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Abstract
Space efficient data structures for partial ordered sets or posets are well-researched field. It is known
that a poset with n elements can be represented in n2/4 + o(n2) bits [30] and can also be represented
in (1 + ϵ)n log n + 2nk + o(nk) bits [19] where k is width of the poset. In this paper, we make
the latter data structure occupy 2n(k − 1) + o(nk) bits by considering topological labeling on the
elements of posets. Also considering the topological labeling, we propose a new data structure that
calculates queries on transitive reduction graphs of posets faster though queries on transitive closure
graphs are computed slower. Moreover, we propose an alternative data structure for topological
labeled posets that calculates both of the queries faster though it uses 3nk − 2n + o(nk) bits of
space. Additionally, we discuss the advantage of these data structures from the perspective of an
application for BlockDAG, which is a more scalable version of Blockchain.
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1 Introduction

We consider space-efficient data structures for partially ordered sets (posets). Such data
structures have been studied earlier. For arbitrary posets, Munro and Nicholson [30] proposed
a data structure whose space complexity is n2/4 + o(n2) bits, and this matches the lower
bound n2/4 + 3n/2 + O(log n) which is found by Kleitman and Rothschild [29]. When
the poset has Dilworth’s width [16] k1, Daskalakis et al. [15] showed that posets can be
represented in O(nk) words where n is the number of elements of the poset. Using their idea,
Farzan and Fischer [19] developed a data structure for posets with (1+ ϵ)n log n+2nk +o(nk)
bits, for any positive constant ϵ ≤ 1. It is known that

n!
k! 4n(k−1)n−24k(k−1) ≤ Nk(n) ≤ n! 4n(k−1)n− (k−1)(k−2)

2 k
k(k−1)

2

when Nk(n) is the number of posets on n elements with width k [10]. Hence, the information
theoretic lower bound is n log n + 2n(k − 1)−Θ(k2 log n) bits. Thus the data structure of
Farzan and Fischer is succinct if k = o(

√
n) and ϵ = o(1).

There are a lot of other related works. It is well-known as Birkhoff’s representation
theorem that posets have one-to-one correspondence with distributive lattices [8]. There is a
data structure for distributive lattices [32] whose size is close to the lower bound given by

1 Hereafter we denote Dilworth’s width by just width.
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33:2 Space-Efficient Data Structure for Posets

Table 1 Comparison of data structures for posets. The data structure in Section 2.5 is the
original version of Farzan and Fischer’s data structure [19] and the one in Section 3.2 is a modified
version of that. GC is a transitive closure graph of a poset and GR is a transitive reduction graph of
it. Here o(nk) denotes n · o(k) + o(n) · k, and t denotes the size of the output of a query.

Section 2.5 Section 3.2 Section 3.3 Section 3.4

Labeling General Topological Topological Topological

Space [bits] (1 + ϵ)n log n

+2n(k − 1) + o(nk) 2n(k − 1) + o(nk) 2nk + o(nk) 3nk − 2n + o(nk)

adjGC
(u, v) O(1/ϵ) O(log log k) O(k2) O(log log k)

succGC (v) O(1/ϵ + k + t) O(k + t) O(k2 + t) O(k + t)
predGC

(v) O(1/ϵ + k + t) O(k + t) O(k2 + t) O(k + t)
adjGR

(u, v) O(1/ϵ + k) O(k) O(log log k) O(log log k)
succGR (v) O(1/ϵ + k2) O(k2) O(k) O(log log k + t)
predGR

(v) O(1/ϵ + k2) O(k2) O(k) O(k)

Erne, Heitzig and Reinhold [18]. There are also succinct/compact data structures which can
represent arbitrary binary relations [6,7], interval graphs, chordal graphs and finally arbitrary
graphs among many others [1, 2, 12,13, 20,33]. Recently, a new parameter called twin-width,
which can be defined on posets, graphs and more generally matrices, was introduced by
Bonnet et al. [9] and it is shown that the twin-width of posets is linear in their Dilworth’s
width [5]. A compact data structure for matrices with fixed twin-width was proposed [36].

1.1 Main Results
We denote by n the number of elements in a poset and its width by k. We first show that by
considering not generally labeled posets but topologically labeled posets, the space complexity
of Farzan and Fischer’s data structure can be reduced to 2n(k− 1) + o(nk) bits (Section 3.2).
This is succinct for non-constant k = o( n

log n ) (see Section 3.1). Also, we propose two
alternative data structures to store topologically labeled posets. Our first data structure can
support queries on transitive reduction graphs (defined in Section 2.2) faster than their data
structure though queries on transitive closure graphs are slower (Section 3.3). The other
data structure can support the queries on both the transitive reduction and transitive closure
graphs faster though the space increases to 3nk − 2n + o(nk) bits (Section 3.4).

Table 1 shows the comparison of time complexity of queries among the modified version of
Farzan and Fischer’s data structure in Section 3.2, the proposed data structure in Section 3.3
and another one in Section 3.4.

Our other contributions are to compress some of these data structures into less space
(Section 3.5) and to make these data structures dynamic (Appendix B). The dynamic versions
support the operation of adding an element to the poset.

1.2 Application
Blockchain is a technology for a public ledger of cryptocurrencies like Bitcoin, and was
proposed by Satoshi Nakamoto in 2009 [34]. In Blockchain, blocks storing the data of
transactions are linked in a chain, which has a scalability problem. In order to solve this
problem, some protocols called BlockDAG are proposed in which the blocks are connected
in a directed acyclic graph (DAG) instead of a chain. Typical BlockDAG protocols are
PHANTOM and GHOSTDAG [37].
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Let G = (V, E) be a DAG where V = {1, 2, . . . , n}, E ⊆ V × V . The DAG class of
BlockDAG satisfies the conditions below:
1. ∀(u, v) ∈ E, v < u;
2. Only one sink (i.e., a vertex with no outgoing edges); and
3. If (u, v1), (u, v2) ∈ E, then there is no path from v1 to v2.

In Condition 1, < is the standard total order on V , i.e. 1 < 2 < . . . < n. We call DAGs
that satisfy Condition 1 as topologically labeled DAGs. Conditions 1 and 2 imply that the
node labeled 1 is the sink and the DAG is connected. DAGs which satisfy Condition 3 are
called transitive reduction graphs [3]. If we remove the sink from G, then the DAG class has
one-to-one correspondence to posets labeled by a topological order.

For a Blockchain, its corresponding graph is a chain (path), which has width 1. For a
BlockDAG, it is expected that the graph has small width k. It is therefore worth giving a
space-efficient representation for graphs with small width.

2 Preliminaries

2.1 Chain Decomposition
A partially ordered set or a poset is a set with a binary relation which is reflexive, antisymmetric
and transitive. We denote a poset by P = (V,⪯) where V = {1, 2, . . . , n} and ⪯ is the
relation. For any a, b, c ∈ V , the following holds:

reflexivity: a ⪯ a,
antisymmetry: if a ⪯ b and b ⪯ a, then a = b,
transitivity: if a ⪯ b and b ⪯ c, then a ⪯ c.

When u ⪯ v and u ̸= v, we denote it by u ≺ v. We say that a poset is topologically labeled if
u ⪯ v ⇒ u ≤ v for any u, v ∈ V where ≤ is the standard total order on V . In 1950, Dilworth
showed the duality between chains and antichains of posets [16].

▶ Definition 1 (Antichain). A ⊆ V is an antichain of P if any two elements in A are
unordered on P.

▶ Definition 2 (Chain). C ⊆ V is a chain of P if C is totally ordered on P.

▶ Definition 3 (Chain Decomposition). A set of disjoint sets {Cp}k′−1
p=0 is a chain decomposition

of P if Cp is a chain of P for all p ∈ {0, 1, . . . , k′ − 1} and
⋃k′−1

p=0 Cp = V .

▶ Theorem 4 (Dilworth’s Theorem [16]). The maximum size of an antichain is equal to the
minimum number of chains in any chain decomposition.

The maximum size of antichain is called Dilworth’s width or simply width and we denote
it by k. Fulkerson found that Dilworth’s theorem is equivalent to König’s theorem and
the minimal chain decomposition can be obtained by solving a maximum matching on
a bipartite graph [23]. It can be solved in O(n2.5) time by using Hopcroft and Karp’s
algorithm [27]. The time complexity to calculate the minimal chain decomposition can be
reduced to O(kn2) [14,15].

2.2 Transitive Closure Graphs vs. Transitive Reduction Graphs
Transitive closure and transitive reduction are well-researched topics since 1970s. Given a
poset P, we define its transitive closure graph and transitive reduction graph as follows.

SWAT 2022



33:4 Space-Efficient Data Structure for Posets

▶ Definition 5 (Transitive Closure Graph). A transitive closure graph of P is a DAG GC =
(V, EC) where EC = {(u, v) ∈ V × V ; v ≺ u}.

▶ Definition 6 (Transitive Edge). A transitive edge of a DAG G = (V, E) is an edge (u, v) ∈ E

such that there exists a path from u to v other than the path going through the edge (u, v).

▶ Definition 7 (Transitive Reduction Graph). A transitive reduction graph of P is a DAG
GR = (V, ER) where ER is a set such that all the transitive edges are removed from EC .

Aho, Garey and Ullman generalized the transitive reduction to binary relations [3]. If
the binary relation is antisymmetric, the transitive reduction graph is unique. Thus, the
transitive reduction graph of a poset is unique. They also proved that both directions of
the conversions between a transitive closure graph and a transitive reduction graph have
algorithms of same time complexity.

The conversions between a transitive reduction graph and a transitive closure graph can
be obtained in O(n2.37286) time by using boolean matrix multiplication algorithm [4, 21].
They can also be calculated in O(nmR + mC) time [25] where mR = |ER| and mC = |EC |,
and this time complexity is O(kn2) since mR ≤ kn and mC ≤ n(n− 1)/2.

Definition 7 is essentially equivalent to Condition 3 of the definition of BlockDAG in
Section 1.2. The transitive reduction graphs are essentially same as Hasse diagrams of posets.
A poset can be represented either by its transitive closure graph or its transitive reduction
graphs.

2.3 Queries on Posets
In this section, we introduce the queries that are supported by our data structures for posets,
or transitive closure/reduction graphs. We consider the following six queries:

adjGC
(u, v) · · · return 1 if (u, v) ∈ EC and otherwise 0;

succGC
(v) · · · return the set {u ∈ V ; (v, u) ∈ EC};

predGC
(v) · · · return the set {u ∈ V ; (u, v) ∈ EC};

adjGR
(u, v) · · · return 1 if (u, v) ∈ ER and otherwise 0;

succGR
(v) · · · return the set {u ∈ V ; (v, u) ∈ ER};

predGR
(v) · · · return the set {u ∈ V ; (u, v) ∈ ER}.

In particular, adjGR
(u, v) = 1 ⇒ adjGC

(u, v) = 1 holds for all u, v ∈ V and succGR
(v) ⊆

succGC
(v) and predGR

(v) ⊆ predGC
(v) also hold for any v ∈ V .

We also define some terminologies and utility functions. Given a chain decomposition of
a poset, node index is the label of a node and chain index of a node is the pair (p, i) such
that the node is the i-th node of chain p. We often specify a node not only by its node index
but also by its chain index. Function node_index(p, i) converts the chain index (p, i) into its
node index. On the other hand, function chain_index(v) converts the node index v into its
chain index. The lower bound in chain q of a node (p, i) is the node (q, j) such that j is the
maximum value which satisfies (q, j) ≺ (p, i) and we denote it by lbq(p, i). To the contrary,
the upper bound in chain q of a node (p, i) is the node (q, j) such that j is the minimum
value which satisfies (p, i) ≺ (q, j) and we denote it by ubq(p, i). When v is the node index
of (p, i), we define lbq(v) = lbq(p, i) and ubq(v) = ubq(p, i).

2.4 Succinct Data Structures
In this paper, we discuss data structures in the word-RAM model [22], which supports
reading, writing, arithmetic operations and bitwise operations on a word of w = Ω(log N)
bits in constant time, where N is the size of data. We make use of some of the basic succinct
data structures such as bitvector, string and permutation.
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A bitvector data structure stores a sequence N bits, B[1 . . . N ] and supports random
access and rank/select queries described below:

B[i] · · · return i-th element;
rankc(B, i) · · · return the number of j ∈ {1, 2, . . . , min{i, n}} such that B[j] = c;
selectc(B, i) · · · return inf{j ∈ N; rankc(B, j) ≥ i}.

Note that selectc(B, i) returns ∞ when i is greater than the number of c’s in B. All of these
queries can be supported in constant time using a data structure whose space complexity is
N + o(N) bits [28]. It can also be compressed into log

(
N
M

)
+ o(N) bits [11,35] when M is

the number of 1s in the bitvector.
String S[1 . . . N ] is a generalisation of the bitvector into a sequence of characters from the

alphabet {0, 1, . . . , L− 1} instead of bits in {0, 1}. A succinct string data structure supports
random access and rank/select queries for each c ∈ {0, 1, . . . , L − 1}. Random access and
rank queries can be calculated in O(log log L) time and select query can be computed in
O(1) time, and the data structure can be stored in N log L + o(N log L) bits of space [24].
Moreover, the wavelet tree [26] data structure can be used to support all three operations in
O(log L) time.

A permutation data structure represents a bijection π : {1, 2, . . . , N} → {1, 2, . . . , N}
and supports the queries π(i) and π−1(i) for all i = 1, 2, . . . , N . The permutation data
structure of Munro et al. [31] supports π(i) in constant time and π−1(i) in O(1/ϵ) time using
(1 + ϵ)N log N + N + o(N) bits, for any parameter 0 < ϵ ≤ 1.

2.5 Farzan and Fischer’s Data Structure [19]
Let P be a poset on n elements with Dilworth’s width k, and let {Cp}p∈Σ be one of the
minimal chain decompositions of P where Σ = {0, 1, . . . , k − 1}. Farzan and Fischer’s data
structure consists of a permutation π, a bitvector B and bitvectors Dpq for each p, q ∈ Σ such
that p ̸= q. The permutation π is the bijection of V → V and it uses (1 + ϵ)n log n + n + o(n)
bits of space for any ϵ ∈ (0, 1]. The length of the bitvector B is n and that of Dpq is |Cp|+|Cq|
for each p, q ∈ Σ, p ̸= q. We store auxiliary structures to support rank and select queries on
each of the bit vectors (B and Dpq, for each p, q ∈ Σ, p ̸= q). Thus the space complexity of
the whole data structure is

(1+ϵ)n log n+n+o(n)+

n +
∑

p,q∈Σ, p ̸=q

(|Cp|+|Cq|)

 (1+o(1)) = (1+ϵ)n log n+2nk+o(nk)

bits.
Permutation π and bitvector B represent the correspondence between node indices and

chain indices. We construct π so that π−1(v) = i+
∑

q<p|Cq| for each v ∈ V where (p, i) is the
chain index of v. In other words, π reorders the nodes from the lexicographical order of chain
indices to the order of node indices. Also, we construct B in such a way that B[j] = 1 if and
only if there exists p ∈ Σ which satisfies j =

∑
q≤p|Cq|; B essentially represents the length

of the individual chains in the decomposition (note that one can store B in a compressed
form, but this would not change the overall space complexity). Then, node_index(v) and
chain_index(p, i) are implemented as Algorithms 1 and 2 respectively. The time complexity
of node_index(v) is O(1) and that of chain_index(v) is O(1/ϵ).

For each p, q ∈ Σ, p ̸= q, Dpq is constructed as Dpq = 0δ0
pq 1 0δ1

pq 1 . . . 0δ
|Cp|−1
pq 1 0δ

|Cp|
pq where

δi
pq is an increase of the number of edges on GC from node (p, i + 1) to nodes in chain

q as compared with node (p, i). We consider that there is no outgoing edge from node
(p, 0) and any node can be reached from node (p, |Cp|+1). In particular,

∑
i<i′ δi

pq = |{j ∈

SWAT 2022



33:6 Space-Efficient Data Structure for Posets

Algorithm 1 convert chain index to node index.

1: procedure node_index(p, i)
2: a := i + select1(B, p)
3: return π(a)

Algorithm 2 convert node index to chain index.

1: procedure chain_index(v)
2: a := π−1(v)
3: p := rank1(B, a− 1)
4: return (p, a− select1(B, p))

J ; (q, j) ≺ (p, i′)}| for all i′ ∈ {0, 1, . . . , |Cp|+1} where J = {1, 2, . . . , |Cq|}. By using Dpq,
we can obtain the lower bound and the upper bound in chain q of node (p, i) in constant
time with Algorithm 3 and 4. An edge from node (p, i) to node (q, j) is a transitive edge
when j < lower_bound(p, i, q) because there exists a path which goes over lbq(p, i). Node
(p, i) does not have a path to node (q, j) when j > lower_bound(p, i, q) since if there is such
a path, lbq(p, i) ≺ (q, j) ≺ (p, i) and it contradicts the definition of lower bound.

Algorithm 3 return j if (q, j) is the largest node reachable from (p, i).

1: procedure lower_bound(p, i, q)
2: if p = q then return i− 1
3: else return select1(Dpq, i)− i

Then, we can implement the algorithms for the six queries mentioned in Section 2.3 as
follows. First, adjGC

(u, v) = 1 if and only if lbq(u) ⪯ v for such q that v ∈ Cq. Hence, all
we have to do in order to compute adjGC

(u, v) is to check j ≤ lower_bound(p, i, q) when
(p, i) is the chain index of u and (q, j) is that of v. The bottleneck of the computation is the
conversions to chain indices and the time complexity of adjGC

(u, v) is O(1/ϵ). Also, succGC
(v)

(respectivly, predGC
(v)) can be calculated by collecting all the nodes less (respectively, greater)

than or equal to lbp(v) (respectively, ubp(v)) for all p ∈ Σ. The time complexities of succGC
(v)

and predGC
(v) are both O(1/ϵ + k + t) where t is the size of the output.

To compute adjGR
(u, v), we need to check that there is no path from u to v other than the

direct edge (u, v). If there exists p ∈ Σ such that ubp(v) ⪯ lbp(u), there exists a non-direct
path which goes through ubp(v) since v ≺ ubp(v) ⪯ lbp(u) ≺ u. Thus, adjGR

(u, v) = 1 if and
only if adjGC

(u, v) = 1 and lbp(u) ≺ ubp(v) for all p ∈ Σ. Checking lbp(u) ≺ ubp(v) for all
p ∈ Σ costs O(1/ϵ+k) time and therefore the time complexity of adjGR

(u, v) is also O(1/ϵ+k).
It can be easily observed that succGR

(v) = {u ∈ L(v); adjGR
(v, u) = 1} and predGR

(v) =
{u ∈ U(v); adjGR

(u, v) = 1} where L(v) = {lbp(v); p ∈ Σ} and U(v) = {ubp(v); p ∈ Σ}.
Hence, the time complexities of succGR

(v) and predGR
(v) are both O(1/ϵ + k2).

3 Improved Data Structures

3.1 Lower Bound on Space
Let Zk(n) be the number of topologically labeled posets and Xk(n) be the number of
unlabeled posets. As written in Section 1, the number of generally labeled posets Nk(n)
satisfies

Nk(n) ≥ n!
k! 4n(k−1)n−24k(k−1).
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Algorithm 4 return j if (q, j) is the smallest node reachable to (p, i).

1: procedure upper_bound(p, i, q)
2: if p = q then return i + 1
3: else return select0(Dqp, i)− i + 1

Each unlabeled posets has at most n! distinct labeling, therefore n! ·Xk(n) ≥ Nk(n) holds.
It is clear that Zk(n) ≥ Xk(n) and the information-theoretic lower bound on the number of
topologically labeled posets is

log Zk(n) ≥ 2n(k − 1)−Θ(k2 log n)

bits. Thus, it is possible to compress posets into space which is linear in n with fixed k when
the posets are topologically labeled.

3.2 Modified Farzan and Fischer’s Data Structure

In this section, we adapt Farzan and Fischer’s data structure in Section 2.5 for topologically
labeled posets and make its space close to the lower bound in Section 3.1. In order to do
so, we replace the permutation π and the bitvector B with a string S. Eventually, this data
structure consists of the string S and the bitvectors Dpq (p, q ∈ Σ, p ̸= q).

The length of S is n, its alphabet is Σ and S[v] = p if v ∈ Cp. String S plays the role
of storing information of the correspondence between node indices and chain indices, as
well as π and B in Section 2.5 do. By using S, node_index(p, i) and chain_index(v) can
be calculated by Algorithms 5 and 6, respectively. Since selectp takes O(1) time and rankp

takes O(log log k) time, node_index(p, i) can be supported in O(1) time and chain_index(v)
in O(log log k) time.

Algorithm 5 convert chain index to node index.

1: procedure node_index(p, i)
2: return selectp(S, i)

Algorithm 6 convert node index to chain index.

1: procedure chain_index(v)
2: p := S[v]
3: return (p, rankp(S, v))

Then, adjGC
(u, v) can be computed in O(log log k) time, succGC

(v) and predGC
(v) in

O(k + t) time where t is the size of output, adjGR
(u, v) in O(k) time, and succGR

(v) and
predGR

(v) in O(k2) time. Also, the total space of the data structure isn log k +
∑

p,q∈Σ, p ̸=q

(|Cp|+|Cq|)

 (1 + o(1)) = 2n(k − 1) + o(nk)

bits. For non-constant k = o( n
log n ), this data structure is succinct since Θ(k2 log n) = o(nk).

SWAT 2022
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Figure 1 Example of a poset and its encoding.

3.3 Proposed Data Structure
The data structure in Section 3.2 can perform queries on GC fast, whereas it is slow to do
queries on GR. However, when we have to run some BFS/DFS-based algorithm, such as
algorithms to solve a shortest path problem on GR or a longest path problem, it is required
to do such queries on GR faster. For this reason, we propose a new data structure which can
support queries on GR faster.

Our data structure consists of a string S and bitvectors Ipq, Opq (p, q ∈ Σ). The string
S is same as the one in Section 3.2. The lengths of Ipq and Opq are both equal to |Cp|.
Therefore, the total space of our data structure is(

n log k + 2k ·
k−1∑
p=0
|Cp|

)
(1 + o(1)) = 2nk + o(nk)

bits. Ipq[i] = 1 when node (p, i) has an incoming edge from some node of chain q and
otherwise Ipq[i] = 0. Similarly, Opq[i] = 1 when node (p, i) has an outgoing edge to some
node of chain q and otherwise Opq[i] = 0. In Figure 1, the left graph is an example of a
transitive reduction graph of a poset with n = 15 and k = 3 and its encoding is shown in the
right side.

If there exists an edge (u, v) ∈ ER such that u ∈ Cp and v ∈ Cq, there is no edge
(u′, v′) ∈ ER \ {(u, v)} which satisfies u′ ∈ Cp, v′ ∈ Cq and u ⪯ u′, v ⪰ v′. This is because
when there exists such an edge (u′, v′), then u ⪯ u′ ≺ v′ ⪯ v and (u, v) becomes a transitive
edge since (u, v) ̸= (u′, v′). Therefore, the incoming edge corresponding to the i-th 1 of Ipq is
the same as the outgoing edge corresponding to the i-th 1 of Oqp.

Let ER(K) = {(u, v) ∈ ER; u ∈ Ci, v ∈ Cj , i, j ∈ K} for each K ⊆ Σ. We define
functions called nearest_dst(p, i, q) and nearest_src(p, i, q) which return the second element
of chain index of the nearest node in chain q reachable from (respectively, reachable to)
the node (p, i) through the edges in ER({p, q}). If there is no such node, then it returns 0
(respectively, ∞). These can be calculated by Algorithms 7 and 8 in constant time.

Algorithm 7 return the nearest destination in chain q from the node (p, i).

1: procedure nearest_dst(p, i, q)
2: return select1(Iqp, rank1(Opq, i))

Algorithm 8 return the nearest source in chain q to the node (p, i).

1: procedure nearest_src(p, i, q)
2: return select1(Oqp, rank1(Ipq, i− 1) + 1)
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Other utility functions we defined are lower_bounds(v) and upper_bounds(v). These
functions return an array of length k which stores the node indices of lbp(v) (respectively,
ubp(v)) for each p ∈ Σ. If there is no such node, then it stores 0 (respectively, ∞). The
algorithms of lower_bounds(v) and upper_bounds(v) are shown in Algorithm 9 and 10.
These algorithms use the data structures known as priority queue. priority_queue≤ and
priority_queue≥ support push(p, i) to push a new node (p, i), pop() to pop out the node
of the largest (respectively, smallest) node index, top() to access the node of the largest
(respectively, smallest) node index and update(p, i) to update the node (p, ∗) in the priority
queue to (p, i) if the node index of (p, i) is larger (respectively, smaller) than that of (p, ∗).
Incidentally, we regard the node index of (∗, 0) as 0 and that of (∗,∞) as∞. Remind that the
conversion from chain index to node index can be done in constant time, therefore comparing
nodes by node index does not affect the time complexities. In this paper, we use Relaxed
Heap [17] which supports push(p, i), top(p, i), and update(p, i) in O(1) time and pop(p, i) in
O(log N) time where N is the number of elements in the priority queue.

Algorithm 9 return the largest nodes reachable from v in each chain.

1: procedure lower_bounds(v)
2: array R[0 . . . k − 1] := {0, . . . , 0}
3: priority_queue≤ Q := {(0, 0), (1, 0), . . . , (k − 1, 0)}
4: (p0, i0) := chain_index(v)
5: Q.update(p0, i0)
6: while Q ̸= ∅ do
7: (p, i) := Q.top()
8: Q.pop()
9: if i = 0 then break

10: R[p]← node_index(p, i)
11: for q = 0, 1, . . . , k − 1 do
12: if R[q] ̸= 0 then continue
13: j := nearest_dst(p, i, q)
14: Q.update(q, j)
15: R[p0]← node_index(p0, i0 − 1)
16: return R

In Algorithms 9 and 10, the while loop iterates at most k times because priority queue
Q has k elements before the while loop and the elements are popped one by one in each
iteration. The bottleneck of lower_bounds(v) and upper_bounds(v) is the for loop. The
statements in it run at most k2 times and the time complexity of the whole algorithm is
O(k2).

The correctness of Algorithm 9 can be shown as follows. Trivially, each element of R

is updated in line 10 at most once before reaching line 15. Let K ⊆ Σ be a set of the
indices such that the elements of R corresponding to them have been already updated and
K̄ = Σ \K. In the while loop, assume that R[p′] correctly stores the largest node v′ in chain
p′ such that v′ ⪯ v when p′ ∈ K. Let u be the node index of the node (p, i) declared in line 7.
If i = 0, it means that the nodes in Cp cannot be reached from v and the nodes in

⋃
p′∈K̄ Cp′

cannot be either because Q = {(p′, 0); p′ ∈ K̄} holds since the node indices of all the nodes
in Q are not larger than the node index of (p, 0). Otherwise, it is easy to observe that node
u is the largest destination reachable from v through the edges in ER(K ∪ {p}). If there
exists a node w ∈

⋃
p′∈K̄\{p} Cp′ such that u ≺ w ≺ v, then for some p′ ∈ K̄ \ {p}, there
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Algorithm 10 return the smallest nodes reachable to v in each chain.

1: procedure upper_bounds(v)
2: array R[0 . . . k − 1] := {∞, . . . ,∞}
3: priority_queue≥ Q := {(0,∞), (1,∞), . . . , (k − 1,∞)}
4: (p0, i0) := chain_index(v)
5: Q.update(p0, i0)
6: while Q ̸= ∅ do
7: (p, i) := Q.top()
8: Q.pop()
9: if i =∞ then break

10: R[p]← node_index(p, i)
11: for q = 0, 1, . . . , k − 1 do
12: if R[q] ̸=∞ then continue
13: j := nearest_src(p, i, q)
14: Q.update(q, j)
15: R[p0]← node_index(p0, i0 + 1)
16: return R

exists at least one node w′ ∈ Cp′ such that u ≺ w′ and w′ can be reached from v through the
edges in ER(K ∪ {p′}), and there also exists a node w′′ ∈ Cp′ which satisfies w′′ ∈ Q and
w′ ⪯ w′′. However, u < w′′ if u ≺ w′′ and it contradicts with the features of priority queue
Q. Therefore, node u is also the largest destination reachable from v through any edges in
ER. Hence, even if we update the value of R[p] into u and K into K ∪ {u}, it does not go
against the assumption, and recursively, it can be confirmed that R[p] ⪯ v holds for each
p ∈ Σ just before line 15. Finally, R[p0] is modified in line 15 not to be equal to v itself, and
then we obtain the correct answer. The correctness of Algorithm 10 can be proved in the
same way.

Using these utility functions, we can perform the six queries shown in Section 2.3. Each
algorithm of the queries are given in Algorithms 11, 12, 13, 14, 15 and 16. adjGC

(u, v) can
be calculated in O(k2), succGC

(v) and predGC
(v) in O(k2 + t) where t is the size of output,

adjGR
(u, v) in O(1) and succGR

(v) and predGR
(v) in O(k).

Note that Ipp and Opp (p ∈ Σ) is not necessary to reconstruct the poset because
Ipp[i] = 1 if and only if lbq(p, i + 1) ≺ ubq(p, i) for all q ∈ Σ and Opp[i] = 1 if and only if
lbq(p, i) ≺ ubq(p, i− 1) for all q ∈ Σ. Remind that lower_bounds(v) and upper_bounds(v)
can be obtained without using Ipp and Opp (p ∈ Σ) since the arguments never be p = q in
line 13 of Algorithm 9 and 10. The total space of Ipp and Opp (p ∈ Σ) is(

2 ·
k−1∑
p=0
|Cp|

)
(1 + o(1)) = 2n + o(n)

bits. Thus, when we do not store them, the space of the data structure becomes 2n(k −
1) + o(nk) bits and this is close to the information theoretical lower bound in Section 3.1.
However, the space with Ipp and Opp (p ∈ Σ) is also asymptotically the same because

2nk + o(nk) = 2n(k − 1) + 2n + o(nk) = 2n(k − 1) + o(nk).

Therefore, we store them for the sake of fast response to the queries.
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3.4 Faster Index
We also propose another data structure which is efficient to compute all six queries at the
extra expense of space. The idea of this data structure is based on the modified version of
Farzan and Fischer’s data structure in Section 3.2. This data structure consists of three
components: string S, bitvectors Dpq (p, q ∈ Σ, p ̸= q) and bitvectors Tv (v ∈ V ).

The string S and the bitvectors Dpq is same as the one in Section 3.3. The bitvectors
Tv has length k for each v ∈ V and represents whether node v has a non-transitive edge to
each chain or not. If one of the edges on GC from node v to the node in chain p is not a
transitive edge, then Tv[p] = 1.

The string S requires n log k + o(n log k) bits, the bitvector Dpq does |Cp|+|Cq|+o(|Cp|
+ |Cq|) bits for each p, q ∈ Σ, p ̸= q and the bitvector Tv does k + o(k) bits for each v ∈ V .
Thus, the total space of the data structure isn log k +

∑
p,q∈Σ, p ̸=q

(|Cp|+|Cq|) +
∑
v∈V

k

 (1 + o(1)) = 3nk − 2n + o(nk)

bits.
On this data structure, node_index(p, i) and chain_index(v) can be done by Algorithm 5

and 6. Also, adjGC
(u, v), succGC

(v) and predGC
(v) can be computed in the same way as

mentioned in Section 3.2.
adjGR

(u, v), succGR
(v) and predGR

(v) can be calculated by the following ways. The edge
from (p, i) to lbq(p, i) is a non-transitive edge when Tv[q] = 1 where v is the node index
of (p, i). Thus, adjGR

(u, v) returns 1 if and only if lower_bound(p, i, q) = j and Tu[q] = 1
where (p, i) is a chain index of u and (q, j) is that of v. The bottleneck of adjGR

(u, v) is the
conversions from node indices to chain indices and adjGR

(u, v) can be obtained in O(log log k)
time. succGR

(v) can be computed by the process that collects the node index of lbq(p, i)
for all q ∈ Σ such that Tv[q] = 1 where (p, i) is a chain index of v. When we only iterate q

which satisfies the condition Tv[q] = 1 by using select query on Tv, the time complexity is
O(log log k + t) where t is the size of output. predGR

(v) can be computed in O(k) time by
the process that checks whether node ubq(p, i) is adjacent to node v on GR for each q ∈ Σ
where (p, i) is a chain index of v.

3.5 Higher Order Compression
First, we consider the data structure in Section 3.3. Let mpq be the number of 1s in bitvector
Ipq for each p, q ∈ Σ. It is obvious that mpq is also the number of 1s in bitvector Oqp for
each p, q ∈ Σ and

∑
p,q∈Σ mpq = mR. When we use the compressed bitvectors for each Ipq

and Opq, the space complexity of the whole data structure becomes

n log k + 2 ·
∑

p,q∈Σ
log
(
|Cp|
mpq

)
+ o(nk) ≤ 2 log

(
nk

mR

)
+ o(nk)

bits.
The data structure in Section 3.4 can also be compressed. Let m′

v be the number of 1s
in bitvectors Tv for each v ∈ V . Then,

∑
v∈V m′

v = mR. The space complexity of the data
structure becomes

n log k +
∑

p,q∈Σ, p ̸=q

(|Cp|+|Cq|) +
∑
v∈V

log
(

k

m′
v

)
+ o(nk) ≤ log

(
nk

mR

)
+ 2n(k − 1) + o(nk)

bits if we use compressed bitvectors for each Tv.
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4 Conclusions

On the DAGs of BlockDAG, the growth of the width is much less likely than the depth,
which is the longest path of the DAG. Thus, the space to store them can be almost linear in
the number of elements with the data structures we consider in Section 3. This is one of
the advantages that the other existing data structures do not have. Also, we provide the
trade-off among time of the queries on GC , time on GR and space.

There remain some open problems such as:
Can adding operation in the dynamic data structure be faster?
Can the time of construction of these data structures be reduced by calculating the chain
decomposition approximately?

It would be also interesting to consider other queries.
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A Pseudo Codes

Algorithm 11 whether (u, v) ∈ EC .

1: procedure adjGC
(u, v)

2: R := lower_bounds(v)
3: (p, ignore) := chain_index(u)
4: if u ≤ R[p] then return 1
5: else return 0

Algorithm 12 return out-neighbors of node v on GC .

1: procedure succGC
(v)

2: T := ∅
3: R := lower_bounds(v)
4: for p = 0, 1, . . . , k − 1 do
5: c := rankp(S, R[p])
6: for i = 1, 2, . . . , c do
7: u := node_index(p, i)
8: T ← T ∪ {u}
9: return T

Algorithm 13 return in-neighbors of node v on GC .

1: procedure predGC
(v)

2: T := ∅
3: R := upper_bounds(v)
4: for p = 0, 1, . . . , k − 1 do
5: c := rankp(S, R[p])
6: d := rankp(S, n)
7: for i = c, c + 1, . . . , d do
8: u := node_index(p, i)
9: T ← T ∪ {u}

10: return T
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Algorithm 14 whether (u, v) ∈ ER.

1: procedure adjGR
(u, v)

2: (p, i) := chain_index(u)
3: (q, j) := chain_index(v)
4: if u ̸= v and Opq[i] = Iqp[j] = 1 and rank1(Opq, i) = rank1(Iqp, j) then
5: return 1
6: else
7: return 0

Algorithm 15 return out-neighbors of node v on GR.

1: procedure succGR
(v)

2: T := ∅
3: (p, i) := chain_index(v)
4: for q = 0, 1, . . . , k − 1 do
5: if Opq[i] = 1 then
6: u := node_index(q, nearest_dst(p, i, q))
7: T ← T ∪ {u}
8: return T

B Dynamic Data Structures

In BlockDAG application, the required operation to modify posets is only adding to the
transitive reduction graph a node with some non-transitive edges outgoing from the new
node. There is an algorithm called peeling introduced by Daskalakis et al. [15]. Given a
poset and its chain decomposition of size k′ ≤ 2k as inputs, this algorithm reduces the size
of the chain decomposition to k one by one in each iteration and returns the minimal chain
decomposition. What we have to do in order to realize the adding operation is that add the
new node to a new chain, run the iteration of peeling algorithm once to obtain the minimal
chain decomposition and modify the data structure.

According to their paper, lookup tables of lbp(v) and ubp(v) for each v ∈ V and p ∈ Σ is
required to call peeling algorithm. They named the tables chainmerge. Chainmerge can be
constructed in O(nk) time for the data structure in Sections 3.2 and 3.4 and O(nk2) time
for the data structure in Section 3.3. One iteration of peeling algorithm takes O(nk) time.
Even if we create new strings and bitvectors of the whole data structure, it requires at most
O(nk) time when the minimal chain decomposition is given. Therefore, the time complexity
of modifying the data structure is absorbed into that of the iteration of peeling algorithm.

Algorithm 16 return in-neighbors of node v on GR.

1: procedure predGR
(v)

2: T := ∅
3: (p, i) := chain_index(v)
4: for q = 0, 1, . . . , k − 1 do
5: if Ipq[i] = 1 then
6: u := node_index(q, nearest_src(p, i, q))
7: T ← T ∪ {u}
8: return T

SWAT 2022



33:16 Space-Efficient Data Structure for Posets

Algorithm 17 add to the data structure D a node with edges (n + 1, u) for each u ∈ U .

1: procedure add(D, U)
2: C := {Cp}k−1

p=0
3: Ck := {n + 1}
4: C ← C ∪ Ck

5: array LB[1 . . . n + 1][0 . . . k], UB[1 . . . n + 1][0 . . . k]
6: for v = 1, 2, . . . , n do
7: for p = 0, 1, . . . , k − 1 do
8: LB[v][p]← lbp(v)
9: UB[v][p]← ubp(v)

10: for p = 0, 1, . . . k − 1 do
11: LB[n + 1][p]← max({LB[u][p]; u ∈ U} ∪ (U ∩ Cp))
12: UB[n + 1][p]← (p,∞)
13: for v = 1, 2, . . . n do
14: LB[v][k]← (k, 0)
15: (p, i) := chain_index(v)
16: if (p, i) ≺ LB[n + 1][p] then UB[v][k]← (k, 1)
17: else UB[v][k]← (k,∞)
18: LB[n + 1][k]← (k, 0)
19: UB[n + 1][k]← (k,∞)
20: run a peeling iteration on LB, UB and C and get a minimal chain decomposition C ′

21: construct a new data structure D′ by D and C ′

22: replace D by D′

On the data structure of Section 3.2 or Section 3.4, the time complexity of adding nodes is
O(nk) per one node. Consider that adding n elements to an empty poset one by one with
this adding algorithm. Then, it costs O(n2k) time. This matches the time complexity to
construct the data structure of the poset with n elements, which is O(n2k) time and is mainly
spent by the chain decomposition and conversions between GR and GC when its minimal
chain decomposition is not given. Algorithm 17 shows the detail of the adding operation.
We construct the tables of chainmerge LB and UB from line 5 to line 19.
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