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Abstract
The well-known Komlós conjecture states that given n vectors in Rd with Euclidean norm at most
one, there always exists a ±1 coloring such that the ℓ∞ norm of the signed-sum vector is a constant
independent of n and d. We prove this conjecture in a smoothed analysis setting where the vectors
are perturbed by adding a small Gaussian noise and when the number of vectors n = ω(d log d).
The dependence of n on d is the best possible even in a completely random setting.

Our proof relies on a weighted second moment method, where instead of considering uniformly
randomly colorings we apply the second moment method on an implicit distribution on colorings
obtained by applying the Gram-Schmidt walk algorithm to a suitable set of vectors. The main
technical idea is to use various properties of these colorings, including subgaussianity, to control the
second moment.
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1 Introduction

A central question in discrepancy theory is the following Komlós problem: given vectors
v1, . . . , vn ∈ Rd with Euclidean length at most 1, i.e., ∥vi∥2 ≤ 1 for all i ∈ [n], find signs
xi ∈ {−1, 1} for i ∈ [n] to minimize the discrepancy ∥

∑n
i=1 xivi∥∞. The long-standing

Komlós conjecture says that the discrepancy of any collection of such vectors is O(1),
independent of n and d. An important special case (up to scaling by t1/2) is the Beck-Fiala
problem, where the vectors v1, . . . , vn ∈ {0, 1}d and each vi has at most t ones, so ∥vi∥2 ≤ t1/2.
Here, the Komlós conjecture reduces to the Beck-Fiala conjecture [8], which says that the
discrepancy is O(t1/2). The question of either proving or disproving these conjectures has
received a lot of attention, and after a long line of work, the current best bounds for the
Komlos and the Beck-Fiala problem are O((log n)1/2) and O((t log n)1/2) respectively, due
to Banaszczyk [4].
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14:2 Smoothed Analysis of the Komlós Conjecture

Motivated by the lack of progress for general worst-case instances, there has been a
lot of recent work on these problems for random instances, with several interesting results
and techniques, see e.g., [9, 7, 13, 10, 16, 18, 3, 14]. In this work, we consider the Komlós
problem in the more general setting of smoothed analysis, where the input is generated by
taking an arbitrary worst case Komlós instance and perturbing it randomly. The smoothed
analysis model was first introduced by Spielman and Teng [17], and it interpolates nicely
between worst case and average case analysis, and has been used extensively since then to
study various problems. Recently smoothed analysis models have also been considered in
discrepancy theory in a few other works [6, 11] – however the setting and focus of these
results is quite different, and in particular they are not directly related to the Komlós or
Beck-Fiala conjectures.

Random instances. To put our results in the proper context, we first describe the results on
random instances. In general, these results depend on the different regimes of the parameters
d, n and t, and we focus here on the more interesting case of n ≫ d.

A natural model for random Beck-Fiala instances is where each entry is 1 with probability
p = t/d, so that each column has t ones in expectation. In a surprising result, Hoberg and
Rothvoss [13] showed that disc(A) ≤ 1 w.h.p.1 if n = Ω(d2 log d). Independently, Franks
and Saks [10] showed that disc(A) ≤ 2 w.h.p. if n = Ω(d3 log2 d), for a more general class of
instances. Both these results use interesting Fourier analysis based techniques.

It is not hard to see2 that n = Ω(d log d) is necessary for O(1) discrepancy (provided
p is not too small). An important step towards obtaining this optimal dependence was
made by Potukuchi [15], who showed that disc(A) ≤ 1 if n = Ω(d log d) for the dense case of
p = 1/2, using the second moment method. However, the sparse setting with p ≪ 1 turns
out to be more subtle, and was only recently resolved by Altschuler and Weed [3] using
a more sophisticated conditional second moment method together with Stein’s method of
exchangeable pairs. They show that disc(A) ≤ 1 w.h.p. for n ≥ Ω(d log d), for every p.

The case of Gaussian matrices with i.i.d. N (0, 1) entries has also been considered, where
Turner, Meka and Rigollet [18] give almost tight bounds for the entire regime, and in
particular show that for n = Ω(d log d) a discrepancy bound of 1/poly(d) holds.

The smoothed Komlós model. We now define our model formally. The input matrix is of
the form A = M + R, where M ∈ Rd×n is some worst-case matrix with columns of ℓ2-norm
at most 1 and R ∈ Rd×n is a random matrix with i.i.d. Gaussian entries distributed as
N (0, σ2/d), where σ ≤ 1. The σ2/d variance ensures that each column of R has ℓ2-norm
roughly σ (and hence much less than that of M). Our goal is to understand the discrepancy
of A. We will only be interested in showing the existence of a low discrepancy coloring for A,
and not in algorithmically finding it (this seems far beyond the current techniques).

1.1 Results and Techniques
Our main result is the following.

▶ Theorem 1 (Smoothed Komlós). Let σ > 0 and n = ω(d log d)
σ4/3 . Then with probability

1 − od(1), the discrepancy of M + R is at most 1/poly(d), where M ∈ Rd×n is an arbitrary
Komlós instance and R ∈ Rd×n has i.i.d. N (0, σ2/d) entries.

1 This is much better than the O(t1/2) bound in the Beck-Fiala conjecture.
2 If we fix any coloring x and consider a random instance, a fixed row has discrepancy O(1) with probability

≈ (pn)−1/2, so the probability that each row has discrepancy O(1) is (pn)−Ω(d). As there are (only) 2n

possible colorings, a first moment argument already requires that 2n(pn)−d = Ω(1).
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An interpretation of Theorem 1 is that any counter-example to the Komlós conjecture (if
it exists) will be rigid, or have n ≈ d. Also, notice that dependence of n on d in Theorem 1 is
essentially the best possible, as already evident in the very special case of M = 0 and σ = 1,
i.e., a random matrix with i.i.d. N (0, 1) entries, where n = Ω(d log d) is necessary to achieve
1/poly(d) discrepancy, as discussed earlier.

▶ Remark 2. Our proof techniques also give a high probability bound when n = Ωσ(d1+ϵ) for
any constant ϵ > 0. However, we do not explore this direction here. It would be interesting
to know if the result also holds with high probability when n = ω(d log d), as in the (fully)
random setting.

▶ Remark 3. The dependence on the noise parameter σ in n = Ωd(1/σ) in Theorem 1 is
necessary, otherwise this would imply an O(1) bound for the worst case Komlós problem.
In particular, each row of the random part R must at least have enough ℓ1 norm to offset
the discrepancy from the worst case part M (which can be O((log n)1/2) given the currently
known results). As each entry of R has magnitude about σd−1/2, we thus require n = Ωd(1/σ)
for each row of M + R to have discrepancy O(1).

The proof of Theorem 1 is based on the classical second moment method, however, it
requires several additional ideas beyond those used for random instances, to handle the effect
of the worst case part and its interplay with the random part. We describe these briefly next,
and discuss them in more detail in Section 1.2.

Weighted second moment method. Instead of applying the second moment method to
the uniform distribution on the 2n colorings, we consider a distribution on low-discrepancy
colorings for M . This is necessary as for a random coloring x ∈ {−1, 1}n, a typical entry
of Mx will scale as

√
n/d, which is very unlikely to be cancelled by the discrepancy of

the random part Rx, which typically scales as σ
√

n/d (note that we want to show the
existence of some x such that (Rx)i ≈ −(Mx)i for each coordinate i ∈ [d]).
Subgaussianity of colorings. To ensure that ∥Mx∥∞ is typically small, we consider
the (implicit) distribution on colorings produced by the Gram-Schmidt (GS) algorithm [5]
applied to M , which ensures that Mx is a 1-subgaussian vector [12] (details in Section 1.2).
However, apriori the GS algorithm only guarantees that Mx is subgaussian, and says
nothing about the distribution on the colorings x. For instance, it could be that any two
colorings in the support have the first 9n/10 coordinates identical, and thus look very
non-random. This makes the second moment bounds much worse and harder to control.
To handle this, we use a simple but useful trick to ensure that the distribution on the
colorings x produced by the GS algorithm is also O(1)-subgaussian. Roughly, this allows
us to pretend that colorings x in the GS distribution behave randomly.
Exploiting subgaussianity to get cancellations across rows. Most importantly,
due to the worst case part M , doing a row by row analysis as is typically done in
second moment computations for random instances, only works when n = Ω(d2/σ2)
(details in Section 1.2). Roughly, the problem is that considering each coordinate of Mx

separately completely ignores the global properties across the different coordinates that
subgaussianity of Mx implies.
To get the optimal dependence of n on d, a key conceptual idea is to analyze all the rows
together and use the subgaussianity of Mx and x carefully to get various cancellations
across the different rows in the second moment computation. Exploiting subgaussianity
also leads to various technical difficulties, as subgaussian vectors can differ from fully
random Gaussian vectors in various non-trivial ways.

ICALP 2022



14:4 Smoothed Analysis of the Komlós Conjecture

Notation. Throughout this paper, log denotes the natural logarithm. We use the asymptotic
notation ω(·) or o(·) where the growth is always with respect to d – sometimes to emphasize
this dependence we will also write ωd(·) or od(·). We write Ex∼G [f(x)] to denote the
expectation of a function f where x is sampled from the distribution G and we abbreviate this
to E[f(x)] when the distribution is clear from the context. For reals a, b ∈ R, the notation
[a ± b] is used as a shorthand to denote the interval [a − b, a + b]. For a set S ∈ Rd, we write
δS = {δx | x ∈ S} to denote the δ scaling of S.

1.2 Overview and Preliminaries
We now give a more detailed overview of the proof and the ideas. We also briefly describe the
second moment method and some concepts we need such as subgaussianity and properties of
the Gram-Schmidt algorithm.

Second moment method. The second moment method (e.g. [2]) is based on the following
Paley-Zygmund inequality. For any non-negative random variable Z, we have that

P[Z > 0] ≥ (E[Z])2

E[Z2] .

So, if E[Z2] = (1 + o(1))(E[Z])2, then this implies that P[Z > 0] ≥ 1 − o(1).
For constraint satisfaction problems, a standard way to use this to show that most random

instances are feasible is by defining S = S(R) as the number of solutions to an instance R,
and showing that

ER[S2] = (1 + o(1))(ER[S])2, (1)

which gives that PR[S(R) > 0] = PR[S(R) ≥ 1] ≥ 1 − o(1).
Let us consider (1) more closely and define S(R, x) = 1 if x is a valid solution for instance

R, and 0 otherwise. Then S(R) =
∑

x S(R, x) and (1) can be written as

ER

[
Px,y∼U

[
S(R, x) = 1 , S(R, y) = 1

]]
= (1 + o(1)) (ER [Px∼U [S(R, x) = 1]])2

, (2)

where U is the uniform distribution over all inputs.

Second moment method for smoothed Komlós. Let ∆ denote the desired discrepancy
bound. In our setting, denote by S(R, x) = 1 that x ∈ {±1}n is a feasible coloring for the
smoothed Komlós instance M + R, that is, if ∥(M + R)x∥∞ ≤ ∆. Roughly, this condition
means that Rx = −Mx and hence the discrepancy of the random part R cancels that of the
worst case part M .

However, if x is chosen uniformly from {±1}n, it is not hard to see that this cannot work.
The entries (Mx)i will be distributed roughly as N (0, m2

i ) where mi = (
∑

j M2
ij)1/2 is the

ℓ2-norm of row i of M , and in general will be much larger (around 1/σ ≫ 1 times) than the
entries (Rx)i.

Weighted second moment. To allow a reasonable probability of Rx cancelling Mx, a
natural idea is to consider a distribution that is mostly supported over colorings x with
low discrepancy on M . So, we will show (2) where x, y are sampled from some another
suitable distribution G instead of the uniform distribution U . Similar ideas have also been
used in other contexts such as [1]. Notice that this does not affect Rx, as for any fixed
x, the contribution of the random part (Rx)i is still distributed as N(0, nσ2/d) (over the
randomness of R).
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A natural candidate is the distribution on colorings produced by the Gram-Schmidt (GS)
walk algorithm [5]. In particular, we use the following result.

▶ Theorem 4 ([12]). Given vectors v1, . . . , vn ∈ Rm with ∥vj∥2 ≤ 1, the Gram-Schmidt walk
algorithm outputs a random coloring x ∈ {−1, 1}n such that

∑n
j=1 xjvj is 1-subgaussian.

Recall that a random vector Y ∈ Rm is α-subgaussian if for all test vectors θ ∈ Rm,

E
[

exp(⟨θ, Y ⟩)
]

≤ exp
(

α2∥θ∥2
2

2

)
.

Roughly, this means that Y looks like a Gaussian with variance at most α2 in every direction.
Let G denote the (implicit) distribution over the colorings output by the GS walk algorithm.

For a coloring x, let us denote Px := PR[S(R, x) = 1] and for two colorings x and y, let

Px,y := PR

[
S(R, x) = 1 , S(R, y) = 1

]
.

Then changing the order of expectation in (2) and substituting, our goal is to show that

Ex,y∼G [Pxy] = (1 + o(1)) · Ex,y∼G [PxPy]. (3)

However, the set of low discrepancy colorings for M and the distribution G can be quite
complicated and hard to work with. Later, we will ensure that G is also O(1)-subgaussian,
which will suffice for our purposes. Let us first consider (3) more closely.

The key computation. As R has i.i.d. Gaussian entries, the quantities Px and Pxy can be
written in a very clean way. In particular, as (Rx)i ∼ N (0, σ2n/d) for any coloring x, and
the (Rx)i are independent for i ∈ [d], we can write

Px = PR

[ d⋂
i=1

((Rx)i ∈ (Mx)i ± ∆)
]

=
d∏

i=1
PR

[
gi ∈ (Mx)i ± ∆

]
,

where gi ∼ N(0, σ2n/d) and gi’s are independent.
Similarly, for any fixed colorings x and y, writing gi = (Rx)i and g′

i = (Ry)i we have

Pxy =
d∏

i=1
PR

[
gi ∈ (Mx)i ± ∆ , g′

i ∈ (My)i ± ∆
]
,

where gi and g′
i are correlated with E[gig

′
i] = ⟨x, y⟩ · σ2/d.

A standard computation of 2-dimensional gaussian probabilities over rectangles (and
ignoring some less crucial terms for the discussion here) gives

P
[
gi ∈ (Mx)i ± ∆ , g′

i ∈ (My)i ± ∆
]

P
[
gi ∈ (Mx)i ± ∆

]
· P

[
g′

i ∈ (My)i ± ∆
] ≈ exp

(
d⟨x, y⟩(Mx)i(My)i

σ2n2

)
. (4)

So to prove (3), we could try to show that for each i ∈ [d],

Ex,y∼G

[
d⟨x, y⟩(Mx)i(My)i

σ2n2

]
= o

(
1
d

)
. (5)

Indeed, as |⟨x, y⟩| ≤ n and (Mx)i, (My)i are typically O(1) (as Mx and My are subgaus-
sian), setting n = ω(d2/σ2) would suffice to complete the second moment proof. However,
this does not give us the optimal d log d dependence.

Next, we sketch the two ideas to obtain the optimal dependence.

ICALP 2022



14:6 Smoothed Analysis of the Komlós Conjecture

Subgaussianity of the distribution G. If x and y were random colorings, we would typically
expect that |⟨x, y⟩| ≈

√
n instead of n above. To achieve this, we apply the GS walk algorithm

to the (d + n) × n matrix with M in top d rows and In in the bottom n rows. (Note that
each column still has O(1) length.) This ensures that the resulting distribution G on the
colorings x is O(1)-subgaussian, while ensuring that Mx is also O(1)-subgaussian.

Handling the rows together. Next, to exploit the subgaussianity of Mx and My, we look
at all the rows together in (5) and consider∑

i

Ex,y∼G

[
d⟨x, y⟩(Mx)i(My)i

σ2n2

]
= Ex,y∼G

[
d⟨x, y⟩⟨Mx, My⟩

σ2n2

]
. (6)

By the subgaussianity of the colorings x, y and discrepancy vectors Mx, My, we expect
that Ex,y∼G |⟨x, y⟩| ≈

√
n and Ex,y|⟨Mx, My⟩| ≈

√
d. Roughly speaking, this implies that

the right side of (6) is typically d3/2/(σ2n3/2), and hence n ≫ d/σ4/3 suffices.
The formal argument needs some more care as ⟨x, y⟩ and ⟨Mx, My⟩ are correlated, and

as we need to bound the exponential moment of d⟨x, y⟩⟨Mx, My⟩/(σ2n2) in (4), instead of
the expectation, which gives the additional (necessary) logarithmic factor of log d.

2 Proof of the Smoothed Komlós Conjecture

We use a weighted version of the second moment method as mentioned in the proof overview.
Let G be a distribution over coloring that will be specified later. We define the following
random variable S which depends only on the randomness of R,

S = S(R) := Ex∼G [1{∥(M + R)x∥∞ ≤ ∆}],

for some parameter ∆ = 1/poly(d) to be chosen later. The purpose of this variable is that
the event {S > 0} implies there exists a coloring x ∈ supp(G) with discrepancy at most ∆.
Our goal is to show that P(S > 0) = 1 − o(1). As explained in the proof overview, this would
follow from the Paley-Zygmund inequality if we can establish that the first moment ER[S] is
always positive, and the second moment satisfies ER[S2] = (1 + o(1)) · (ER[S])2. We next
compute the moments.

First moment computation. We can compute

ER[S] = Ex∼GER[1{∥(M + R)x∥∞ ≤ ∆}] > 0,

where the strict inequality follows because fixing any outcome x ∼ G, the event {∥(M +
R)x∥∞ ≤ ∆} happens with positive probability (recall that R is a Gaussian random matrix
with each entry N (0, σ2/d)).

Second moment computation. For any i ∈ [d], denote by mi and ri the ith row of the
matrices M and R respectively. The second moment is given by

ER[S2] = ER [Ex[1{∥(M + R)x∥∞ ≤ ∆}] · Ey[1{∥(M + R)y∥∞ ≤ ∆}]]
= EREx,y [1 {∥(M + R)x∥∞ ≤ ∆, ∥(M + R)y∥∞ ≤ ∆}]
= Ex,y [PR (∥(M + R)x∥∞ ≤ ∆, ∥(M + R)y∥∞ ≤ ∆)] = Exy[Pxy],

where we define

Px,y := PR(∥(M + R)x∥∞ ≤ ∆, ∥(M + R)y∥∞ ≤ ∆).
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Similarly, denoting

Px := PR(∥(M + R)x∥∞ ≤ ∆),

we also have

(ER[S])2 = (ExPR(∥(M + R)x∥∞ ≤ ∆)) · (EyPR(∥(M + R)y∥∞ ≤ ∆))
= Ex,y [PR(∥(M + R)x∥∞ ≤ ∆) · PR(∥(M + R)y∥∞ ≤ ∆)]
= Exy[Px · Py].

To compare the quantities ER[S2] and (ER[S])2, we first consider a distribution over
colorings. A natural distribution to consider is the distribution on colorings derived from the
Gram-Schmidt walk which ensures that the discrepancy vector Mx is 1-subgaussian if x is
sampled from this distribution. However, we shall also need that the colorings x themselves
have a subgaussian tail as well as some additional nice properties that will be useful to
compute the second moment. In particular, we prove the following lemma in Section 2.1.

▶ Lemma 5 (Truncated Gram-Schmidt Distribution). Let M ∈ Rd×n be a worst-case Komlós
instance. Then, for any constant C ′ > 1 there exists a distribution G over colorings x ∈ {±1}n

satisfying the following properties:
Almost Constant Euclidean Norm for the discrepancy vectors: for every x ∈ supp(G) , we
have ∥Mx∥2 ∈ [r ± ∆] where r = O(d1/2) and ∆ = d−C′ .
Almost subgaussian tails for the colorings and discrepancy vectors: there exists a constant
C depending on C ′, such that for every u ∈ Sn−1,

Px∼G [|⟨x, u⟩| ≥ t] ≤ 2dC · e−t2/8 and Px∼G [|⟨Mx, u⟩| ≥ t] ≤ 2dC · e−t2/8.

Since the colorings sampled from the above distribution are subgaussian, |⟨x, y⟩| ≤ n/2
holds with high probability. To compute the second moment to a good precision, we need a
careful comparison of the ratio Pxy/(Px · Py) for any two colorings x and y where this event
occurs. We show the following bound in this case (proof in Section 2.2).

▷ Claim 6 (Strong bound). For any two colorings x, y ∈ supp(G), denote ϵ = ϵ(x, y) = ⟨x, y⟩/n.
If |ϵ| ≤ 1/2, then we have

Px,y ≤ PxPy · β(x, y) where β(x, y) = exp
(
δ1 + dϵ2 + dδ2ϵ2 + δ2ϵ · ⟨Mx, My⟩

)
,

where the scaling factor δ :=
√

d
σ

√
n

and the error parameter δ1 ≤ 1/poly(d).

When the low probability event |ϵ| ≥ 1/2 occurs, we use the weak bound Pxy ≤
min{Px, Py}.

As x is sampled from the truncated Gram-Schmidt distribution, the probabilities Px turn
out to be almost constant for all colorings x ∈ supp(G) as the following claim shows.

▷ Claim 7. For any coloring x ∈ supp(G),

Px = exp(δx) · p where p :=
(

δ∆√
2π

)d

exp
(

−δ2r2

2

)
, (7)

with the scaling factor δ :=
√

d
σ

√
n

and the error parameter δx satisfying |δx| ≤ δ1 ≤ 1/poly(d).

The proof of this claim is in Section 2.2.

ICALP 2022



14:8 Smoothed Analysis of the Komlós Conjecture

We now focus on the case when |ϵ| ≤ 1/2. When we take x, y ∼ G, as Px and Py are
essentially constant, by Claim 6, applying the second moment method reduces to bounding
β(x, y) as defined in Claim 6. To do this, we will use the properties, as described in Lemma 5,
of the underlying random variables x and Mx. The following technical lemma gives a bound
on the exponential moment for such random variables.

▶ Lemma 8. Let X be a non-negative random variable X that satisfies

P(X ≥ t) ≤ dC1 · e−t2/8 for any t > 0,

for some fixed constant C1 > 0. Then for any λ = c2
√

log d with c2 ≥
√

32C1,

E[exp(X2/λ2)] ≤ 1 + 32C1/c2
2 + od(1).

We shall prove this lemma in Section 2.1.
We can now complete the proof of Theorem 1 by comparing ER[S2] and (ER[S])2. We

show that

▶ Lemma 9. For n = ω(d log d)σ−4/3, we have

(ER[S])2 = p2(1 − od(1)) and ER[S2] = p2(1 + od(1)).

The above implies that ER[S2] = (1 + o(1))(ER[S])2, and thus the Paley-Zygmund
inequality implies Theorem 1 as discussed in the proof overview.

Proof of Lemma 9. For the first moment, Claim 7 implies that

(ER[S])2 = Ex,y∼G [PxPy] = p2E[exp(δx + δy)] ≥ p2 exp(−2δ1).

Since 0 < δ1 ≤ 1/poly(d), the bound follows.
To compute the second moment, ER[S2] = Ex,y∼G [Pxy], we define E to be the event that

the colorings x, y ∼ G satisfy |⟨x, y⟩| > n/2 and compute the contribution to the expectation
under E and its complement separately. In particular, using Claim 7 and Claim 6, we have

ER[S2] = Ex,y∼G [Px,y] ≤ Px,y∼G [E ] · p + Ex,y∼G
[
PxPyβ(x, y) · 1[E ]

]
(8)

For the first term in (8), since n ≥ d, Lemma 5 implies that

Px,y∼G [E ] ≤ poly(d) · e−n/4 ≤ e−n/8.

Thus, using the exact bound for p from Claim 7 and that δ∆ ≤ poly(σ/d), the first term

Px,y∼G [E ] · p = p2 · P[E ] · p−1 ≤ p2 · e−n/8 ·
(√

2π

δ∆

)d

exp
(

δ2r

2

)
≤ p2 · e−n/8 · exp

(
O

(
d log(dn/σ) + d2/(σ2n)

))
= p2 · od(1), (9)

when n = ω(d log d)σ−4/3. In particular, as σ ≤ 1, we have n/8 ≫ d log(dn/σ) + d2/(σ2n).
For the second term in (8), using Claim 7, we have that Px = p · exp(δx) where |δx| ≤

|δ1| ≤ 1/poly(d). Thus,

Ex,y∼G
[
PxPyβ(x, y) · 1[E ]

]
≤ p2 · exp(2|δ1|) · E

[
β(x, y) · 1[E ]

]
≤ exp(2|δ1|) · E

[
β(x, y)

]
, (10)
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since β(x, y) is a non-negative random variable. Recall from Claim 6 that β(x, y) ≤ exp(δ1) ·
exp(Z) where δ1 ≤ 1/poly(d) and

Z = dϵ2 + 2δ2ϵ2r2 + 2δ2|ϵ⟨Mx, My⟩|.

Renormalizing ϵ = ⟨x, n−1/2y⟩ and θ = ⟨Mx, r−1My⟩ and using that δ =
√

d
σ

√
n

and r ≤
√

d,
we have

Z ≤
(

d

n
+ 2d2

σ2n2

)
· ϵ2 + 2d

√
d

σ2n
√

n
· |ϵ · θ| ≤ (|ϵ| + |θ|)2/λ2

min,

where we denote

λmin = 1
3

√
min

{
n

d
,

σ2n2

2d2 ,
σ2n1.5

2d1.5

}
.

Note that λmin = ωd(1) ·
√

log d when n = ω(d log d)σ−4/3.
We now bound the tails of ϵ and θ, which will allow us to bound E[exp(Z)]. Conditioned

on any outcome of y ∼ G, and as ∥y∥n−1/2 = 1, the second property in Lemma 5 gives that
Px∼G [|⟨x, n−1/2y⟩| ≥ t] ≤ 2dC exp(−t2/8). Averaging over y thus gives that

P [|ϵ| ≥ t] ≤ 2dC · e−t2/8.

Similarly, as ∥My∥r−1 ≤ 1 for any y in the support of G, we have that Px∼G [|⟨Mx, r−1My⟩| ≥
t] ≤ 2dC exp(−t2/8), and averaging over y gives that

P
[
|θ| ≥ t

]
≤ 2dC · e−t2/8.

By a union bound, it follows that the random variable X := |ϵ| + |θ| satisfies the tail
condition of Lemma 8 with constant C1 = 2C. So when λmin = ωd(1) ·

√
log d, the parameter

c2 := λmin/
√

log d in Lemma 8 satisfies 32C1/c2
2 = od(1). Therefore, Lemma 8 implies that

E[β(x, y)] ≤ exp(δ1) · E[exp(Z)] ≤ (1 + od(1))(1 + od(1)) = 1 + od(1).

Plugging the above in (10), it follows that the second term

Ex,y∼G
[
PxPyβ(x, y) · 1[E ]

]
≤ p2(1 + od(1)).

Combining this with (8) and (9), we get that ER[S2] ≤ p2(1 + od(1)). ◀

We now prove the lemmas and claims used in the proof of Theorem 1 above.

2.1 Truncated Gram-Schmidt Distribution and Exponential Moments
Proof of Lemma 5. Consider running the Gram-Schmidt walk algorithm on the matrix M

stacked with the identity matrix, i.e.
(

M

In

)
, and let G0 be the distribution over colorings

obtained as an output of the algorithm.
Since each column of the stacked matrix has Euclidean norm at most 2, the properties of

the Gram-Schmidt walk (Theorem 4) guarantees that (x, Mx) ∈ Rn+d where x ∈ {±1}n and
Mx ∈ Rd is 2-subgaussian. It follows that both x and Mx are 2-subgaussian as well when
(x, Mx) ∼ G0.

ICALP 2022
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To obtain a distribution G where ∥Mx∥2 is almost constant for each coloring x ∈ supp(G),
we will truncate the distribution G0 in such a way that the tails are also preserved up to
poly(d) factors. Towards this end, we first note that with probability 1 − e−cd, we have
that ∥Mx∥2 ≤ c′

√
d for constants c and c′. This is because for any σ-subgaussian mean-zero

random vector X, the Euclidean norm of ∥X∥ has a subgaussian tail (e.g. Exercise 6.3.5
in [19]). In particular, P[∥X∥2 ≥ c1σ

√
d + t] ≤ e−c2t2/σ2 for some universal constants

c1, c2 > 0. Now, by a pigeonhole argument, for a large enough constant C ′ there exist an
annulus W with width ∆ = d−C′ and inner radius r ≤ c′

√
d such that Px∼G0(x ∈ W ) ≥ d−C

for a constant C depending on C ′.
We take the distribution G to be the probability measure of G0 conditioned on the event

that Mx ∈ W . It then follows that for any coloring x ∼ G, we have |∥Mx∥2 − r| ≤ ∆.
Moreover, since x and Mx were 2-subgaussian prior to conditioning, and the probability
mass of the annulus is at least d−C , conditioning can only increase the probability of any
event by a factor of dC . Thus, the tail bounds as stated in the statement of the lemma also
follow. ◀

Proof of Lemma 8. The assumption on X implies that for any t ≥ 4 ·
√

C1 log d, we have

P(X ≥ t) ≤ exp(−t2/16). (11)

We express the expectation as an integration

E[exp(X2/λ2)] =
∫ ∞

0
P[exp(X2/λ2) > s]ds =

∫ ∞

0
P(X ≥ λ

√
log s)ds

≤ 1 + c3 +
∫ ∞

1+c3

P(X ≥ λ
√

log s)ds.

Let us set c3 = 32C1/c2
2, so that c3 ≤ as c2 ≥

√
32C1. For s ≥ 1 + c3, we have

λ
√

log s ≥ c2
√

log d ·
√

c3/2 ≥ 4 ·
√

C1 log d

using that
√

log(1 + x) ≥
√

x/2 for x ∈ [0, 1] and as c3 ≤ 1. So the condition t ≥ 4·
√

C1 log d

for (11) is satisfied whenever s ≥ 1 + c3, and applying (11) to the above integration gives∫ ∞

1+c3

P(X ≥ λ
√

log s)ds ≤
∫ ∞

1+c3

exp(−λ2 log s/16)ds

=
(

λ2

16 − 1
)−1

· (1 + c3)−λ2/16+1 ≤ exp(−c2
2c3 log d/16).

By our choice of c3, the above is at most d−2C1 . Thus, it follows that E[exp(X2/λ2)] ≤
1 + 32C1/c2

2 + d−2C1 . This proves the lemma. ◀

2.2 Proof of Claims from Section 2
Proof of Claim 6. Since the rows of R are independent, to compute the above ratio, it suffices
to compute the ratio for a single row of M + R. Fix i ∈ [d], and let m = mi and r = ri

denote the ith row and define a = ai(x) := −m⊤x and b = bi(y) := −m⊤y. We want to
compare the ratio of P(r⊤x ∈ [a ± ∆], r⊤y ∈ [b ± ∆]) to P(r⊤x ∈ [a ± ∆]) · P(r⊤y ∈ [b ± ∆]).

Notice that r⊤x and r⊤y are Gaussian random variables with mean 0, variance 1/δ2, and
covariance Er[r⊤xr⊤y] = Er[x⊤rr⊤y] = ϵ/δ2. Denoting the square K := [a ± ∆] × [b ± ∆],
we have that

P(r⊤x ∈ [a ± ∆], r⊤y ∈ [b ± ∆]) = µϵ(δK),
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where µϵ is the 2-dimensional centered Gaussian measure with covariance matrix
(

1 ϵ

ϵ 1

)
and δK denotes the δ scaling of K. Similarly, we can write P(r⊤x ∈ [a ± ∆]) · P(r⊤y ∈
[b ± ∆]) = µ(δK), where µ is the standard 2-dimensional Gaussian measure.

We will compare the ratio µϵ(δK))/µ(δK) by approximating the Gaussian measure over
δK with the density at the center and show the following bound

µϵ(δK))/µ(δK) ≤ exp
(
3α + ϵ2 + δ2ϵ2(a2 + b2) + 2δ2ϵab

)
. (12)

Since (a1(x), . . . , ad(x)) = Mx and (b1(x), . . . , bd(x)) = My, using the above bound for
all the rows i ∈ [d], we have

Px,y

PxPy
≤ exp

(
3dα + dϵ2 + δ2ϵ2 · (∥Mx∥2

2 + ∥My∥2
2) + δ2ϵ · ⟨Mx, My⟩

)
.

Since ∥Mx∥2
2 ≤ d + poly(1/d) for every x ∈ supp(G), taking δ1 = 4dα gives the statement of

the claim. To finish the proof we prove (12) now.
Abusing notation and denoting by µ(s, t) and µϵ(s, t) the corresponding densities at

(s, t) ∈ R2, we have the following explicit formula for the density µϵ:

µϵ(s, t) = 1
2π

√
1 − ϵ2

· exp
(

−s2 + t2 − 2ϵst

2(1 − ϵ2)

)
.

Since the edge length of the square δK is 2δ∆, whenever |ϵ| ≤ 1/2, a direct calculation
with the densities shows that

sup(s,t)∈δK µ(s, t)
inf(s,t)∈δK µ(s, t) = exp

(
2δ2∆(|a| + |b|)

)
≤ exp

(
2δ2∆(|a| + |b| + 2∆)

)
≤ exp(δ1),

and that
sup(s,t)∈δK µϵ(s, t)
inf(s,t)∈δK µϵ(s, t) ≤ exp(4δ2∆(|a| + |b| + 2∆)) ≤ exp(2δ1),

where δ1 is as defined in the claim. It follows that whenever |ϵ| ≤ 1/2, we can use the density
at the center of K to obtain

µϵ(K)
µ(K) ≤ exp(3δ1) · µϵ(δa, δb)

µ(δa, δb) = 1√
1 − ϵ2

· exp
(

3δ1 + δ2ϵ2(a2 + b2)
2(1 − ϵ2) + δ2ϵab

1 − ϵ2

)
≤ exp

(
3δ1 + ϵ2 + δ2ϵ2(a2 + b2) + 2δ2ϵab

)
,

thus proving (12). ◁

Proof of Claim 7. We have Px =
∏

i∈[d] P[r⊤
i x ∈ [ai ± ∆]]. For any fixed i ∈ [d], r⊤

i x is
distributed as N (0, 1/δ2), so after scaling the quantity P[r⊤

i x ∈ [ai ± ∆]] = µ(δ · I) where
I = [ai ±∆] and µ is the standard Gaussian measure in R. Analogous to the proof of Claim 6,
one can approximate the Gaussian density at any at the point in I by the center point a,
and compute similarly to the proof of Claim 6 that

Px =
∏

i∈[d]

P[r⊤
i x ∈ [ai ± ∆]] =

(
δ∆√
2π

)d

exp
(

αx − δ2∥Mx∥2
2

2

)
,

for some small error |αx| ≤ 2δ2∆(∥Mx∥1 +d∆). As ∥Mx∥2 ∈ [r±∆] and r = O(
√

d), we have
that ∥Mx∥1 = O(d) and the statement of the claim follows for some δx ≤ |αx| + 1/poly(d) ≤
1/poly(d). ◁
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3 Conclusion

For the Komlós problem, as studied in this paper, Gaussian noise is a natural way to model
a smoothed analysis setting since the input vectors have Euclidean norm at most one. One
can wonder whether similar results can be obtained with more general noise models, for
instance, Bernoulli or other discrete noise models. Such noise models are also more conducive
for smoothed analysis in other discrepancy settings, such as for the Beck-Fiala problem.
The weighted second moment approach used here can also handle Bernoulli noise when the
number of vectors n ≫ d2 but the second moment becomes difficult to control when n is
smaller. It remains an interesting open problem to see if Bernoulli or other discrete noise
models can be handled for the regime n ≫ d log d.
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