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Abstract
We investigate the problem of enumerating all terms generated by a tree-grammar which are also in
normal form with respect to a set of directed equations (rewriting relation). To this end we show that
deciding emptiness and finiteness of the resulting set is EXPTIME-complete. The emptiness result is
inspired by a prior result by Comon and Jacquemard on ground reducibility. The finiteness result is
based on modification of pumping arguments used by Comon and Jacquemard. We highlight practical
applications and limitations. We provide and evaluate a prototype implementation. Limitations
are somewhat surprising in that, while deciding emptiness and finiteness is EXPTIME-complete for
linear and nonlinear rewrite relations, the linear case is practically feasible while the nonlinear case
is infeasible, even for a trivially small example. The algorithms provided for the linear case also
improve on prior practical results by Kallat et al.
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1 Introduction

Suppose we are given a tree grammar G over a ranked alphabet F and a rewriting relation
R over terms generated from F . We are interested in deciding emptiness and finiteness of
the set L(G) ∩ NF(R), where NF(R) is the set of terms in normal form with respect to R.
This problem may arise naturally in situations where trees recognized by G are subject to
simplifications under R and we are only interested in simplified terms. For example, we
may think of G as recognizing a language of algebraic expressions including, say, expressions
of the form f(a, b), and R captures simplifications under algebraic laws, say, idempotence
f(X, X) → X.

Our interest in this problem arose in the context of work on component-based synthesis
[18], specifically combinatory logic synthesis (CLS). CLS is based on solving bounded versions
of the inhabitation problem for combinatory logic with intersection types [17, 8] and has
been implemented in the CLS-framework (see [3] for a fairly recent description). CLS has
been applied in a number of contexts, recent examples include [4, 21, 10, 19].

In CLS, the (possibly infinite) solution set to a synthesis query is a set of combinatory
terms (each representing a program or a metaprogram), which is represented by a tree
grammar G recognizing combinatory terms. Here, R acts as a filter restricting the solution
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set to normal forms in L(G) ∩ NF(R), and we are interested in enumerating normal solutions.
Since the filter specified by R might well lead to a finite set of normal solutions even though
L(G) is infinite, knowing whether L(G) ∩ NF(R) is empty or finite is of immediate interest.
The results reported in the present paper form the basis of a prototype implementation
intended to become an extension to the CLS-framework.

Notice that the problems considered here are entirely different from the problem of
recognizing the normal forms (wrt. R) of L(G) for a given grammar of terms G. The latter
problem is obviously undecidable (take G to recognize a given SKI-term, and we would need
to solve the halting problem for SKI-calculus), but it is also not relevant for our purposes,
since we are interested only in terms that are already contained in the solution set L(G). In
our setting, the rewriting relation R is used as a filter such that only the left-hand sides of
rules matter to filter out non-normal forms from L(G) (essentially, by solving the problem of
non-matchability of terms with any left-hand side of R).

1.1 Contributions
Our contribution is twofold. First, we prove EXPTIME-completeness of emptiness and
finiteness of L(G)∩NF(R). Our techniques draw on previous work by Comon and Jacquemard
(see Section 1.2) on automata with disequality constraints (ADC) for the ground reducibility
problem. Disequality constraints are necessary to handle nonlinear rules in R. Our main
technical contribution is contained in the Bound Theorem (Theorem 7), which provides a
bound on the maximum height of accepted terms, when L(G) ∩ NF(R) is finite. The bound
follows from a pumping argument for finiteness and acts as an upper bound for enumeration
in the finite case.

Second, we provide experimental analysis of the algorithm for deciding emptiness and
finiteness provided here, based on a Haskell implementation. It turns out that, even though
the left-linear restriction (wrt. R) is somewhat surprisingly already EXPTIME-complete for
both problems (Theorem 23, Theorem 25), the performance in the nonlinear case is orders of
magnitude worse than in the linear case. Our analysis shows that the nonlinear case reaches
an order of magnitude of worst-case performance (rendering it infeasible for even trivially
small examples), whereas the linear restriction can be engineered to be practically feasible,
improving on a previously published algorithm. Whether one can find heuristics to engineer
the nonlinear case for practically interesting cases is left as a question for future research.

1.2 Related work
The theoretical results in the present paper are adaptations and extensions of the results
of Comon and Jacquemard on the EXPTIME-completeness of the ground reducibility
problem [7, 6]. We consider different problems of emptiness and finiteness of the intersection
of a regular tree language with the set of normal forms of a rewrite system. While the proof
of our Bound Theorem and the automata constructions draw heavily from [7], the adaptation
of the results to emptiness and finiteness is not trivial.

The EXPTIME-completeness of the emptiness problem was essentially shown by Comon
and Jacquemard [7] (only relatively small adjustments are necessary to adapt their arguments
to our problem). An EXPTIME algorithm for finiteness was essentially already obtained
in [9], where [9, Lemma 5.19] corresponds to our Bound Theorem and the constructions in
the proofs are similar. However, our exponential bound is better than the exponential bound
given in [9], which may have practical implications. EXPTIME-hardness of the finiteness
problem seems to be new.
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Our results depend on the notion of automata with disequality constraints (ADCs)
introduced by Comon and Jacquemard [7]. Related automata frameworks are tree automata
with normalization [16] and equational tree automata [15]. In these frameworks, the automata
transitions are defined modulo normalization or an equational theory resulting in accepted
languages closed under these operations, while we are interested in restrictions of regular
tree languages to normal forms of a rewrite system. Another related model is tree automata
with global constraints [13] where the constraints are associated with pairs of states and
enforce equality or disequality of all subterms at all nodes where the states appear in the
corresponding run, in contrast to ADCs where the constraints are local and associated with
transition rules, enforcing disequality of subterms at a given transition.

Going beyond the previously described usecase for CLS, other synthesis frameworks
might profit from our approach. For example, Madhusudan [14] describes a framework for
synthesizing reactive programs. This approach is similar to recent additions to the broader
field of syntax guided synthesis [12]. In both cases, synthesized programs are represented by
trees and constructed from tree-languages, that are then restricted to match desired program
semantics. In the present paper we are not concerned with arbitrary semantic specifications,
but just equations for program normalization. In synthesis frameworks such as the above,
this might be a useful way to reduce the search space or filter solutions.

2 Preliminaries

In this section we fix notations and recall standard definitions related to tree grammars and
term rewriting. See e.g. [5] and, respectively, [1, 20] for more thorough introductions to these
topics.

By T (F , X) we denote the set of all first-order terms over the signature F with variables
taken from the set X. The set of ground terms T (F , ∅) is also denoted by T (F). By ϵ we
denote the empty string, by · the concatenation operation on strings, and by [i] the string
consisting of a single letter i. The set of positions of a term t ∈ T (F , X) is a set Pos(t) of
strings of positive integers defined by: (1) if t = x then Pos(t) = {ϵ}; (2) if t = f(t1, . . . , tn)
then Pos(t) = {ϵ}∪

⋃n
i=1{[i] ·p | p ∈ Pos(ti)}. The size of a term t is the cardinality of Pos(t).

The prefix order on positions is defined by: p ⪯ q iff there is p′ with p · p′ = q. For p ∈ Pos(t),
the subterm of t at position p is denoted by t|p. By t(p) we denote the symbol in t at
position p. The replacement t[s]p is the term obtained from s by replacing the subterm at
position p with s. By Var(t) we denote the set of variables occurring in t. A context C is a
term in T (F , X ∪ {□}) such that □ occurs in C exactly once. By C[t] we denote the term
in T (F , X) obtained from C by replacing □ with t.

A term rewriting system (TRS) R is a set of rules t → s such that Var(s) ⊆ Var(t) and
t is not a variable. We denote by →R the reduction relation associated with the TRS R:
t →R s iff there is a rule l → r ∈ R, a context C and a substitution σ such that t = C[σl]
and s = C[σr]. A term t is in normal form if there is no t′ with t →R t′. The size ||R|| of
the TRS R is the sum of the sizes of the left-hand sides of rules in R.

For any binary relation →, by →∗ we denote the transitive-reflexive, and by →+ the
transitive closure of →.

A regular tree grammar is a tuple G = (S, N, F , RG) such that S ∈ N is the start symbol,
N is a set of nullary nonterminals, F is a set of terminals, RG is a set of production rules of
the form A → α where A ∈ N and α ∈ T (F ∪ N). The derivation relation associated with G

is defined by: t →G s iff there is a rule A → α ∈ R and a context C such that t = C[A] and
s = C[α]. The language generated by G is defined by L(G) = {t ∈ T (F) | S →+

G t}.

FSCD 2022
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A finite tree automaton over signature F is a tuple A = (Q, F , Qf , ∆) where Q is a
set of states, Qf ⊆ Q is a set of final states, and ∆ is a set of transition rules of the form
f(q1, . . . , qn) → q with f ∈ Fn (i.e. f is an n-ary symbol in F), q, q1, . . . , qn ∈ Q. The move
relation →A is defined by: t →A t′ iff there are a transition rule l → r and a context C with
t = C[l] and t′ = C[r]. A ground term t ∈ T (F) is accepted by A if there is qf ∈ Qf with
t →∗

A qf . The language L(A) recognized by A is the set of all terms accepted by A.
In terms of the recognized languages, finite tree automata and regular tree grammars are

equivalent. A regular tree language is a language recognized by a finite tree automaton, or
equivalently a language generated by a regular tree grammar.

3 Automata with disequality constraints

Automata with disequality constraints (ADC) were introduced by Comon and Jacquemard
in [6, 7]. These are essentially tree automata where some rules may additionally check
whether two subterms at given positions are not equal. The idea is to construct a normal
forms ADC which recognises exactly the normal forms of a given term rewriting system.
The disequality constraints are needed to handle non-left-linear rules. To check emptiness
or finiteness of the intersection, a product automaton is created. The construction of the
normal forms ADC has already been presented by Comon and Jacquemard. In this section,
we recall the definition of ADCs and related notions. The constructions of the normal forms
automaton and the finiteness checking algorithms are presented in subsequent sections.

Definitions in this section are either verbatim copies or minor modifications of those in [7].

▶ Definition 1. An automaton with disequality constraints (ADC) is a tuple (Q, Qf , ∆)
where Q is a finite set of states, Qf ⊆ Q is the set of final states, and ∆ is a finite set of
transition rules of the form f(q1, . . . , qn) c−→ q where f ∈ Fn, q1, . . . , qn, q ∈ Q and c is a
Boolean combination without negation of constraints p1 ̸= p2 with p1, p2 positions. A term
t ∈ T (F) satisfies the constraint p1 ̸= p2, denoted t |= p1 ̸= p2, if both p1, p2 ∈ Pos(t) and
t|p1

̸= t|p2
. A run of an automaton A = (Q, Qf , ∆) on a term t is a term ρ over signature ∆

(i.e. each rule r = (f(q1, . . . , qn) → q) ∈ ∆ is treated as an n-ary symbol) such that for all
p ∈ Pos(t), if t(p) = f ∈ Fn then ρ(p) is a rule f(q1, . . . , qn) c−→ q and:
1. ρ(p · [i]) is a rule with target qi, for i = 1, . . . , n (weak),
2. t|p |= c (strong).
If only the first condition (weak) is satisfied by ρ, then ρ is a weak run.

A ground term t ∈ T (F) is accepted by A if there is a run ρ of A on t such that ρ(ϵ)
is a rule whose target is a final state in Qf . The language L(A) of A is the set of terms
accepted by A.

▶ Note 2.
An ADC with all constraints ⊤ is a finite tree automaton (the constraints are always
satisfied).
An ADC can be non-deterministic (more than one run on some term) or not completely
specified (no run on some term).
The term used in the construction of a run ρ is denoted as the associated term(ρ) ∈ T (F).

▶ Example 3. Let F = {f, a, b} and Q = {q} = Qf .

∆ = {r1 : a → q, r2 : b → q, r3 : f(q, q) 1 ̸=2−−→ q}.
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The term f(a, b) is accepted because ρ = r3(r1, r2) is a run on t and r3 yields a final state.
The term f(a, a) is not accepted: there is a weak run r3(r1, r1) but the disequality of r3 is
not satisfied. In general, the automaton accepts ground terms irreducible by a TRS with a
single rule with the left-hand side f(x, x).

▶ Definition 4. Let A be an ADC.
Let C(A) be the set of all triples (β, π, π′) such that β is a prefix of π′ and π ≠ π′ or

π′ ̸= π is an atom occurring in a constraint of transition rules of A. Let c(A) = |C(A)|.
Let S(A) be the set of all suffixes of positions π, π′ in an atom π ≠ π′ occurring in a

constraint of a rule in A. Let s(A) = |S(A)|.
We define d(A) as the maximum length of π in a constraint π ̸= π′ or π′ ̸= π in A. By

n(A) we denote the maximum number of atomic constraints occurring in a rule of A.

Note that c(A), s(A) ≤ |A|2 and d(A), n(A) ≤ |A| and d(A) ≤ s(A). In [7], c(A) and C(A)
are used instead of s(A) and S(A). Our definitions of c(A) and C(A) are modifications of
the definitions from [7] to upward pumping.

▶ Definition 5. Let A = (Q, Qf , ∆) be an ADC and ρ a weak run of A on t. An equality of ρ

is a triple of positions (p, π, π′) such that p, p · π, p · π′ ∈ Pos(t), π ̸= π′ is in the constraint
of ρ(p) and t|p·π = t|p·π′ .

An equality (p′, π, π′) in a weak run ρ is classified according to a particular position p ∈
Pos(t):

It is close to p if p′ ⪯ p ≺ p′ · π or p′ ⪯ p ≺ p′ · π′,
It is far from p if p′ · π ⪯ p or p′ · π′ ⪯ p.

p′

p

p′π

p′π′

p′

p′π

p

p′π′

Figure 1 Equality close to p (left) and equality far from p (right).

▶ Lemma 6. Every equality in ρ[ρ′]p is either far from p or close to p.

Proof. Identical to the proof of Lemma 18 in [7]. ◀

4 The Bound Theorem

In this section we prove the Bound Theorem which characterises finiteness of the language of
an ADC in terms of the maximum height of an accepted term. The theorem is crucial for
the correctness of our finiteness checking algorithm.

▶ Theorem 7 (Bound theorem). Let A be an ADC. L(A) is finite iff all accepted terms have
have height strictly smaller than

H(A) = (e + 1) × |Q| × 2c(A) × c(A)! × (d(A) + 1)

FSCD 2022
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To prove the theorem, we use pumping arguments similar to that in [7]. Instead of
pumping downward decreasing the size of an accepted term, however, we need to pump
upward increasing the size arbitrarily. The modifications of the arguments are laborious and
not trivial, but they follow closely the proofs in [7]. A similar construction may also be found
in [9]. In fact, [9, Lemma 5.19] is a generalisation of our Bound Theorem to a broader class
of automata, but with a worse, though still exponential, exact bound.

To fully understand this section, some familiarity with [7] is helpful. We try to convey the
underlying intuitions, but we don’t see it productive to copy proofs or definitions verbatim
where no change is necessary.

In contrast to downward pumping in [7] which uses an arbitrary ordering ≫ satisfying the
requirements of Section 6, for our upward pumping argument we need the strict embedding
ordering ≫ on terms.

▶ Definition 8. An upward pumping (wrt. the strict embedding ordering ≫) is a replace-
ment ρ[ρ′]p where ρ, ρ′ are runs such that the target state of ρ′(ϵ) is the same as the target
of ρ(p) and ρ[ρ′]p ≫ ρ.

The proofs of the generalised pumping lemmas in [7] are divided into two parts: pumping
without creating close equalities and pumping without creating equalities (far or close). The
argument for pumping without creating close equalities are adapted to upward pumping,
but the complex details need to be checked. The argument for pumping without creating
equalities is replaced by a simpler argument for upward pumping, because if we can pump
upward without creating close equalities then we can increase the size of the pumping
arbitrarily to prevent any far equalities from being created.

▶ Definition 9. Given A = (Q, Qf , ∆) and an integer k we set (where e is Euler’s number):

g(A, k) = (e × k + 1) × |Q| × 2c(A) × c(A)!

The following is the main pumping lemma needed in the proof of the Bound Theorem.
The proof of this lemma occupies most of this section. It is an analogon of [7, Lemma 19]
adapted to upward pumping.

▶ Lemma 10. If ρ is a run of A and p1, . . . , pg(A,k) are positions of ρ such that ρ|p1
≫

. . .≫ ρ|pg(A,k)
then there are indices i0 < . . . < ik such that the upward pumping ρ[ρ|pi0

]pij

does not contain any equality close to pij
.

▶ Definition 11. Given p ∈ Pos(ρ), the set cr(p) is defined as the set of all triples (β, π, π′)
such that there is p′ ∈ Pos(ρ) with p′β = p (i.e. p′ = p/β) and p ≺ p′π′ and π ̸= π′ or π′ ̸= π

is a constraint of ρ(p′). See Figure 2.

The intuition is that cr(p) indicates all possible places above p at which an equality close
to p may be created.

▶ Fact 12. If (p′, π, π′) is an equality close to p, then there is (β, π, π′) ∈ cr(p) such that
p′β = p.

▶ Fact 13. For all p ∈ Pos(ρ) we have cr(p) ⊆ C(A), and thus |cr(p)| ≤ c(A).

Similarly to [7] we can extract a subsequence v0, . . . , vk2 of p1, . . . , pg(A,k) such that
ρ(v0), . . . , ρ(vk2) all have the same target state and cr(v0) = . . . = cr(vk2), where k2 = (e ×
k+1)×c(A)!−1. For this purpose, we first extract a subsequence u1, . . . , uk1 of p1, . . . , pg(A,k)

such that all ui have the same target state, where k1 = g(A,k)
|Q| = (e × k + 1) × 2c(A) × c(A)!.
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p′

p

p′π′
p′π

β

Figure 2 Element of cr(p).

Because cr(p) ⊆ C(A) for each p ∈ Pos(ρ), there are at most 2c(A) distinct sets cr(p). Hence,
we can extract a subsequence v0, . . . , vk2 of u1, . . . , uk1 such that cr(v0) = . . . = cr(vk2) and
k2 = k1

2c(A) − 1 = (e × k + 1) × c(A)! − 1.
The idea of the proof of Lemma 10 is illustrated in Figure 3. If for each j = 1, . . . , k

the weak run ρ[ρ|v0
]vj

has a close equality, then (for large enough k2) there is a (long
enough) subsequence w1, . . . , wm of v1, . . . , vk2 such that “the same” close equality is created
in ρ[ρ|v0

]wj
for each j = 1, . . . , m. We recursively consider the sequence w1, . . . , wm – the

number of possible places where a close equality may be created is now smaller – we eliminated
one element of cr(v0) = cr(wj). If g(A, k) is large enough then we will ultimately eliminate
all possible elements of cr(v0). Then no close equality can be created in ρ[ρ|v0

]vj
because for

each element of cr(v0) = cr(vj) the subterms at the corresponding positions below v0 and vj

are identical.

π
v0π′

π
v1π′

π
v2π′

β

β

β

Figure 3 The proof of the pumping lemma.

We proceed with a precise proof.
The dependency degree of a subsequence vi0 , . . . , vim

is:

dep(vi0 . . . vim) = |{(β, π, π′) ∈ cr(v0) | t|(vi0 /β)π = . . . = t|(vim /β)π}|

where t is the term associated to ρ.
Let f(n) be the function recursively defined on the interval [0 . . . c(A)] by:

f(c(A)) = k

f(n) = (c(A) − n) × (f(n + 1) + 1) + k − 1 for n < c(A)

The next lemma is an analogon of Lemma 22 from [7]. It is the main technical lemma
needed in the proof of Lemma 10.

FSCD 2022
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▶ Lemma 14. Assume
(⋆) for all 0 ≤ j ≤ k2 the cardinal of the set {j′ | k2 ≥ j′ > j, ρ[ρ|vj

]vj′ has no close equality }
is smaller than k.

Then for all 0 ≤ n ≤ c(A), there exists a subsequence vi0 . . . vif(n) of v0 . . . vk2 such that
dep(vi0 . . . vif(n)) ≥ n.

Proof. The proof is an adaptation of the proof of Lemma 22 in [7], by induction on n.
The case n = 0 is exactly the same as in the proof of Lemma 22 in [7], showing f(0) ≤ k2.

Let F (n) = f(c(A) − n) for all 0 ≤ n ≤ c(A). We have:

F (0) = k

F (n) = n(F (n − 1) + 1) + k − 1 for 1 ≤ n ≤ c(A)

Thus:

F (n) = n! × (F (0) + 1) + k ×
∑n

i=1
1
i! − 1

≤ k × n! + n! + k × n! × (e − 1) − 1
= n! × (k × e + 1) − 1

Hence, f(0) = F (c(A)) ≤ c(A)! × (k × e + 1) − 1 = k2.
For n + 1, we proceed analogously to [7]. Assume the property is true for n < c(A).

By the induction hypothesis, we have a subsequence vi0 . . . vif(n) extracted from v0 . . . vk2

such that dep(vi0 . . . vif(n)) ≥ n. By the assumption (⋆), for at least f(n) − (k − 1) =
(c(A) − n) × (f(n + 1) + 1) =: k3 positions w among vi1 . . . vif(n) , the weak run ρ[ρ|vi0

]w has a
close equality (close to w; we take j = i0 in (⋆) to conclude that there are at least k2−i0−(k−1)
indices j′ such that ρ[ρ|vi0

]vj′ has a close equality; now k2 −i0 ≥ f(n) because there exist f(n)
indices i0 < i1 < . . . < if(n) ≤ k2). Let w1 . . . wk3 be a subsequence of vi1 . . . vif(n) consisting
of the positions w as above, i.e., for all j = 1, . . . , k3 the weak run ρ[ρ|vi0

]wj
has a close

equality. Hence, for j = 1, . . . , k3 there exists (βj , πj , π′
j) ∈ cr(wj) = cr(v0) such that:

t|(vi0 /βj)π′
j

̸= t|(vi0 /βj)πj
,

t|(vi0 /βj)π′
j

= t|(wj/βj)πj
,

where t is the term associated with ρ. Thus t|(vi0 /βj)πj
̸= t|(wj/βj)πj

for j = 1, . . . , k3.
Because dep(vi0 . . . vif(n)) ≥ n, there exists a subset E ⊆ cr(v0) such that |E| = n and

t|(vi0 /β)π = . . . = t|(vif(n) /β)π for (β, π, π′) ∈ E. In particular, t|(vi0 /β)π = t|(w1/β)π =
. . . = t|(wk3 /β)π for (β, π, π′) ∈ E. Hence, {(β1, π1, π′

1), . . . , (βk3 , πk3 , π′
k3

)} ∩ E = ∅ (because
t|(vi0 /βj)πj

≠ t|(wj/βj)π′
j

for j = 1, . . . , k3). By Fact 13 we have |cr(v0)| ≤ c(A). Thus, there
are at most c(A) − n distinct tuples among (β1, π1, π′

1), . . . , (βk3 , πk3 , π′
k3

). Thus there exist
1 ≤ j0 < . . . < jf(n+1) ≤ k3 such that (βj0 , πj0 , π′

j0
) = . . . = (βjf(n+1) , πjf(n+1) , π′

jf(n+1)
),

because k3
c(A)−n = f(n + 1) + 1. Let (β′, π, π′) = (βj0 , πj0 , π′

j0
) be this tuple. Because

t|(wj/β′)π = t|(vi0 /β′)π for 1 ≤ j ≤ k3, t|(wj0 /β′)π = . . . = t|(wjf(n+1) /β′)π. Since (β′, π, π′) /∈ E:

dep(wj0 . . . wjf(n+1)) > dep(vi0 . . . vif(n)) ≥ n.

This completes the proof because wj0 . . . wjf(n+1) is a subsequence of v0 . . . vk2 . ◀

Proof of Lemma 10. Follows the proof of Lemma 19 in [7]. Assume (⋆) holds to derive
a contradiction. Then for n = c(A) and f(n) = k there exists a subsequence vi0 . . . vik

of v0 . . . vk2 such that dep(vi0 . . . vik
) ≥ c(A). But |cr(v0)| ≤ c(A) by Fact 13, so for all

(β, π, π′) ∈ cr(v0) we have t|(vi0 /β)π = . . . = t|(vik
/β)π.
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Assume ρ[ρ|vi0
]vij

has a close equality for some 1 ≤ j ≤ k. There is (β, π, π′) ∈ cr(vij ) =
cr(v0) such that t|(vi0 /β)π′ ̸= t|(vi0 /β)π and t|(vi0 /β)π′ = t|(vij

/β)π. Hence, t|(vi0 /β)π ̸=
t|(vij

/β)π. Contradiction. Thus, each ρ[ρ|vi0
]vij

has no close equality for 1 ≤ j ≤ k. Then
the cardinality of the set in (⋆) for j = 0 is at least k (note that by definition k ≤ k2) which
contradicts (⋆).

Thus, (⋆) cannot hold. This implies that for 1 ≤ j ≤ k the upward pumping ρ[ρ|vi0
]vij

does not have a close equality. ◀

▶ Corollary 15. Let ρ be a run of A and p1 ≺ . . . ≺ pg(A,k) be positions of ρ such that
|pj+1/pj | > d(A) (i.e., the distance between two consecutive positions greater than d(A)).
Then there exist indices i0 < . . . < ik such that the pumping ρ[ρm

j ]pij
for j > 0 does not have

a close equality for any m ≥ 0 where: ρ0
j = ρ|pi0

and ρm+1
j = ρ|pi0

[ρm
j ]pij

/pi0
. See Figure 4.

Proof. Since p1 ≺ . . . ≺ pg(A,k), we have ρ|p1
≫ . . .≫ ρ|pg(A,k)

. By Lemma 10 there exist
indices i0 < . . . < ik such that ρ[ρ0

j ]pij
does not have a close equality. Since |pij /pi0 | > d(A),

noting that ρ[ρ0
j ]pij

= ρ[ρ|pi0
[ρ0

j ]pij
/pi0

]pi0
, we can prove by induction on m that ρ[ρm

j ]pij

has no close equality either. Indeed, any close equality in ρ[ρm+1
j ]pij

must be a close equality
in ρ|pi0

[ρm
j ]pij

/pi0
, because |pij

/pi0 | ≥ d(A). But then we would have the same close equality
in ρ|pi0

[ρ0
j ]pij

/pi0
. ◀

A

pi0

B

pij

C

A

pi0

B

pij

B

B

B C

⇝

ρm
j

m + 1 Bs

Figure 4 Repeated pumping.

▶ Corollary 16. Under the assumptions of the previous Corollary 15, there exist indices
i0 < . . . < ik and m0 ≥ 0 such that the pumping ρ[ρm

j ]pij
for j > 0 and m ≥ m0 does not

have any equality (close or far).

Proof. By Corollary 15, ρ[ρm
j ]pij

does not have a close equality for any m ≥ 0. We
can choose m to be large enough so that no far equality is created either. Indeed, if an
equality (p, π, π′) far from pij

is created, then e.g. pπ ⪯ pij
and pπ′ ∥ pij

and t|pπ = t|pπ′ .
By making m large enough we can ensure |ρm

j | > |t|p′ | for any p′ ∥ pij , and then the equality
t|pπ = t|pπ′ is impossible. ◀

Proof of the Bound Theorem 7. If the height of the run is ≥ G(A) then we can choose
g(A, 1) positions p1, . . . , pg(A,1) satisfying the requirements of Corollary 16. This gives us
infinitely many different accepting runs ρ[ρm

j ]pij
for m ≥ m0. Conversely, if the language is

infinite then there can be no bound on the maximal height of an accepting run. ◀
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5 Automaton recognising the intersection of a regular tree language
with the set of normal forms of a TRS

Given a tree grammar G it is standard to construct a finite tree automaton AG recognising
the language L(G). See e.g. [5].

The next step is to construct the normal forms ADC AR for a given term rewriting
system R. The automaton AR recognises the ground normal forms of R. The constraints are
necessary to handle non-left-linear rules in R. No constraints are generated if R is left-linear.

Finally, we construct the product automaton AG × AR which recognises the intersection
of L(AG) and L(AR).

5.1 Construction of the normal forms automaton
The construction of AR is described in detail in [7]. We recall it for completeness.

Let L be the set of the left-hand sides of R.
Let L1 be the subset of the linear terms in L.
Let L2 be the set of linearisations of the nonlinear terms in L. For each l ∈ L2 we denote
its nonlinear origin by #l ∈ L.
Let Q0 consist of all strict subterms of terms in L1 ∪ L2 (modulo renaming of variables)
plus two special states:

a single variable x which will accept all terms,
qr which will accept only reducible terms of R.

Note |Q0| ≤ ||R|| + 2.
The set of states QR consists of all unifiable subsets of Q0 \ {qr} plus qr. Each element
of QR different from qr is denoted by qu where u is the term resulting from unifying all
elements of the state with the mgu of the state. Note |QR| ≤ 2|Q0| ≤ 2||R||+2.
∆R is the set of all rules of the form

f(qu1 , . . . , qun
) c−→ qu

where qu1 , . . . , qun , qu ∈ QR and:
1. if one of the qui

’s is qr or f(u1, . . . , un) is an instance of some s ∈ L1, then qu = qr

and c = ⊤,
2. otherwise, u is the mgu of all terms v ∈ Q0 \{qr} such that f(u1, . . . , un) is an instance

of v, and the constraint c is defined by:∧
l ∈ L2

u, l unifiable
f(u1, . . . , un) is an instance of l

∨
x ∈ Var(#l)

#l|p1
= #l|p2

= x

p1 ̸= p2

p1 ̸= p2

Take AR = (QR, QR \ {qr}, ∆R).

|QR| is exponential in R and each constraint has size polynomial in ||R||.

5.2 Construction of the product automaton
Given two ADCs A1 = (Q1, Qf

1 , ∆1) and A2 = (Q2, Qf
2 , ∆2), the product ADC A1 × A2 =

(Q, Qf , ∆) is defined by:
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Q = Q1 × Q2,
Qf = Qf

1 × Qf
2 ,

∆ consists of the transitions f((q1, q′
1), . . . , (qn, q′

n)) c1∧c2−−−−→ (q, q′) for every pair of trans-
itions f(q1, . . . , qn) c1−→ q ∈ ∆1 and f(q′

1, . . . , q′
n) c2−→ q′ ∈ ∆2.

Note that |Q| = |Q1|×|Q2|, |∆| = |∆1|×|∆2|, c(A) ≤ c(A1)+c(A2), s(A) ≤ s(A1)+s(A2),
n(A) ≤ n(A1) + n(A2) and d(A) = max(d(A1), d(A2)) (there are no new atomic constraints).

6 Emptiness

To check if L(G) ∩ NF(R) = ∅, we run the emptiness decision algorithm from [7] on AG × AR.
The algorithm runs in exponential time. For completeness, we give a brief presentation of the
emptiness decision algorithm from [7]. The following lemmas and definitions come from [7].
Let A = (Q, Qf , ∆) be the ADC whose emptiness we want to check.

▶ Definition 17. The ordering ≫ on terms over ∆ is defined by: ρ1 ≫ ρ2 iff I(ρ1) > I(ρ2)
where I(ρ) is the triple (depth(ρ), M(ρ), ρ) with M(ρ) the multiset of strict subterms of ρ.
The ordering > on triples is the lexicographic product of:
1. the ordering on natural numbers,
2. the multiset extension of ≫ (see e.g. [1, Definition 2.5.3]),
3. the lexicographic path order extending a total order on the signature (see e.g. [1, Defini-

tion 5.4.12]).

The lexicographic path order in the third component may be replaced by any reduction order
total on ground terms.

▶ Lemma 18. ≫ is monotonic, well-founded and total on ground terms. Moreover, if
depth(ρ) > depth(ρ′) then ρ ≫ ρ′.

One could replace ≫ with any order satisfying the conditions of the above lemma.

▶ Definition 19 (Emptiness decision algorithm). Let E0
q = ∅ for each state q ∈ Q. For m ≥ 0,

let Em+1
q consist of all runs ρ = r(ρ1, . . . , ρn) such that:

ρ1, . . . , ρn ∈
⋃m

i=0
⋃

q∈Q Ei
q,

the target state of ρ is q,
for every p ∈ Pos(ρ) \ S(A) with |p| ≤ d(A) + 1, there is no sequence of length b(A)
of runs ρ′

1, . . . , ρ′
b(A) in

⋃m
i=0

⋃
q∈Q Ei

q such that ρ|p ≫ ρ′
b(A) ≫ . . . ≫ ρ′

1 and
ρ(p),ρ′

1(ϵ),. . . ,ρ′
b(A)(ϵ) all have the same target state and for every 1 ≤ j ≤ b(A) the

pumping ρ[ρ′
j ]p does not contain any equality close to p.

After a finite number of iterations, we obtain the saturated set E∗ =
⋃

m≥0
⋃

q∈Q Em
q . The

language of A is empty iff E∗ does not contain an accepting run.

A more detailed pseudocode of the algorithm and the calculation of b(A) may be found
in Appendix A. The correctness of the algorithm is proven in [7].

▶ Theorem 20. The emptiness decision algorithm runs in time O(|A|P0(s(A))) where P0 is a
polynomial.

Proof. In [7, Theorem 28] it is shown that the emptiness decision algorithm runs in time
O((|Q| × |∆|)P ′

0(cs(A))) where P ′
0 is a polynomial and cs(A) is the total size of all constraints

in A. A careful analysis of the bounds in Lemma 27 and Sections 5.3.2, 5.3.3 in [7] reveals
that the exponent in the running time can actually be made polynomial in s(A) at the
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expense of introducing the size of the automation |A| into the base. More precisely, the
inequalities in Lemma 27 and Sections 5.3.2 and 5.3.3 in [7] initially the exponent is bounded
by a polynomial in s(A) (denoted c(A) in [7]), and only this exponent is then replaced
according to the inequality s(A) ≤ d(A)n(A). Instead, one can take a smaller bound on
h(A, k) in Lemma 27, then plug it into the inequalities in Section 5.3.2 to get a bound with
an exponent polynomial in s(A) and a different base. The base needs to be |A| instead of
|Q| × |∆|, because without cs(A) in the exponent one cannot remove the cs(A) factor from
the base. ◀

In the above theorem, we need s(A) in the exponent instead of cs(A) because of the
product automaton construction: we have s(A1 × A2) ≤ s(A1) + s(A2), but this inequality
does not hold for cs. In particular, cs(AG×AR) = |∆AG

|×cs(AR) while s(AG×AR) = s(AR).

▶ Proposition 21 ([5, Theorem 1.7.5]). The following problem is EXPTIME-hard: given n

tree automata A1, . . . , An, is L(A1) ∩ . . . ∩ L(An) empty?

Note that n is a part of the input, not a constant.

▶ Theorem 22. Given n finite tree automata A1, . . . , An, there is a polynomial-time con-
struction of a linear term rewriting system R such that:

NF(R) = {g(s) | s encodes accepting runs of A1, . . . , An on a common term}

The encoding is such that for each n-tuple of runs there exists exactly one term representing
this tuple of runs. In particular:

NF(R) = ∅ iff L(A1) ∩ . . . ∩ L(An) = ∅,
NF(R) is finite iff L(A1) ∩ . . . ∩ L(An) is finite.

Proof. The construction of the term rewriting system R is exactly the one from [7, Section 6].
We refer there for details. The statement concerning finiteness (the second point) is not
present in [7], but it is easily checked. ◀

▶ Theorem 23. Given a regular tree grammar G and a term rewriting system R, the
problem of checking the emptiness of L(G) ∩ NF(R) is EXPTIME-complete. The problem is
EXPTIME-hard already for linear R.

Proof. To decide emptiness of intersection, we construct a finite tree automaton (i.e. an ADC
without constraints) AG with L(AG) = L(G), and the normal forms ADC AR. Then we
check the emptiness of the product AG × AR. We have |AG| = O(|G|) and |AR| = O(2||R||)
and s(AR) = O(P1(|R|)) for some polynomial P1. Then |AG × AR| = O(|G|2||R||) and
s(AG × AR) ≤ s(AG) + s(AR) = s(AR) = O(P1(||R||)). Constructing AG × AR takes
time proportional to |AG × AR|. Hence, by Theorem 20 the entire procedure takes time
O((|G|2||R||)P0(P1(||R||))) = O(|G|P (||R||)) for some polynomial P .

EXPTIME-hardness follows from Proposition 21, taking G with L(G) = T (F) (the set of
all ground terms) and the R constructed in Theorem 22. ◀

7 Finiteness

By adapting the arguments of [7] for downward pumping, the Bound Theorem 7 could be
refined to provide, in addition to the lower bound, also an exponential upper bound on the
height of an accepted term. Then a direct application of the Bound Theorem would yield
a 3-EXPTIME algorithm for deciding finiteness: check if there are any terms with height
between the two bounds. Instead, we use the Bound Theorem together with the emptiness
decision algorithm for ADCs to show that the finiteness problem is in EXPTIME.
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▶ Definition 24. For a given N ∈ N, we define an automaton AN = (QN , Qf
N , ∆N )

recognising the language of all terms of height at least N .
QN = {qi | i ∈ {0, . . . , N}},
Qf

N = {qN },
∆N consists of the transitions:

a → q0,
f(qi1 , . . . , qin

) → qmin(max(i1,...,in)+1,N) for n > 0 and all i1, . . . , in ∈ {0, . . . , N}.
Intuitively, state qi indicates that a subterm has height at least i.

▶ Theorem 25. Assume the maximum function symbol arity is a fixed constant. Given
a regular tree grammar G and a term rewriting system R, the problem of checking the
finiteness of L(G) ∩ NF(R) is EXPTIME-complete. The problem is EXPTIME-hard already
for linear R.

Proof. To decide finiteness in exponential time, we first construct the automaton A =
AG × AR like in Theorem 23. Then take A′ = A × AN with

N = H(A) = (e + 1) × |Q| × 2c(A) × c(A)! × (d(A) + 1)

where H(A) is the function from Theorem 7 and AN is the automaton from Definition 24
recognising the language of all terms of height at least N . The language of A′ consists of
all terms in L(G) ∩ NF(R) with height at least N . By Theorem 7 the language L(A) =
L(G) ∩ NF(R) is finite iff all terms accepted by A have height < N . Hence, L(A′) = ∅ iff
L(G) ∩ NF(R) is finite. Thus, it suffices to check emptiness of A′ with the algorithm outlined
in the previous section.

By the proof of Theorem 23 we have |A| = O(|G|2||R||). Since |AN | = O(Nα) with α a
constant depending on the maximum function symbol arity, we obtain |A′| = O(|G|2||R||Nα).
Also s(A′) = s(A) = O(P1(||R||)). Hence, by Theorem 20 running the emptiness decision
algorithm on A takes time:

O
(
(|G|2||R||Nα)P0(P1(||R||))) =

O(|G|P2(||R||)NP3(||R||)) =
O(|G|P2(||R||)(|Q| × 2c(A) × c(A)! × (d(A) + 1))P3(||R||)) =
O(|G|P2(||R||)(|G|2||R|| × 2||R|| × 2||R|| log(||R||) × ||R||)P3(||R||)) =
O(|G|P2(||R||)(|G|2P4(||R||))P3(||R||)) =
O(|G|P (||R||))

where the polynomial P depends on the maximum function symbol arity.
To show EXPTIME-hardness, we reduce from the problem of the finiteness of the

intersection of the languages of n tree automata: given n tree automata A1, . . . , An, is
L(A1) ∩ . . . ∩ L(An) finite? The reduction follows directly from Theorem 22 (taking G with
L(G) = T (F)). It remains to show that the finiteness problem for the intersection of the
languages of n tree automata is EXPTIME-hard. We reduce the problem of emptiness of
intersection of n tree languages (see Proposition 21).

For an automaton A = (Q, Qf , ∆) over signature Σ we create an automaton A′ =
(Q′, Q′

f , ∆′) over Σ′ such that L(A) is empty iff L(A′) is finite. Each non-nullary symbol
f ∈ Σ is in Σ′. For each constant c ∈ Σ we have a unary symbol c ∈ Σ′. There is an extra
unary symbol S ∈ Σ′ \ Σ and an extra constant C ∈ Σ′ \ Σ. We set Q′ = Q ∪ {qS} and
Q′

f = Qf . The transitions ∆′ include:
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f(q1, . . . , qn) → q if it is in ∆ and n > 0,
c(qS) → q if c → q ∈ ∆,
C → qS ,
S(qS) → qS .

The automaton A accepts a term t iff A′ accepts terms which result from t by replacing each
constant occurrence c with c(Sk(C)) for some k (possibly different k for different occurrences).
Now, L(A1)∩ . . .∩L(An) is finite iff L(A′

1)∩ . . .∩L(A′
n) is finite. Indeed L(A′

1)∩ . . .∩L(A′
n)

contains all terms from L(A1) ∩ . . . ∩ L(An) with each constant c replaced with c(Sk(C)) for
some k. ◀

8 Experiments

We evaluate our approach using three examples. The first example is a minimal example
inspired by Boolean algebra and highlights the limitations of the approach, as well as some
opportunities to overcome them. Examples 2 and 3 extend practical examples from the
literature [11]: Example 2 applies the technique to the automatic construction of programs.
Example 3 computes paths through a large labyrinth in order to illustrate scalability with
linear rewrite systems compared to the SMT-solver based approach in [11]. All examples are
available in our Haskell implementation, which accompanies this paper [2].

8.1 Example 1 - Boolean Algebra
Single-sorted Boolean ground terms over a signature containing a binary function symbol
AND and constants T, F are recognised by the tree grammar GB :

GB = (b, {b}, {T, F, AND}, {b → T, b → F, b → AND(b, b)})

A simple rewrite system can normalize terms by evaluating all function applications of AND.
One way to specify evaluation rules for AND is to use the rewrite system RSB :

RSB = {AND(F, x) → F, AND(x, F) → F, AND(x, x) → x}

Using the construction in Section 5.1 yields the normal forms ADC AB = (QB , Qf
B , ∆B)

recognizing NF(RSB):

QB = {q0, q1, q2} Qf
B = {q1, q2}

∆B = {T ⊤−→ q1, F ⊤−→ q2, AND(q1, q1) 1 ̸=2−−→ q1}
∪{AND(p1, p2) ⊤−→ q0 | p1, p2 ∈ Q, p1 ̸= q1 ∨ p2 ̸= q1}

The language L(GB) ∩ L(AB) = {T, F} is finite and non-empty. In the worst case, the
emptiness checking algorithm from Definition 19 needs to enumerate and store at least
b terms (if the result is empty), where b is the value computed in Appendix A. For our
example, the corresponding values are b(AG × AB) = bempty = 235018 for emptiness and
b(AG × AB × AN ) = bfin = 7300813834 for finiteness. Here, the enumeration stops after
the first iteration because there exists a term in L(GB) ∩ L(AB) of height one. Since
L(GB) ∩ L(AB) is finite, the finiteness check must enumerate at least bfin terms, which is
not practically feasible.

Manual inspection of our example reveals that the rewrite rule AND(x, x) → x can be
simplified to AND(T, T) → T, while retaining the same set of normal forms.

RSlin
B = {AND(F, x) → F, AND(x, F) → F, AND(T, T) → T}
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Using this simplification we obtain the ADC Alin
B = (Qlin

B , Qf,lin
B , ∆lin

B ):

Qlin
B = {q0, q1, q2} Qf,lin

B = {q1, q2}
∆B = {T ⊤−→ q1, F ⊤−→ q2} ∪ {AND p

⊤−→ q0 | p ∈ Q × Q)}

The automaton Alin
B is built for the linear rewrite system RSlin

B and all its disequality
constraints are empty (true) by construction, resulting in a finite tree automaton without
constraints. Hence, finiteness can be checked in polynomial time wrt. the automaton’s size.

Our Haskell implementation exactly matches the expectations from theory: emptiness
results are computed immediately (under 1 second on a laptop from 2018 with a 2,7 GHz
quad core processor and 16GB Ram). For finiteness we had to abort after over 6 hours in
the nonlinear case, while the linear case also computes in under 1 second.

8.2 Example 2 - Construction of sorting functions

Kallat et al. [11] describe how to perform program construction of applications of sorting
functions using a tree grammar as an intermediate result of a type inhabitation algorithm.
Their grammar (up to renaming of non-terminals) is given as follows:

Gsort = (2, {0, 1, 2, 3, 4}, {values, id, inv, sortmap, min, default, @},

{ 4 → @(@(sortmap, 1), 3), 2 → @(id, 2), 2 → @(@(min, 0), 4),
0 → @(id, 0), 0 → default, 0 → @(inv, 0), 0 → @(@(min, 0), 4),
1 → id, 1 → inv, 3 → @(id, 3), 3 → values})

Evaluation rules can be stated as the following rewrite system:

RSsort = {@(id, x) → x, @(inv, @(inv, x)) → x,

@(@(sortmap, x), @(@(sortmap, y), z)) → @(@(sortmap, x), z)
@(@(min, @(@(min, x), y)), y) → @(@(min, x), y)}

The normal form ADC Asort has 26 reachable states and 47 transitions (after reduction
of non-reachable states). We obtain bound values b(AG × ARS) = bempty = 4655986860
and b(AG × ARS × AN ) = bfin = 44528107942191788. The language L(Gsort) ∩ L(Asort) is
finite and non-empty. Since the smallest term has a height of four, the emptiness checking
algorithm terminates after four iterations with result False (non-empty). The algorithm for
deciding finiteness needs to enumerate and store at least bfin terms before terminating with
result True (finite).

In [11] no rewrite rules are used. Instead, the authors construct constraints that forbid
terms of form @(id, x), @(inv, x), and @(min, @(x, y)), declaring these forms as non-normal
without providing replacements (i.e. the right-hand sides of the rewrite rules). Our approach
is flexible enough to do the same, since right-hand sides of the rewrite system are ignored.
We may use the following linear rules:

RSlin
sort = {@(id, x) → x, @(inv, x) → x, @(min, @(x, y)) → x}

The normal forms automaton Alin
sort is a finite tree automaton (no disequality constraints).

Our Haskell implementation can check emptiness immediately and finiteness again is only
possible in the linear case, with results being available in under one second.
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8.3 Example 3 - Filtering redundant paths in a labyrinth
The last example in [11] is a grammar for finding paths through a labyrinth. In this grammar
non-terminals are up, down, left, right, start. Rules ensure that only valid paths can be
constructed. The example is scaled for randomly generated labyrinths. Redundant paths,
such as up(down(x)) get filtered. The authors of [11] note that their SMT-solver based
approach only scales up to labyrinths with 10 × 10 fields. Reproducing these experiments,
we ran the CLS framework to generate labyrinth solution grammars for up to 30 × 30 fields
(stopping there to limit the runtime of CLS). Using the four rewrite rules

RSlab = {up(down(x)) → x, down(up(x)) → x, left(right(x)) → x, right(left(x)) → x}

our Haskell implementation again produces immediate emptiness results for the intersection,
while finiteness is computed in under 5 minutes. The reduced intersection automaton has
7619 reachable states, 8956 transitions and a value b(AG ×ARS ×AN ) = bfin = 149360346492.
This result is a true improvement over scalability issues encountered in solver-based solutions.

9 Conclusion

We have shown that the emptiness and finiteness problems of the intersection L(G) ∩ NF(R)
of the language of a regular tree grammar G and the normal forms of a rewrite system R

are EXPTIME-complete. Both problems are practically relevant for enumerating terms
generated by the CLS synthesis algorithm (and potentially other synthesis approaches).
Enumeration can be implemented by bottom-up enumerating all terms of L(G) and filtering
them according to membership in NF(R). Without the decision procedures the enumeration
algorithm does not know when to (not) stop: in the empty case it does not need to enumerate
anything. In the finite case, it needs to enumerate until all terms of height N (as computed
in the proof of Theorem 25) are listed. In the infinite case, it can continue to enumerate.

We have also conducted practical experiments, which show that, although also EXPTIME-
complete, the problems are feasible for left-linear rewrite systems. Results for the nonlinear
case, however, were less encouraging, since here the proposed algorithm always has to
enumerate a very large set of terms before being able to decide emptiness and an even larger
set before being able to decide finiteness. It is an interesting goal for future research to
investigate other algorithms, which might perform better in the average case. Also, heuristics
that are incomplete (e.g., with bounds on the probability of obtaining a decision) are an
interesting area for future research.
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A The emptiness algorithm

In the emptiness decision algorithm, we use the following value

b(A) = max(βk + γ, |Q| × |F|)

where
s = s(A) is the number of distinct suffixes of positions π, π′ in an atomic constraint
π ̸= π′ in a rule of A.
n = n(A) is the maximum number of atomic constraints in a rule of A,
d = d(A) is the maximum length of π or π′ in an atomic constraint π ̸= π′ in a rule of A,
e =

∑s
i=1

1
i! ,

β = (d + 1)n(e|Q|2ss! + 1),
γ = (2dne + 1)(d + 1)n|Q|2ss!,
k = ⌈ β+

√
β2+4γ

2 ⌉.

The value b(A) above is a slight improvement on [7] where a less precise bound is used.
For Lemma 26 in [7], the value k must satisfy k2 ≥ h(A, k) where

h(A, k) = (d + 1)n(k + g(A, k + 2dn))
g(A, k) = (ek + 1)|Q|2ss!

One can calculate that

h(A, k) = (d + 1)nk + (d + 1)n((e(k + 2dn) + 1)|Q|2ss!)
= (d + 1)nk + (d + 1)n(ek|Q|2ss! + 2dne|Q|2ss! + |Q|2ss!)
= k(d + 1)n(e|Q|2ss! + 1) + (2dne + 1)(d + 1)n|Q|2ss!
= βk + γ

Hence, we need to find the smallest k such that

k2 − βk − γ ≥ 0

The least integer equal or greater than the second (positive) root β+
√

β2+4γ

2 of the quadratic
equation does the job, and we obtain the k listed above. According to the proofs in [7], we
can then take b(A) = max(h(A, k), |Q| × |F|).

The pseudocode for the emptiness decision algorithm is presented in Listing 1.
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Listing 1 Emptiness decision algorithm.
Input: A = (Q, Qf , ∆).
Output : true iff L(A) = ∅.

Let C be the set of suffixes of positions π, π′ in atomic
constraints of transition rules in ∆.
E∗ ← ∅
M ← ∅
repeat

E ← ∅
for all r ∈ ∆ do

Let m be the arity of r (i.e. the arity of the top
symbol in the rule ).
for all ρ1, . . . , ρm ∈ E∗ s.t. r(ρ1, . . . , ρm) is a run do

ρ← r(ρ1, . . . , ρm)
if ρ ∈M then

continue
endif
M ←M ∪ {ρ}
v ← true
for all p ∈ Pos(ρ) \ C s.t. |p| ≤ d + 1 do

for all ρ′
1, . . . , ρ′

b ∈ E∗ s.t. all ρ′
i(ϵ) have the

same target state as ρ(p)
do

if ρ|p ≫ ρ′
b ≫ . . .≫ ρ′

1 and
for all 1 ≤ j ≤ b, ρ[ρ′

j ]p does not contain any
equality close to p

then
v ← false

endif
done

done
if v then

E ← E ∪ {ρ}
endif

done
done
E∗ ← E∗ ∪ E

until E = ∅
if E∗ contains an accepting run then

return false
else

return true
endif
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