work with sets similar to

A := {(x, y) | x∈ [−1, 1]n, y ∈ [−ε, ε]m, φ(x, y)} and
B := [−1, 1]n × {0}m
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for some tiny value ε depending on the radius r (of the ball contained in the counterexamples)
computed in Section 4. This definition of A and B introduces the new issue that even if Φ is
true, the Hausdorff distance dH(A,B) might be strictly positive. However, we manage to
identify a threshold t, such that dH(A,B) ≤ t if and only if Φ is true. This completes the
proof of ∀∃<R-hardness.

Organization. The remainder of the paper is organized as follows. We introduce prelimi-
naries concerning the first-order theory of the reals in Section 2 and essential tools from
real algebraic geometry in Section 3. Section 4 presents the result for blowing up the set of
counterexamples for ∀-strict formulas and Section 5 the hardness proof. For the membership
of Hausdorff in ∀∃<R we refer to Theorem 17 of the full version. We conclude with a list
of open problems in Section 6. Statements marked with (♠) are proved in the full version.

2 Preliminaries on the first-order theory of the reals and ∀∃R

Here, we give a short overview of the notation and definitions used in the paper. We mostly
introduce standard terminology following the book by Cox, Little, O’Shea [23].

An atom is an expression of the form P ◦ 0 for some polynomial P ∈ Z[X1, . . . , Xn]
and ◦ ∈ {<,≤,=, ̸=,≥, >}. We always assume that a polynomial is written as a sum of
monomials. Its total degree is the maximum number of occurrences of variables involved in
any monomial. For example P (X,Y, Z) = X2Y 2 +XY Z has total degree four. A variable
is called free if it is not bound by a quantifier. A formula is either (i) an atom, or (ii) if
φ1, φ2 are formulas, then φ1 ∧ φ2, φ1 ∨ φ2, φ1 =⇒ φ2 and ¬φ1 are formulas, or (iii) if
X is a free variable of a formula φ(X), then ∃X : φ(X) and ∀X : φ(X) are formulas in
which X is bound. In order to determine the length |φ| of a formula φ, we count 1 for
each fixed symbol, we encode integer coefficients in binary, exponents are encoded in unary,
and we count logn for every occurrence of each variable, where n denotes the number of
variables. We denote by QFF the family of quantifier-free formulas that contain no negation
or implication. Furthermore, QFF<, QFF≤, and QFF= are the families in QFF that have
only atoms involving <, ≤ and = respectively.

A sentence is a formula without free variables and thus either equivalent to true or to
false. The truth value is defined inductively, by interpreting the quantifiers over the real
numbers R. As a convention, we use capitalized Greek letters for sentences and use lower
case Greek letter for formulas. We write Ψ ≡ Ψ′ if the two sentences have the same truth
value. The first order theory of the reals (FOTR) is the family of all true sentences. If all
quantifiers of a formula appear at its beginning, we say it is in prenex normal form. We
usually write blocks of variables, i.e., ∀X ∈Rn : φ(X). Here X is a shorthand notation for
X = (X1, . . . , Xn). We say n is the length of X in this case. All quantifiers quantify their
bound variables over R. The following are just shorthand notation:

∀X ∈ [−1, 1] : φ(X) ≡ ∀X ∈R : (X ≥ −1 ∧X ≤ 1) =⇒ φ(X)
∃X ∈ [−1, 1] : φ(X) ≡ ∃X ∈R : (X ≥ −1 ∧X ≤ 1) ∧ φ(X)

We use uppercase letters for variables in formulas and lowercase letters for specific values,
i.e., symbol X denotes a vector of variables, while x∈Rn is a point. We sometimes write
φ(X,Y ) to emphasize that X and Y are free variables of the formula φ. Often we do not
mention the free variables of φ though.
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Consider a formula Φ := ∀X ∈Rn .∃Y ∈Rm : φ(X,Y ), where φ∈QFF. Each atom of φ is
of the form P ◦ 0, where ◦ ∈ {<,≤,=, ≠,≥, >} and P ∈ Z[X,Y ] is a multivariate polynomial
in the variables X and Y . Without loss of generality we can restrict our attention to the
case of ◦ ∈ {<,≤}, because the following transformations show that the other relations can
be reformulated such that the length of the formula is at most doubled.

P > 0 ≡ −P < 0 P = 0 ≡ (P ≤ 0) ∧ (−P ≤ 0)
P ≥ 0 ≡ −P ≤ 0 P ̸= 0 ≡ (P < 0) ∨ (−P < 0)

Furthermore, we can assume that φ contains only the logical connectives ∧ and ∨, because
De Morgan’s law allows to push all negations (and therefore also implications) down to the
atoms transforming φ into negation normal form. With the following equivalences we obtain
a formula without negations:

¬(P < 0) ≡ −P ≤ 0 ¬(P ≤ 0) ≡ −P < 0

Given a formula φ, the set S(φ) = {x ∈ Rn | φ(x)} is semi-algebraic. The complexity of a
semi-algebraic set S is the length of a shortest quantifier-free formula φ, such that S = S(φ)
(recall that integers are encoded in binary). We write φ ≡ φ′ if S(φ) = S(φ′).

For any fixed ◦ ∈ {<,≤}, we denote by ∀∃◦R the fragment of ∀∃R containing all decision
problems that polynomial-time many-one reduce to a UETR-instance where all formulas
are contained in QFF◦. Similarly, for ◦ ∈ {<,≤}, we denote the corresponding fragments of
∃R and ∀R by ∃◦R and ∀◦R, respectively. The following lemma summarizes what we know
about the relation between the complexity classes ∀∃<R, ∀∃≤R and ∀∃R as well as their
relation to the well-studied classes NP, co-NP, ∃R, ∀R, and PSPACE.

▶ Lemma 4 (♠). It holds NP ⊆ ∃R ⊆ ∀∃<R ⊆ ∀∃≤R = ∀∃R ⊆ PSPACE. Furthermore,
co-NP ⊆ ∀R ⊆ ∀∃<R.

3 Mathematical tools

In this section, we review already existing tools that are needed throughout the paper. In
particular, we use two sophisticated results from algebraic geometry, namely singly exponential
quantifier elimination and the so called Ball Theorem. While quantifier elimination provides
equivalent quantifier free formulas of bounded length, the Ball Theorem guarantees that
every non-empty semi-algebraic set contains an element not too far from the origin. We use
the two results to establish useful properties of semi-algebraic sets.

We start with a result on quantifier-elimination which originates from a series of articles
by Renegar [40, 41, 42]. We note that the time complexity of this algorithm is exponential
and not doubly exponential for every fixed number of quantifier alternations.

▶ Theorem 5 ([12, Theorem 14.16]). Let X1, . . . , Xk, Y be vectors of real variables where Xi

has length ni, Y has length m, formula φ(X1, . . . , Xk, Y ) ∈ QFF has s atoms and Qi ∈ {∃,∀}
is a quantifier for all i = 1, . . . , k. Further, let d be the maximum total degree of any polynomial
of φ(X1, . . . , Xk, Y ). Then for any formula Φ(Y ) := (Q1X1) . . . (QkXk) : φ(X1, . . . , Xk, Y )
there is an equivalent quantifier-free formula of size at most

s(n1+1)···(nk+1)(m+1)dO(n1)···O(nk)O(m).

We use the following corollary of Theorem 5 that is weaker but easier to work with.
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▶ Corollary 6 (♠). Given a formula Φ(Y ) as in Theorem 5 of length L = |φ(X1, . . . , Xn, Y )|.
Then for a constant α ∈ R independent of Φ, there exists an equivalent quantifier-free formula
of size at most Lαk+1·n1·...·nk·m.

The Ball Theorem was first discovered by Vorob’ev [53] and Grigor’ev and Vorobjov [31].
Vorob’ev and Vorobjov are two different transcriptions of the same name from the Cyrillic to
the Latin alphabet. Explicit bounds on the distance are given by Basu and Roy [13]. We use
a formulation from Schaefer and Štefankovič [48].

▶ Theorem 7 (Ball Theorem [48, Corollary 3.1]). Every non-empty semi-algebraic set in Rn

of complexity at most L ≥ 4 contains a point of distance at most 2L8n from the origin.

Recall that for any quantifier-free formula φ(X) with free variables X ∈ Rn, the set
S := {x ∈ Rn | φ(X)} is semi-algebraic. Thus, a direct conclusion of Theorem 7 is that
∃X ∈Rn : φ(X) is equivalent to ∃X ∈ [−2L8n , 2L8n ]n : φ(X). This is how we are going to
make use of Theorem 7 throughout this paper.

In the following, we deduce useful properties from Corollary 6 and Theorem 7, starting
with a fact that was identified by D’Costa, Lefaucheux, Neumann, Ouaknine and Worrel [25,
Lemma 14] for two quantifiers. We are interested in a generalization to more quantifiers.
Their proof also works with slight modifications in the more general case with k quantifiers.

▶ Lemma 8 (♠). Let X1, . . . , Xk be vectors of variables where Xi has length ni ≥ 1 and let
φ(ε,X1, . . . , Xk) be a quantifier-free formula of length L. Then the semi-algebraic set

S = {ε > 0 | (Q1X1) . . . (QkXk) : φ(ε,X1, . . . , Xk)},

where the Qi are alternating existential and universal quantifiers, is either empty or it
contains an element ε∗ ∈ S such that for some constant β ∈ R we have ε∗ ≥ 2−Lβk+2n1···nk .

Given a semi-algebraic set S ⊆ Rn and any α ∈ Q, the scaled set T = {αx ∈ Rn | x ∈ S}
is semi-algebraic. The following lemma proves that scaling any subset of the variables by a
doubly exponentially large integer can be encoded by a formula of polynomial length.

We denote by the type of an atom whether it is a strict inequality, a non-strict inequality
or an equation. We say that two formulas have the same logical structure if there is a bijection
between their atoms such that identifying corresponding atoms leads to the same formula.

▶ Lemma 9 (Scaling Semi-Algebraic Sets ♠). Let φ(X,Y ) ∈ QFF with free variables X ∈ Rn

and Y ∈ Rm. Further, let N be an integer and s ∈ {−1, 1}. We can construct in time
polynomial in |φ| and N a formula ψ(X,Y ), such that for any (x, y) ∈ Rn+m we have φ(x, y)
if and only if ψ(x · 2s·2N , y). Further ψ(X,Y ) can be chosen to be of the form

ψ(X,Y ) ≡ ∃U ∈ [−1, 1]N+1 : χ(U) ∧ φ′(X,Y, U) or alternatively
ψ(X,Y ) ≡ ∀U ∈ [−1, 1]N+1 : ¬χ(U) ∨ φ′(X,Y, U).

In both cases, χ(U) ∈ QFF=, formulas φ′(X,Y, U) and φ(X,Y ) have the same logical
structure and corresponding atoms have the same type.

4 Counterexamples of Strict-UETR

Let us recall the definition of counterexamples here that was already motivated in Section 1.2.
Given a sentence Φ := ∀X ∈Rn .∃Y ∈Rm : φ(X,Y ) we call the set

⊥(Φ) := {x ∈ Rn | ∀Y ∈Rm : ¬φ(x, Y )}
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its counterexamples. The counterexamples of Φ are exactly the values x ∈ Rn for which
there is no y ∈ Rm such that φ(x, y) is true. We show how to transform a Strict-UETR
instance Φ into an equivalent formula Ψ for which ⊥(Ψ) is either empty or contains an open
ball. We achieve this by bounding the range over which the variables are quantified. The
following theorem summarizes our findings. This open ball property is a key technical step
and we believe is of independent interest.

▶ Theorem 10 (♠). Given a Strict-UETR instance Φ := ∀X ∈Rn .∃Y ∈Rm : φ<(X,Y ),
with φ<(X,Y ) ∈ QFF<, we can construct in polynomial time an equivalent UETR instance

Ψ := ∀X ∈ [−1, 1]n .∃Y ∈ [−1, 1]ℓ : ψ(X,Y ),

where ψ ∈ QFF. Further, ⊥(Ψ) is either empty or contains an n-dimensional open ball.

5 ∀∃<R-Hardness

▶ Theorem 11. Hausdorff and directed Hausdorff are ∀∃<R-hard.

Proof. Let Φ := ∀X ∈Rn .∃Y ∈Rm : φ<(X,Y ) be an instance of Strict-UETR. We give
a polynomial-time many-one reduction to an equivalent Hausdorff instance. The proof is
split into three parts: First we transform Φ into an equivalent UETR instance Ψ′ whose
counterexamples contain an open ball (if there are any). Then we use Ψ′ to define the
semi-algebraic sets A and B as well as an integer t, such that (A,B, t) is a Hausdorff
instance. Lastly we prove that Φ and (A,B, t) are indeed equivalent.

Transforming Φ into Ψ′. We apply Theorem 10 to Φ and obtain an equivalent sentence

Ψ := ∀X ∈ [−1, 1]n .∃Y ∈ [−1, 1]ℓ : ψ(X,Y )

in polynomial time, where ψ(X,Y ) ∈ QFF. Additionally, we get that ⊥(Ψ) = ∅ if Ψ is true
and that it contains an n-dimensional open ball Bn(x, r) centered at some x ∈ ⊥(Ψ) ⊆ [−1, 1]n
of radius r > 0 otherwise. We remark that Ψ is an instance of UETR and not necessarily
of Strict-UETR. Using the tools from Section 3, we shall prove next, that we can give
a lower bound on the radius r of the open ball of counterexamples centered at x. For this,
assume that Ψ is false, so ⊥(Ψ) ̸= ∅ and therefore

¬Ψ = ∃X ∈ [−1, 1]n .∀Y ∈ [−1, 1]ℓ : ¬ψ(X,Y )

is true. Utilizing our knowledge about the open ball of counterexamples around x, we can
strengthen this to

∃r > 0 .∃X ∈ [−1, 1]n .∀X̃ ∈ [−1, 1]n, Y ∈ [−1, 1]ℓ : ∥X − X̃∥2 < r2 =⇒ ¬ψ(X̃, Y ),

which is still equivalent to ¬Ψ. Let L denote the length of the quantifier-free part of this
formula. We see that L is clearly polynomial in |Ψ|, which by Theorem 10 is polynomial
in |Φ|. The above sentence has the form required to apply Lemma 8, and we get that there
is an r satisfying above sentence with

r ≥ 2−Lβ4n(n+ℓ)
(1)

for some constant β ∈ R. Let N be the smallest integer, such that

r · 22N > ℓ. (2)
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By Equation (1), it holds that N ∈ O(n(n+ ℓ) log(L)). Using Lemma 9 on Ψ and N , we can
again in polynomial time scale up the range of the universally quantified variables and get

Ψ′ := ∀X ∈ [−22N

, 22N

]n .∃Y ∈ [−1, 1]ℓ, U ∈ [−1, 1]N+1 : ψ′(X,Y, U),

where ψ′(X,Y, U) ∈ QFF and we have ⊥(Ψ′) equal to ⊥(Ψ) scaled up by 22N in all dimen-
sions. Further, from (the proof of) Lemma 9 it follows and for all (x, y, u) ∈ Rn+ℓ+N+1

with ψ′(x, y, u) we have ui = 2−2i . In particular, the radius of the open ball of counterexam-
ples around 22N · x ∈ ⊥(Ψ′) is now r′ := r · 22N

> ℓ by the choice of N .

Defining Hausdorff instance (A, B, t). We first define three sets A′, B′ and C ′ as
follows:

A′ :=
{

(x, y, u) ∈ [−22N , 22N ]n × [−1, 1]ℓ × [−1, 1]N+1 ∣∣ ψ′(x, y, u)
}

B′ := [−22N , 22N ]n × {0}ℓ × {2−20} × . . .× {2−2N }
C ′ := {22N+1}n+ℓ × {2−20} × . . .× {2−2N }

Note that A′, B′, C ′ ⊆ Rn+ℓ+N+1 and all three sets can be described by quantifier-free
formulas of polynomial length. We further define

A := A′ ∪ C ′,
B := B′ ∪ C ′ and
t := ℓ.

The reason to include C ′ into both A and B is to guarantee that both semi-algebraic sets
are non-empty. Otherwise, if ⊥(Ψ′) = [−22N , 22N ]n, the set A is the empty set and the
Hausdorff distance between A and B would not be well-defined. The triple (A,B, t) is the
desired Hausdorff instance.

Equivalence of Φ and (A, B, t). We first note that we can ignore C ′ in our argumentation
about dH(A,B): In fact, assuming that both A′ and B′ are non-empty, we have dH(A,B) =
dH(A′, B′). To prove this, observe first that adding the same set of points to A′ and B′ can only
decrease their Hausdorff distance. Second, C ′ was chosen to have dH(A′, C ′) ≥ dH(A′, B′),
so for no a ∈ A, the distance to the closest b ∈ B has decreased (and vice versa).

To see that Φ and (A,B, t) are equivalent, assume first that Φ is true. Let u ∈ [−1, 1]N+1

such that ui = 2−2i . As seen above, this is necessary in every satisfying assignment of the
variable vector U in Ψ′. Then for every x ∈ [−22N , 22N ]n there is at least one y ∈ [−1, 1]ℓ
such that a = (x, y, u) ∈ A. At the same time, b = (x, {0}ℓ, u) ∈ B. We get

∥a− b∥ = ∥(x, y, u) − (x, {0}ℓ, u)∥ = ∥y − 0⃗∥ ≤
√∑ℓ

i=1 1 =
√
ℓ ≤ ℓ = t.

As x was chosen arbitrarily, we get an upper bound for the directed Hausdorff distance
d⃗H(A,B) ≤ ℓ. On the other hand, for every b = (x, {0}ℓ, u) ∈ B there is an y ∈ [−1, 1]ℓ such
that a = (x, y, u) ∈ A, as we assume that Φ is true. As above, we get d⃗H(B,A) ≤ ℓ and thus

dH(A,B) ≤ ℓ = t. (3)

Now assume that Φ is false. By construction Ψ′ is also false and contains a counterexample
x ∈ ⊥(Ψ′) such that Bn(x, r′) ⊆ ⊥(Ψ′). Consider b = (x, {0}ℓ, u) ∈ B. Since Ψ′ is false, for
no x̃ with ∥x− x̃∥ < r′ and no y ∈ [−1, 1]ℓ there is a point a = (x̃, y, u) ∈ A. We conclude

dH(A,B) ≥ d⃗H(B,A) ≥ r′ > ℓ = t. (4)

Equations (3) and (4) prove that dH(A,B) ≤ t (and d⃗H(B,A) ≤ t) if and only if Φ is true. ◀
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In the proof of Theorem 1, we could choose N ′ := N + 1 instead of N in Equation (2).
Then in the case that Φ is false, the Hausdorff distance is at least

r′ > 22N+1
r > 22N+1−2N

ℓ = 22N

ℓ = 22N

t.

Note that the dimension d of the resulting sets A,B equals d = n + ℓ + N ′ + 1 = Θ(N).
Thus, we created a gap of size 22Θ(d) . This implies the following inapproximability result.

▶ Corollary 2. Let A and B be two semi-algebraic sets in Rd and f(d) = 22o(d) . Then there
is no polynomial-time f(d)-approximation algorithm to compute dH(A,B), unless P = ∀∃<R.

6 Open problems

We showed that the Hausdorff problem is ∀∃<R complete. One important open question
is whether the two complexity classes ∀∃R and ∀∃<R are actually the same. An answer
to this question is interesting in its own right. Furthermore, it is interesting to see if our
hardness result can be extended to simpler settings.
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