
Relating Real and Synthetic Social Networks
Through Centrality Measures
Maria J. Blesa !

Computer Science Department, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

Mihail Eduard Popa !

Barcelona School of Informatics, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

Maria Serna !

Computer Science Department, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
Institute of Mathematics (IMTech), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

Abstract
We perform here a comparative study on the behaviour of real and synthetic social networks with
respect to a selection of nine centrality measures. Some of them are topology based (degree, closeness,
betweenness), while others consider the relevance of the actors within the network (Katz, PageRank)
or their ability to spread influence through it (Independent Cascade rank, Linear Threshold Rank).
We run different experiments on synthetic social networks, with 1K, 10K, and 100K nodes, generated
according to the Gaussian Random partition model, the stochastic block model, the LFR benchmark
graph model and hyperbolic geometric graphs model. Some real social networks are also considered,
with the aim of discovering how do they relate to the synthetic models in terms of centrality. Apart
from usual statistical measures, we perform a correlation analysis between all the nine measures.
Our results indicate that, in general, the correlation matrices of the different models scale nicely
with size. Moreover, the correlation plots distinguish four categories that classify most of the real
networks studied here. Those categories have a clear correspondence with particular configurations
of the models for synthetic networks.
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1 Introduction

Nowadays, social media are more and more integrated in our daily lives leading to the
emergence of varied and complex social networks. One of the main research questions is
to understand the relevant characteristics of those huge networks. In network analysis,
indicators of centrality identify the most important vertices within a graph with respect to
some particular characteristic. Centrality concepts were first developed in social network
analysis, and many of the terms used to measure them reflect that sociological origin [17].
They should not be confused with node influence metrics, which seek to quantify the influence
of every node in the network. Traditional measures are degree, closeness and betweenness
which are topology dependant. Other well-known centrality measures are the Katz Rank [8]
and the PageRank [19]. Two new measures have been introduced in an attempt to measure
centrality with respect to influence spreading, the Independent Cascade (ICR) [9] and the
Linear Threshold Rank (LTR) [4].
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7:2 Relating Real and Synthetic Social Networks Through Centrality Measures

Many efforts have been devoted to understand the relationship among different centrality
measures on real networks (see for example [26, 22, 18] and references herein). [18] show
that network topology determines the correlation pattern among several measures and the
combination of several centrality measures can help in the interpretation of the roles that
a node or a group of nodes play in the network. In all these studies the evaluation has
been performed in a selection of real networks. Our objective is to understand whether the
parameters and correlation patterns among a small number of centrality measure can identify
a family of synthetic social networks. Eventually, we would like to use such patterns to
associate a correct model to real networks. Recall that, after a surge in interest in network
structure among mathematicians and physicists, a body of research has been devoted to
modeling networks either analytically or numerically. We focus our attention on random
models generating synthetic networks from a priori knowledge on its communities. In
particular, we generate graphs according to the Gaussian Random partition model [25], the
stochastic block model [20], and the Lancichinetti–Fortunato–Radicchi (LFR) benchmark [13].
These models are accepted to be good generators for benchmarks in community detection [3].
We complement the study analyzing hyperbolic geometric graphs [12], known as graphs
showing properties expected in large real network graphs, and the behaviour of the centrality
on some real social networks.

We experimentally evaluate the behaviour of the considered centrality measures on the
selected models of synthetic networks and perform a stochastic comparison among them.
To compare the different centrality measures, we have extracted three statistics measuring
diversity: the standard deviation, the number of different values, and the Gini coefficient.
The second component is a correlation analysis. We use the Kendall [11] and Spearman [24]
coefficients. Our results show, as expected, that the considered models of synthetic social
networks perform differently with respect to the centrality measures. Besides this, our results
indicate that, in general, the correlation matrices on the different models scale nicely with
size. Furthermore, we observe that the correlation plots distinguish different graph families.
From the correlation plots, we have been able to obtain four categories classifying most of
the real networks studied here. Furthermore, such categories are identified with submodels
of the synthetic networks. The unclassified networks are very small or a particular structure
which hints to another type of generator will be needed for those networks.

2 Centrality Measures

We outline the centrality measures used in the paper. Some of them are based on the
topological properties of the nodes, some others take into account the relevance of the actors,
while other centrality measures quantify the influence exerted by the actors on the network
in terms of diffusion power. Given a directed graph G = (V, E), where |V | = n, we consider:

2.1 Topology based
Degree. This is one of the simplest centrality measures and simply consists on assigning
the centrality based of the degree of the node. For every node i ∈ V , the degree centrality of
i is the degree itself of i (δi), normalized by the number of nodes minus one, i.e.,

Deg(i) = δi

n − 1 .
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Closeness. For the closeness measure, the distance to other nodes is considered. Intuitively,
the more central a node is, the closer it is to all other nodes. For every node i ∈ V , the
closeness of i is calculated as the normalized reciprocal of the sum of the length of the
shortest path distances between i and all other nodes j ∈ V \ {i} in the graph.

Clsn(i) =
1/

∑
j

d(j,i)

(n − 1) = n − 1∑
j d(j, i) .

In order to be able to compute the closeness measure also for the nodes of networks which
are not strongly connected, we will consider the adaptation in [27], defined as follows:

Clsn(i) = Ji/(n − 1)∑
j d(j, i)/Ji

.

where Ji is the number of actors in the influence range of actor i, i.e., the number of actor
who are reachable from i.

Betweenness. In the betweenness centrality, a node is more important if it belongs to
the shortest path between any pair of nodes in the graph [5]. Given G = (V, E), for every
node i ∈ V , we define the betweenness as the sum ∀s∀t ∈ V of the proportion of σst(i)
(the shortest paths between s, t that go through i) with respect to σst (all the shortest path
between s and t), i.e.,

Btwn(i) =
∑

s̸=i ̸=t

σst(i)
σst

.

2.2 Relevance based
Katz. The Katz centrality [8] is a generalization of degree centrality and it can also be
viewed as a variant of eigenvector centrality. While degree centrality measures the number of
direct neighbors, the Katz centrality measures the number of all nodes that can be connected
through a path, while the contributions of distant nodes are penalized. It is based on the
idea that an actor is important if it is linked to other important actors or if it is highly
linked. It overcomes the limitations of the eigenvector centrality when the graph has nodes
that reach strongly connected components, but those connected components do not reach
the node, which may occur in social networks.

Let A be the adjacency matrix of the directed graph G = (V, E) (i.e., aij = 1 if there is
an edge between i and j, and a aij = 0 otherwise). Let β be a constant independent from the
structure of the social network and α ∈ [0, . . . , λmax

−1] is the damping factor, being λmax

the highest eigenvalue in A. Then the Katz(i) is defined as

Ktz(i) = α
∑
j∈V

aji Ktz(j) + β.

PageRank. One of the most popular centrality measures is the PageRank [19], that Google
uses to assign importance to web pages. A web page is important if other important web
pages point to it. It uses a parameter α ∈ (0, 1], that represents the probability that a user
keeps jumping from a web page to another through the links that are between them (and
thus, 1 − α represents the probability that the user goes to a random web page). Let A be
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7:4 Relating Real and Synthetic Social Networks Through Centrality Measures

the adjacency matrix of a directed graph G = (V, E) (i.e., aij = 1 if there is an edge between
i y j, and a aij = 0 otherwise), and let δ+(i) be the out degree of i ∈ V . The PageRank
(PR) of i is given by

PgR(i) = (1 − α) + α
∑
j∈V

aji PgR(j)
δ+(j) .

2.3 Influence based
Perhaps the two most prevalent diffusion models in computer science are the Independent
Cascade model [7] and the Linear Threshold model [9, 23]. Based on them, the corresponding
influence-based centrality measures are defined:

Independent Cascade Rank. The Independent Cascade Rank [10] is an influence-based
centrality measure based on the Independent Cascade Model (ICM) [7], which is a stochastic
model that was initially proposed in the context of marketing. It is based on the assumption
that whenever a node is activated, it will (stochastically) do attempt to activate each actor
he targets. Given an activated node i ∈ V , any neighbor j such that (i, j) ∈ E will be
activated with a probability pij . When a new actor is activated, the process is repeated for
this actor. The whole process ends when there are no active nodes with a new chance to
spread its influence.

Given an initial node u ∈ V and a probability p ∈ [0, 1] (where ∀(i, j) ∈ E : pij = p), the
expected influence spread of u is denoted by F ′(u, p) and comprises the set of activated nodes
under the ICM influence model, starting from the initial node u. Then, the Independent
Cascade Rank of a node u ∈ V is then defined as

ICR(u, p) = |F ′(u, p)|
maxv∈V {|F ′(v, p)|} .

Linear Threshold Rank. The Linear Threshold Rank [4] is also an influence-based centrality
measure, based on the Linear Threshold Model (LTM) [9]. Every node has an influence
threshold, which represents the resistance of this node to be influenced by others. Every
edge (u, v) also has a weight representing the influence that node u has over node v.

The influence algorithm starts with an initial predefined set of activated nodes. At every
iteration, the active nodes will influence their neighbors. When the total influence that a
node i receives exceeds its influence threshold θi, then this node will become active and join
the set of active nodes. As long as new nodes join the set of active nodes, the spread of
influence is still on progress. The algorithm stops when the set of active nodes converges,
i.e., when no new nodes are influenced. In order to formally define the Linear Threshold
Rank, we need to introduce the following concepts:

▶ Definition 1. An influence graph is a tuple (G, w, θ), where G = (V, E) is a directed
graph made by a set of actors V and a set of relations E, w : E → Z is a weight function
that assigns a weight to each edge, representing the influence of one node to the other, and
θ : V → N is a labeling function that quantifies how resistant to influence every node is.

▶ Definition 2. Given an influence graph (G, w, θ) and an initial active set X ⊆ V , Ft(X) ⊆
V denotes the set of activated nodes at the t-th iteration starting with X as kernel.
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At the first step, t = 0 only the nodes in X are active, which means that F0(X) = X. At
the t + 1 iteration, a node i will be activated if, and only if, the sum of all the weights of the
active nodes incident to i is higher than the resistance (or influence) threshold of i, i.e.,∑

j⊆Ft(X)

wij ≥ θi,

Observe that the process is monotonic, therefore it stops after at most n = |V | steps.

▶ Definition 3. Let k = min {t ∈ N | Ft(X) = 0}, where k ≤ n. The expansion of X ⊆ V

on an influence graph (G = (E, V ), w, θ), is defined as F (X) =
⋃k

t=0 Ft(X).

Given an influence graph (G = (V, E), w, θ), the Linear Threshold Rank of a node i ∈ V

is given by

LTR(i) = |F ({i} ∪ N (i))|
|V |

, where N (u) = {v | (u, v) ∈ E ∨ (v, u) ∈ E}.

Forward and Backward Linear Threshold Rank. The Forward and the Backward Linear
Threshold Ranks [1] are centrality measures similar to the LTR, but with a different initial set
of activated nodes. Given an influence graph (G = (V, E), w, f), the Forward Linear Threshold
Rank and the Backward Linear Threshold Rank of a node i ∈ V is given, respectively, by

FwLTR(i) = |F ({i} ∪ N +(i))|
|V |

and BwLTR(i) = |F ({i} ∪ N −(i))|
|V |

where N +(i) = {j ∈ V | (i, j) ∈ E} and N −(i) = {j ∈ V | (j, i) ∈ E}.

3 Social Networks

We describe the characteristics of the synthetic networks considered in this work, as well as
the real social networks chosen for our experiments. The structural characteristics of the
networks are described by seven common attributes: the number of vertices, the number of
edges, whether the graph is weighted, whether the graph is directed, the average clustering
coefficient, and the size of the main core.

The average clustering coefficient (ACC) is the average of the local clustering coefficients
in the graph. The local clustering coefficient Ci of a node i is the number of triangles Ti in
which the node participates normalized by the maximum number of triangles that the node
could participate in.

ACC = 1
n

n∑
i=1

Ci, where Ci = Ti

δi(δi − 1)

where δi is the degree of the node i, and n = |V |. Given a graph G and k ∈ Z+, a k-core is
the maximal induced subgraph of G where every node has at least degree k. The main core
is a k-core of G with the highest k.

3.1 Synthetic Social Networks
Concerning the models for synthetic social networks, we have considered four different models:
Gaussian Random Partition Graphs, the Stochastic Block Model, LFR Benchmark Graphs
and Hyperbolic Geometric Graphs.

SEA 2022
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3.1.1 Gaussian Random Partition Graph (GRP)

The process to create a Gaussian Random Partition Graph [25] starts by creating k partitions
of different size. Those sizes will be taken from a normal distribution N (µ, σ2). Two nodes
from the same partition are connected with probability pin, while two nodes from two different
partitions will be connected with probability pout. To generate this type of graph we will be
using the implementation from NetworkX [14], which lets us assign values for the following
parameters:

n: the number of nodes of the network,
µ: mean of the sizes of the partition in the graph,
σ: variance of the sizes of the partition in the graph,
pin: probability of generating a intracluster edge,
pout: probability of generating a intercluster edge,
dir: whether or not the graph is directed.

We created five different types of graphs, that we denote as GRPa, GRPb, GRPc, GRPd
and GRPe (see Table 1). They consider different size and variance of partitions, and also
different probabilities for creating intracluster and intercluster edges. All categories are
directed, except for GRPd. The choice for these parameters is based on the ones proposed
in [25], but conveniently adapted to represent bigger meaningful social networks.

3.1.2 Stochastic Block Model (SBM)

The construction of a Stochastic Block Model Graph [20] starts by partitioning the nodes of
the network into blocks of arbitrary sizes. Secondly, edges are placed between pairs of nodes
independently, with a probability that depends on the blocks, i.e., the probability to create
an edge (u, v) depends on the probability of connection defined between the cluster of u and
the cluster of v.

To generate this type of graph we will be using the implementation from NetworkX [16],
which lets us assign values for the following parameters:

n: the approximate number of nodes of the network,
k: the number of blocks within the network,
S = {s1, . . . , sk}: the list of block sizes, where si denotes the number of nodes in the
block i.
P ∈ k2: a probability matrix, where pij is the probability of creating an (intercluster)
edge between a node in cluster i and a node in cluster j. Observe that pii is then the
probability of an intracluster edge within block i.

We created five different types of graphs, that we denote as SBMa, SBMb, SBMc, SBMd
and SBMe (see Table 2). The sizes of the blocks are created according to different statistical
distributions. We use exponential distributions for all the types of graphs, except for the
SMBb, where a normal distribution is used. All categories are directed.

We can observe that all the networks have the order of θ(
√

n) number of clusters, except
for SBMd, which has less clusters but of bigger size. In general, we wanted to work with
very different cluster sizes. For that reason, in most of the cases we used the exponential
distribution to generate S. For the SBMb we used the normal distribution instead. We want
to see whether big differences on the size of the blocks affect the final result.



M. J. Blesa, M. E. Popa, and M. Serna 7:7

Table 1 Parameters for the Gaussian Random Partition Graphs. For each type, three different
graph sizes are considered: n = 1000, n = 10000 and n = 100000. For the probabilities, f(n) = log(n)

µ

and g(n) = log(n)
n−µ

.

Name µ σ pin pout dir

GRPa n/10
√

n 4 3/4 f(n) 1/4 g(n) True
GRPb n/10

√
n 2 3/4 f(n) 1/4 g(n) True

GRPc n/10
√

n 4 1/2 f(n) 1/2 g(n) True
GRPd n/10

√
n 4 3/4 f(n) 1/4 g(n) False

GRPe n/
√

n 4 3/4 f(n) 1/4 g(n) True

Table 2 Parameters for the Stochastic Block Model Graphs. For each type, three different graph
sizes are considered: n = 1000, n = 10000 and n = 100000. S ∼ Exp(λ) is a sample from an
exponential distribution with rate λ, and S ∼ N (µ, σ2) is a normal distribution with mean µ and
standard deviation σ2. For the probabilities, f(n) = log(n)/S and g(n) = log(n)/(n − S), where S

represents the mean size of the blocks.

Name k S pii pij

SBMa 10
√

n Exp(10/
√

n) 3/4 f(n) 1/4 g(n)
SBMb 10

√
n N (k/100, k/1000) 3/4 f(n) 1/4 g(n)

SBMc 10
√

n Exp(10/
√

n) 1/2 f(n) 1/2 g(n)
SBMd

√
n Exp(1/

√
n) 3/4 f(n) 1/4 g(n)

SBMe 10
√

n Exp(10/
√

n) 3/4
log(n)

si

1/4
log(n)
n−si

3.1.3 LFR Benchmark Graph
The LFR Benchmark [13] is a model for graph generation more complex than GRP and SBM
are. Consequently, it allows to create artificial networks that are significantly more similar to
real ones. In a very summarized way, the algorithm starts finding a power law distribution
for the degree of the nodes. Every node will have a proportion µ of its connections to nodes
belonging to other communities (intercluster), whereas the remaining (1 − µ) proportion of
its edges will be attached to nodes in same the community (intracluster). This leads to the
emergence of communities of different sizes (following a power law distribution as well). Each
node will be randomly assigned to one community following the constraint imposed by µ.

To generate this type of graph we will be using the implementation from NetworkX [15],
which lets us assign values for a lot of different parameters. After a deep study of them,
where we detected some incompatibilities, the following parameters where identified as the
most relevant and worth to play with:

n: the number of nodes that our social network will have,
τ1: exponent of the power law distribution for the node degree distribution,
τ2: exponent of the power law distribution for the community size distribution,
µ: proportion of intracluster edges for each node,
maxc: maximum community size in the graph,
minc: minimum community size in the graph,
maxd: maximum node degree in the graph,
avgd: mean node degree in the graph.

We create five different types of graphs, that we denote as LFRa, LFRb, LFRc, LFRd
and LFRe (see Table 3). We have fixed the parameters τ1 and τ2 to the values proposed
in [13]: the adequate values to represent social networks oscillate between 2 ≤ τ1 ≤ 3 and
1 ≤ τ2 ≤ 2. We do not work with τ2 = 1 because the generator implemented in NetworkX
demands that τ2 > 1. LFRc builds bigger communities than the rest of the graphs, and in
LFRe the proportion of intracluster edges is greater than the usual 0.2.
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Table 3 Parameters for the LFR Benchmark Graphs. For each type, three different graph sizes
are considered: n = 1000, n = 10000 and n = 100000.

Name τ1 τ2 µ maxc minc maxd avgd

LFRa 2 1.1 0.2 0.05 n maxc/100 0.05 n 5/4 log(n)
LFRb 2 2 0.2 0.05 n maxc/100 0.05 n 5/4 log(n)
LFRc 2 1.1 0.2 0.05 n maxc/10 0.05 n 5/4 log(n)
LFRd 3 2 0.2 0.05 n maxc/100 0.05 n 5/4 log(n)
LFRe 2 1.1 0.35 0.05 n maxc/100 0.05 n 5/4 log(n)

Table 4 Parameters for the Hyperbolic Geometric Graphs. For each type, three different graph
sizes are considered: n = 1000, n = 10000 and n = 100000.

Name k γ t z

HYPa log(n) 2 0 1
HYPb log(n) 2 2 1
HYPc log(n) 3 0 1
HYPd log(n) 3 0.5 1
HYPe log(n) ∞ 0.5 1

Table 5 Real data sets considered in this work. Shadowed rows state for directed networks. ACC
= Average Clustering Coefficient, MC = size of the main core. The diameter is ∞ when the graph
is not connected (or not strongly connected in the case of digraphs); in these cases, the diameter of
the biggest connected component is provided. The subscript (w) indicates edge weighted networks.

Networks n m ACC Diameter MC
Dining Table (w) 26 52 0.1178 ∞ (6) 20
Dolphins 62 159 0.2590 8 36
Human Brain (w) 480 1000 0.3004 ∞ (20) 11
ArXiv 5242 14496 0.5296 ∞ (17) 44
Wikipedia 7115 103689 0.1409 7 336
Caida (w) 26475 106762 0.2082 17 50
ENRON 36692 183831 0.4970 11 275
Gnutella 62586 147892 0.0055 11 1004
Epinions 75879 508837 0.1378 14 422
Higgs (w) 256491 328132 0.0156 19 10
Amazon 334863 925872 0.3967 44 497
Texas 1379917 1921660 0.0470 1054 1579

The parameters maxc and maxd are both fixed to 0.05 n for all the networks. For lower
values, the resulting graphs are not good representations for social networks. For bigger
values, the generator takes an enormous amount of time to converge (even with a very small
number of vertices) or even does not converge at all. In the same sense, another problematic
parameter was avgd. When fixed to avgd = log(n), the generator was no always converging
and thus, we had to slightly increase that value. In our case, that increase implies increasing
the average degree by one.

3.1.4 Hyperbolic Geometric Graph
Recent studies in graph geometry showed that many networks appearing in nature or
representing societies can be modeled as geometric graphs in hyperbolic spaces [21]. Based
on this fact, hyperbolic geometric graphs have started to be used as models for synthetic
social networks. In our study we will be using the generator proposed in [21], which allows
us to configure the following parameters:
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n: the number of nodes that our social network will have,
k: mean node degree in the graph,
γ: exponent of the power law distribution for the node degree distribution,
t: temperature,
z: square root of the curvature of the hyperbolic space.

Using these parameters, we create five different types of graphs that we denote as HYPa,
HYPb, HYPc, HYPd and HYPe (see Table 4). Most of the values we work with are those
suggested in [21] for generating hyperbolic geometric graphs representing social networks.

3.2 Real Social Networks
We will also be using real social networks in our experiments in order to have a point of view
of what happens in reality and to see how our artificial models really compare. We consider
twelve well-known real social networks, which are mostly available at the snap.stanford.edu
and the networkrepository.com repositories. The main characteristics of these networks
are summarized in Table 5.

4 Statistical Metrics

For analysing the results of a centrality measure on its own, three statistical metrics will
be used: the number of different ranks, the standard deviations and the Gini coefficient of
the distribution. The Gini coefficient [6, 2] comes originally from sociology as a measure of
the inequality of populations with respect to different criteria (e.g., wealth spread), but it is
lately being used as a measure for quantifying the fairness of distributions in other areas.

▶ Definition 4. Given a list of values X of size n, the Gini coefficient of X is calculated as:

Gini(X ) =
∑n

i=1
∑n

j=1 |xi − xj |
2n

∑n
i=1 xi

As observed in other works, we will also use two well-known correlation measures for
comparing the centrality ranks among themselves: the Spearman’s correlation coefficient [24]
and the Kendall correlation coefficient [11].

▶ Definition 5. Given two lists of elements X , Y both with n elements, the Spearman’s rank
correlation coefficient (ρ) is equal to:

ρ(X , Y) = 1 −
6

∑n
i=1(xi − yi)2

n(n2 − 1)

▶ Definition 6. Let X and Y be two lists of elements, then the Kendall’s rank correlation
coefficient (τ) is defined as:

τ(X , Y) = nc − nd

0.5n(n − 1)

where nc is the number of concordant pairs between X and Y, and nd is the number of
discordant pairs. A pair (i,j) is concordant if either xi > xj and yi > yj, or xi < xj and
yi < yj. A discordant pair is one that is not concordant.
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5 Experiments and results

We have generated five different configurations for each of the four synthetic models. Then
we have calculated the centrality measures and statistically analyzed the results obtained
on those twenty configurations under different perspectives. In particular, the correlation
analysis between the different centrality measures gives us an insight about which metrics
seem to behave similarly in specific types of networks. The studies carried out can help us
understand the similarities of the centrality measures under diffusion processes in different
types of networks, but we do not believe that at the moment they can provide any information
for their inverse use, that is, on how to generate these networks.

Undirected networks are transformed into directed ones by replacing edges into bid-
irectional arcs. For unweighted networks, edge weights are all fixed to 1. As in [4], we
fix the threshold function θi of every actor i to the simple majority rule. ICR works
with probability p = 0.1. Here we can only summarize the most relevant observations.
For a detailed vision of the results and exact data on them, we point the reader to
www.cs.upc.edu/∼mjblesa/centrality/syntheticGraphs/.

5.1 Statistics results
We can observe some very clear trends when looking at the complete results of our experiments.
Starting with the GRP models (see Figure 1), the deviation and the number of different
ranks are the highest in GRPb and lowest in GRPd. The Gini coefficient is still high in
GRPb, but it is also high in GRPc, the latter is still the lowest for some metrics such as
Closeness and Pagerank. The rest of the models are quite similar to each other. Remember
that GRPb is the one of the networks with the highest deviation on the sizes of the clusters,
which implies more differences between clusters and thus more differences between nodes.
On the other hand, GRPd is the only undirected model which could explain the low values
for the standard deviation and the number of different ranks.

In the LFR models (see Figure 2), there is a clearly one model with the lowest values in
every scenario and for the majority of measures, specially the influence-based ones: LFRd.
These low results are caused mainly by the exponents used during the generation, being in
this models the highest, especially the exponent for the degree distribution. There does not
seem to be a model with clearly higher results, although LFRb does get higher values in
some cases.

For the stochastic block model generator (see Figure 3), STOa, STOc, STOd have the
highest values for every metric except Betweenness and Pagerank, for the standard deviation,
the number of different ranks and the Gini coefficient. The models with the lowest values are
STOb and STOe. Similarly to GRP, these differences occur due to the sizes of the clusters,
in STOb the sizes follow a normal distribution instead of a exponential distribution, this
will result in more similar clusters, so more similar nodes. In the case of STOe, although
the sizes of the clusters follow an exponential distribution, the probability of creating edges
inside the cluster depends on the size of the clusters, which means a node who belongs to a
big cluster will have a small probability, this will imply that the number of edges will be
close to a node that belongs to a small cluster but has a large probability of creating edges
inside of the cluster. This phenomena balances the degree distribution of the nodes to some
extent. This events can be observed specially well in the models with 100K nodes.

Finally, the hyperbolic models (see Figure 4) do not seem easy to analyse. The standard
deviation is low for HYPc, HYPd and HYPe for every metric except Betweeness but there
are more different ranks in these three models than in HYPa or HYPb, again with some

https://www.cs.upc.edu/~mjblesa/centrality/syntheticGraphs/
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Figure 1 Statistics results for the GRP models.

exceptions like the Degree Centrality and the three centralities based on the LTM. The Gini
coefficient is high in HYPa and HYPb for some metrics, but for other metrics the results
in HYPc, HYPd and HYPe are higher. The only irrefutable conclusion from this network
generator is that there is a clear distinction between the results for HYPa, HYPb and those
for HYPc, HYPd, HYPe.

5.2 Correlation analysis
Figure 5 collects the correlation plots for the set of biggest networks (i.e., those with 100K
nodes) for each of the four synthetic models under study. Figure 6 shows the correlation
plots for four real social networks that represent each of the four behavioural tendencies
observed. The correlation plots do not include the results of the Ktz centrality because most
of the time the algorithm did not converge.

For the Gaussian graphs there is one network very different than the others, GRPd, but
this happens because it is the only undirected social network, which creates the difference
in the correlation patterns, having a maximum direct correlation between the three LTM
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Figure 2 Statistics results for the LFR models.

based centralities. Comparing the rest of the networks we observe very similar patterns in
the correlation plots, but they still can be distinguished, having more similarities between
GRPa and GRPb, and between GRPc and GRPe. This differences can be seen more clearly
as we decrease the number of nodes in the graph.

In the case of the LFR benchmark generator, we take into consideration that all the
networks are undirected which implies that the results from LTR, FWLTR and BWLTR
will be the same. The first three networks (LTRa, LTRb, LTRc) display similar patters,
with low correlation between Betweenness and the LTM based metrics and high correlations
between Pagerank and Degrees. One the other hand, LTRd differentiates in some aspects
from these three mentioned networks, such as the high correlation between Pagerank and
the LTM metrics and between Degree and the LTM metrics. Another difference is that in
LFRd the correlation between Closeness and the LTM metrics is lower than the correlation
between Betweenness and the LTM metrics. Finally, the LFRe network is pretty similar to
the first three networks (LTRa, LTRb, LTRc) but with very subtle differences.
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Figure 3 Statistics results for the STO models.

We can observe more differences when comparing the results from the Stochastic Block
Model generator. The STOb and STOe are nearly identical, STOc has a similar pattern
as the these last two, but with higher correlations between all metrics. For the other two
graphs, STOa and STOd, we find most of the similarities when for big graphs with a large
number of nodes, however when we compare both models with only one thousand nodes, the
similarities in the patterns in the correlation plots seem to disappear, for example, STOa has
very high correlations between all the LTM based metrics (LTR, FWLTR, BWLTR) but
STOd does not, with very low correlations between FWLTR and BWLTR.

Finally, the networks generated in a hyperbolic space show two patterns. The first type,
present in HYPa and HYPb, with high correlation between Closeness and the LTM metrics,
and low correlation between the LTM metrics and almost any other metric where Betweenness
and Pagerank take the lowest values, this also implies a low correlation between Closeness
and, Betweenness and Pagerank. However, the other type, including HYPc, HYPd and
HYPe, Closeness takes the lowest correlation with the LTM metrics. HYPc is a little different
than HYPd and HYPe but the general distribution of the correlation is still the same.
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Figure 4 Statistics results for the HYP models.

5.3 Comparison with real networks

In order to extend the study of centrality measures on synthetic networks, we decided to
focus on real social networks. Our aim with that was to check whether the synthetic models
do really approximate real networks when centrality is concerned. We also wanted to check
whether the different behavioural patterns observed in the synthetic networks would help us
to classify the real networks.

Some correlation plots from real graphs look almost identical to correlation plots of
synthetic networks (e.g., the Texas graph and the HYPe, the Caida graph and the LFRa).
The Human Brain network is similar to most of the LFR benchmark models, but it is with
a hyperbolic graph where more similarities can be found (specifically with HYPa). There
are also examples of directed graphs where this also occurs, e.g., Epinions, which is pretty
similar to GRPa. In most of the real social networks considered, we can observe some kind
of similarity to some type of artificial network. Based on those similarities, we organize our
results in four categories (two for directed graphs and two for undirected graphs). These
categories are qualitative and based merely on correlations, thus describing distinguishable
color patterns in the plot of the Figure 6.



M. J. Blesa, M. E. Popa, and M. Serna 7:15

Figure 5 Heatmaps for the correlation between measures for synthetic networks with 100K nodes.
Kendall coefficients are represented in the upper triangular part and Spearman in the lower one.

Figure 6 Heatmaps for the correlation between measures for four real social networks (Amazon,
ENRON, Epinions, Higgs), which represent the four different behaviours observed experimentally.
Kendall coefficients are represented in the upper triangular part and Spearman in the lower one.
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The first type is for undirected graphs and includes the networks Amazon, Dolphins, Texas,
and ArXiv. The synthetic networks that represent this first category are GRPd, LFRd, HYPc,
HYPd, HYPe. They have low correlation between Betweenness and the LTM metrics and a
very low correlation between Closeness and the LTM metrics. We find higher correlations
between Degree and the LTM metrics, Pagerank and the LTM metrics, and Degree and
Pagerank.

The second category is also for undirected graphs and it includes the real networks Caida,
ENRON and Human Brain, and the synthetic networks LFRa, LFRb, LFRc, LFRe, HYPa and
HYPb. One of the main differences between this and the previous category is the change in
the correlations of Closeness and Degree: here the correlation between Degree and the LTM
is high, and the correlation between Closeness and the LTM metrics is one of the highest,
opposite to the first category.

We observe a third category for directed graphs, which includes the Epinions real graph
and GRPa, GRPb and STOc. We found the lowest correlations when looking at FWLTR
and ICRt. These two metrics have a low correlation with BWLTR, Closeness and Pagerank.
The rest of the correlations are neither high nor low.

The last category that we can distinguish is also for directed graphs. In this case we have
the Higgs and Wikipedia as real networks representatives, and GRPc, GRPe as synthetic
graphs. The main different with the third category is that this time the low correlations
of FWLTR and ICRt are much lower, with values very close to zero. In the rest of the
correlations we can find low and medium correlations unlike in the last category where most
of them were medium correlations.

The synthetic graphs STOb and STOe are halfway between the third and fourth category,
having similarities and differences with both of them.

There are two real social networks who do not seem to belong to any of the categories
mentioned, which means that they are not very similar with the synthetic networks generated
in terms of the centrality measures correlation. The first example, the Dining Table network,
can be easily explained. Most of the correlations given by this network have a p-value higher
than 0.05 which makes most of the results not statistically significant. However, in the
remaining network Gnutella, this phenomena does not occur which means than the results
are valid and significant. In this case, the problem could be that the number of generators
and models used is limited and does not cover all the possible networks. Another cause could
be that the structure of this network is very particular and it is hard to replicate artificially
with algorithms.

All the comparisons between correlations are qualitative in this work. We plan to introduce
quantitative measures to be able to weight those relation, e.g. by means of similarity measures
applied to the correlation matrices.
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A Details on the correlation analysis (Section 5.2, Fig. 5)

We detail the correlation coefficients for the centrality measures summarized in Figure 5. In
all the forthcoming tables, the Kendall coefficients (τ) are shown in the upper triangular
part and the Spearman coefficients (ρ) in the lower triangular part. For the Katz measure, a
− indicates non-convergence.

Table 6 Correlation for the different centrality measures on the synthetic GRP networks of size
100K from the data set.
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Table 7 Correlation for the different centrality measures on the synthetic LFR networks of size
100K from the data set.
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Table 8 Correlation for the different centrality measures on the synthetic STO networks of size
100K from the data set.
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Table 9 Correlation for the different centrality measures on the synthetic HYP networks of size
100K from the data set.
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