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Abstract
In the Vertex Connectivity Survivable Network Design (VC-SNDP) problem, the input
is a graph G and a function d : V (G) × V (G) → N that encodes the vertex-connectivity demands
between pairs of vertices. The objective is to find the smallest subgraph H of G that satisfies all these
demands. It is a well-studied NP-complete problem that generalizes several network design problems.
We consider the case of uniform demands, where for every vertex pair (u, v) the connectivity demand
d(u, v) is a fixed integer κ. It is an important problem with wide applications.

We study this problem in the realm of Parameterized Complexity. In this setting, in addition
to G and d we are given an integer ℓ as the parameter and the objective is to determine if we can
remove at least ℓ edges from G without violating any connectivity constraints. This was posed as
an open problem by Bang-Jansen et.al. [SODA 2018], who studied the edge-connectivity variant
of the problem under the same settings. Using a powerful classification result of Lokshtanov et
al. [ICALP 2018], Gutin et al. [JCSS 2019] recently showed that this problem admits a (non-uniform)
FPT algorithm where the running time was unspecified. Further they also gave an (uniform) FPT
algorithm for the case of κ = 2. In this paper we present a (uniform) FPT algorithm any κ that
runs in time 2O(κ2ℓ4 log ℓ) · |V (G)|O(1).

Our algorithm is built upon new insights on vertex connectivity in graphs. Our main conceptual
contribution is a novel graph decomposition called the Wheel decomposition. Informally, it is a
partition of the edge set of a graph G, E(G) = X1 ∪ X2 . . . ∪ Xr, with the parts arranged in a cyclic
order, such that each vertex v ∈ V (G) either has edges in at most two consecutive parts, or has
edges in every part of this partition. The first kind of vertices can be thought of as the rim of the
wheel, while the second kind form the hub. Additionally, the vertex cuts induced by these edge-sets
in G have highly symmetric properties. Our main technical result, informally speaking, establishes
that “nearly edge-minimal” κ-vertex connected graphs admit a wheel decomposition – a fact that
can be exploited for designing algorithms. We believe that this decomposition is of independent
interest and it could be a useful tool in resolving other open problems.
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1 Introduction

One of the most important challenges in designing real world networks is to ensure their
reliability in the face of damages and equipment failures. A natural solution is to build
additional redundancy in the network, at lowest possible costs, to guarantee connectivity up
to a certain number of failures. This motivates the study of network design problems, and
they are well studied in combinatorial optimization and algorithm design. The problem is
abstractly described using graphs, where vertices naturally represent the nodes of the network,
the edges represent the connections between the nodes and each edge has an associated cost.
In many applications, the objective is to find a minimum cost subgraph that connects all
the nodes and is also able to withstand a certain number of failures of vertices or edges. We
refer to the surveys [14, 19, 22] for details.

Formally, in the case of vertex failures this problem is called Minimum κ-Vertex
Connected Spanning Subgraph (κ-VCSS); the input is a graph G on n vertices with
edge costs w : E(G)→ R+, and the objective is to find a spanning subgraph H of minimum
total cost such that it remains connected even when κ − 1 vertices are deleted, for some
fixed integer κ. And in the case of edge-failures, we get Minimum λ-Edge Connected
Spanning Subgraph (λ-ECSS) where we must ensure network connectivity even after
λ− 1 edges fail, for some fixed integer λ. Both these problems are very well studied, and
have wide applications. Unfortunately they are NP-hard, even in the unweighted setting.
Therefore they have been extensively studied in Approximation algorithms [14, 19, 22], and
more recently in Parameterized algorithms.

If a pair of vertices u, v ∈ V (G) remain connected even after κ− 1 vertex failures, then
by the Menger’s Theorem [3, Theorem 7.3.1], there must be κ internally disjoint paths
from u to v in G. In other words, the vertex-connectivity between u and v is at least κ

in G. Since every pair of vertices in G must have this property, the graph G must be
κ-vertex connected. Similarly, in the case of edge-connectivity, the graph G must be λ-edge
connected. Interpreting κ-VCSS / λ-ECSS in terms of connectivity leads to the Survivable
Network Design Problem (SNDP), where we may have different connectivity demands
between different vertex pairs. SNDP captures a number of network design problems such
as Steiner Tree, Minimum Equivalent Digraph, Hamiltonian Cycle etc. We can
classify many network design problems by the nature of their connectivity constraints into
variants of Edge Connectivity SNDP (EC-SNDP) and Vertex Connectivity SNDP
(VC-SNDP). Observe that κ-VCSS and λ-ECSS correspond to the uniform connectivity
demands case of these problems, respectively. Hence they are also called VC-SNDP / EC-
SNDP with Uniform Demands. There has been a vast amount on research network
design problems, especially in Approximation algorithms [14, 19, 22], which has led to the
development of a number of new algorithmic techniques; e.g. the 2-approximation algorithm
of Jain for EC-SNDP [13] which introduced iterative LP-rounding.

Typically, vertex connectivity problems are often significantly more difficult than the
corresponding edge-connectivity problems. In contrast to the 2-approximation for EC-SNDP,
VC-SNDP has an approximation lower bound of 2log1−ϵ n [18], and κϵ for every κ > κ0
where ϵ > 0 and κ0 > 1 are constants [6]. Even in the case of uniform requirements, i.e.
κ-VCSS, the best known approximation algorithm for κ-VCSS has an approximation factor
O(log κ · log n

n−κ )[23], although it is improved to 6 assuming that n ≥ κ3(κ − 1) + κ [7].
Another example is the Unrestricted Vertex Connectivity Augmentation (UVCA),
where the objective is to augment a κ-vertex connected graph to a κ + t-vertex connected
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graph by adding new edges.1 While Unrestricted Edge Connectivity Augmentation
(UECA), that is similarly defined, is known to be in polynomial time from many decades
ago[11], the complexity of UVCA still remains open. Currently, a polynomial time algorithm
is only known for t = 1 [26].

Recently, there has been a lot of interest in the study of the Parameterized algorithms [8]2
for network design problems [2, 21, 4, 1, 12, 15, 16, 17, 10, 9]. The separation between
vertex-connectivity problems and edge-connectivity problems also persists in this setting;
nearly all of the currently known results are for edge-connectivity problems. Bang-Jensen
et al. [1] gave an FPT algorithm for the parameterized version of λ-ECSS3 in this setting.
This naturally raises the question for κ-VCSS, denoted by p-κ-VCSS4, which they pose as an
open problem. This is the problem we study here. Gutin et.al. [12] gave a non-uniform FPT
algorithm5 for p-κ-VCSS using a powerful classification result of Lokshtanov et al. [20]. The
running time of this algorithm is unspecified. They also gave an (uniform) FPT algorithm
for p-κ-VCSS when κ = 2 (Biconnectivity Deletion) [12].

p-κ-VCSS Parameter: ℓ

Input: A κ-connected graph G = (V, E) and an integer ℓ.
Question: Does there exist a set of edges F ⊆ E such that |F | ≥ ℓ and G′ = (V, E \ F )
is κ-connected?

Our contribution. In this work we give an (uniform) FPT algorithm for p-κ-VCSS for any
constant κ; indeed our result is stronger and the algorithm is FPT in both ℓ and κ. We
build upon the broad approach of Bang-Jensen et al. [1], but develop new insights into vertex
connectivity that are of independent interest.

▶ Theorem 1. p-κ-VCSS admits an FPT algorithm running in time 2O(κ2ℓ4 log ℓ) · |G|O(1).

Our algorithm follows the general scheme laid down by Bang-Jensen et al. [1] for p-λ-
ECSS. We consider the set of all deletable edges, i.e. all those edges e ∈ G(G) such that
G− e is κ-vertex connected. Our goal is to identify an irrelevant edge6 among these edges
and shrink the pool of relevant deletable edges until the instance can be more easily solved.
Bang-Jensen et al. [1] show that, for p-λ-ECSS, if the graph contains a large number of
deletable edges, then there exists a cyclic decomposition of the graph that can be used to
identify an irrelevant edge.7 We prove a similar kind of result for p-κ-VCSS.

We develop a new tool called the Wheel decomposition for this purpose that helps us
understand the structure of “nearly edge minimal” κ-vertex connected graphs. This is our
main conceptual contribution. An intuitive description is as follows: It is a partition of the

1 Formally, the input is a κ-vertex connected graph G and an integer t ≥ 1. The objective is to compute
a minimum cost subset F ⊆ V × V such that G + F is (κ + t)-vertex connected.

2 Let us recall that in Parameterized Complexity, the input is a pair (X, ℓ) where X is an instance of
the problem and ℓ is an integer, called the parameter. The objective is to design a Fixed Parameter
Tractable (FPT) algorithm, i.e. an algorithm that solves the problem in time f(ℓ) · |X|O(1) where f is a
function of ℓ alone.

3 They give FPT algorithms for λ-ECSS in both graphs and digraphs. Further, they extended their
results to κ-VCSS in digraphs by reducing it to special instances of λ-ECSS.

4 Here the p in p-κ-VCSS denotes parameterized
5 Here non-uniform algorithm refers to the complexity theory term, which is different from demands

being uniform or non-uniform.
6 i.e. one that is not present in some solution to the input instance and therefore remains in the graph

when the edges of that solution are deleted.
7 This is specifically required for odd values of λ in undirected graphs. The other cases are much simpler.
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edge set E(G) of a graph G, with the parts arranged in a cyclic order. Any vertex either has
edges in at most two consecutive parts, or else it has edges in every part of the partition.8
Each of these parts, which are edge-subsets, describes a vertex cut in a natural way: the
set of all those vertices that have an edge in this part and another edge somewhere outside
it. In a Wheel decomposition, these vertex cuts are highly symmetric. For our results, we
develop algorithmic tools to construct Wheel decompositions in instances of p-κ-VCSS and
then identify irrelevant edges using them.

We believe that the Wheel decomposition is of independent interest. As we have observed
earlier, vertex connectivity problems are often substantially more difficult than the corres-
ponding edge-connectivity problems. One reason for this is the lack of structural results
and tools for vertex connectivity as compared to edge connectivity. We believe that Wheel
decompositions will be a useful tool in understanding vertex connectivity and resolving other
open questions in the future.

Related works. As we mention above, our work has been most influenced by the work of
Bang-Jensen et al. [1]; we however require several new ideas and methods to deal with vertex
connectivity. Other related works gave FPT algorithms for Directed and Undirected
Spanners [16, 17, 10], and 2-VCSS [12] in a similar setting. A recent work considered
these problems parameterized by the solution size [9]. Additional results are known about
connectivity augmentation problems, e.g. Strong Connectivity Augmentation [15],
Edge connectivity Augmentation by One [21, 4] and Minimum Strong Spanning
Subgraph [2].There is a vast amount of research on network design problems in approximation
algorithms, too many to list comprehensively. We refer to the following surveys for an
overview [14, 19, 22]. There has been recent interest in improving the approximation-factor
for some specific simple cases of EC-SNDP, such as Weighted Tree Augmentation and
Weighted Connectivity Augmentation by One). A sequence of works have finally led
to breaching the approximation factor barrier 2 for both these problems [5, 24, 25]. Ideas
and methods from the Parameterized algorithms for these problems also played a role in
some of these results [5, 4].

2 Preliminaries and Notation

For a universe W and a subset of elements U ⊆ W we will denote the set W \ U by U .
When doing set-operations where one of the sets is a singleton, e.g. A ∪ {x}, we omit the
curly-braces and just write A ∪ x. For a graph G and a subset of vertices A ⊆ V (G), G−A

denotes the induced subgraph G[V (G) \A]. Similarly, for a set of edges B ⊆ E(G), G−B

denotes the subgraph with vertex set V (G) and edge-set E(G) \ B. For a graph G and
a subset of vertex-pairs B ⊆ V × V , G + B denotes the graph with vertex set V (G) and
edge-set E(G) ∪B. Let G = (V, E) be a graph and for an edge e = uv ∈ E the endpoints
of e are the vertices u and v, and we have V (e) = {u, v}. For a vertex u ∈ V let δ(u) ∈ E

define the set of edges which have u as an endpoint. We extend this notion to subsets of
vertices, i.e. δ(X) denotes the set of edges with an endpoint in X. Further, for an edge
e = (u, v), δ(e) denotes the set δ(V (e)). For a set of edges E′ ⊂ E and a vertex v we will
often denote that δ(v) ⊆ E′ by writing v ∈ E′. Given a graph G = (V, E), two vertices
s, t ∈ V , and a path P from s to t we denote the vertices of P as V (P ) and E(P ) will denote
the edges of P . Given two vertices u, v ∈ V (P ) the path P [u, v] is the subpath of P which
goes from u to v. Furthermore, P ]u, v[ will be the induced path P [u, v] \ {u, v}.

8 These two types of vertices can be thought of as the rim and the hub of a wheel.
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An instance of a parameterized problem Π consists of a main part I and a parameter l, and
it is denoted denoted (I, l). A parameterized decision problem Π admits a fixed-parameter
tractable (FPT) if for every instance (I, ℓ) ∈ Π the problem admits an algorithm which
can decide if there is an affirmative or negative answer to the problem and the algorithm
has complexity O(f(ℓ)|I|c) for some positive function f . The problem admits a uniform
FPT algorithm, if there is an algorithm A that solves an instance (I, ℓ) of the problem in
O(f(ℓ)|I|c) time. And it admits a non-uniform FPT algorithm if for each value of ℓ, there is
an algorithm Aℓ that solves an instance (I, ℓ) in O(f(l)|I|c) time.

Vertex-cuts and Separators

▶ Definition 2. Given a set of edges U ⊆ E the vertex-cut induced by U is the minimal set
of vertices denoted S(U) ⊆ V such that for every pair of edges e ∈ U and e′ ∈ U we have
V (e) ∩ V (e′) ⊆ S(U).

Note that, for every vertex u ∈ S(U) the sets δ(u) ∩ U and δ(u) ∩ U are both not empty
due to minimality of U . For two disjoint sets of edges U, W ⊆ E we will use the notation
D(U, W ) to define those vertices in V which are endpoints of edges in both U and W . For
two different graphs G = (V, E) and G′ = (V, E′), defined on the same set of vertices V , and
a set of edges U such that U ⊆ E ∩ E′ we will use a subscript to indicate in which graph we
consider the vertex-cut S(U). That is, S(U)G will refer to a (uniquely determined) vertex-cut
in G while S(U)G′ will refer to a (uniquely determined) vertex-cut in G′. Moreover, with
a slight abuse of notation for the sake of brevity, for a set of edges W ⊆ E and the graph
G∗ = (V, E \W ) we denote the vertex-cut S(U \W )G∗ in G∗ as S(U)G∗ . Note that, the
underlying graph of a vertex-cut and the corresponding subset of edges are always clear from
the context. Note that S(U)G∗ ⊆ S(U)G. We will omit the subscript if there is only one
graph or it is explicitly given in which graph the vertex-cut should be considered. Similarly,
for sets of edges and sets of vertices a subscript will indicate which graph we refer to.

A set of vertices Q ⊆ V in a graph G = (V, E) is a vertex-separator if there exist two
vertices u, v ∈ V \Q such that there is no path from u to v in G−Q. We will also call such
a vertex-separator Q a (u, v)-separator and say that Q separates u and v. For a minimal
(u, v)-separator Q, let R be the set of vertices in the same connected component as u in
G −Q and T = V \ (R ∪Q). Now let U ⊆ E be the set of edges which have an endpoint
in R and observe that Q = S(U), that is, the vertex-cut S(U) is a minimal (u, v)-separator.
This implies that δ(u) ⊆ U and δ(v) ⊆ U . Conversely, if there exists a vertex-cut S(U) such
that for two vertices u, v ∈ V it holds that δ(u) ⊆ U and δ(v) ∈ U then there cannot be a
path from u to v in G− S(U) as δ(v) will be disconnected from δ(u) in this graph. Hence
S(U) must be a (u, v)-separator. Therefore, we have the following observation:

▶ Observation 3. Let G = (V, E) be a graph. For U ⊆ E, if there exist two vertices u, v ∈ V

such that δ(u) ⊆ U and δ(v) ∈ U , then S(U) is a (u, v)-vertex-separator. And if Q is a
minimal (u, v)-separator, then there is a subset of edges U ⊆ E such that Q = S(U), δ(u) ⊆ U

and δ(v) ⊆ U .

We call a vertex-cut S(U) a nearby vertex-separator with respect to e = uv if exacty
one of the vertices u and v is contained in S(U)G, and S(U)G−e

9 is a (u, v)-separator in
G− e. Figure 1 shows a nearby vertex-separator. By Definition 2, for every x ∈ S(U)G−e it
holds that δ(x)G−e intersects UG−e and UG−e. Hence S(U)G = S(U)G−e ∪ v for v ∈ V (e)
which implies that |S(U)G| = |S(U)G−e|+ 1.

9 Recall that, for brevity we write S(U)G−e to denote S(U \ {e})G−e.
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▶ Observation 4. For a graph G = (V, E) and a nearby vertex-separator S(U)G with respect
to e = uv it holds that |S(U)G| = |S(U)G−e| + 1 and S(U)G = S(U)G−e ∪ v for some
v ∈ V (e).

e1 = u1v1

e2

e3

e4
e5

e6

e7

Figure 1 S(U) is a near-vertex separator for e1 where U = {e1, e2, e3, e4}.

▶ Observation 5. A vertex-cut S(U) is a nearby vertex-separator with respect to e = uv if
and only if one of the following holds:

δ(u) \ e ⊆ U and δ(v) ⊆ U (or δ(u) \ e ⊆ U and δ(v) ⊆ U)
δ(u) ⊆ U and δ(v) \ e ⊆ U (or δ(u) ⊆ U and δ(v) \ e ⊆ U)

We have the following results which follows directly from Menger’s Theorem.

▶ Lemma 6. Given a graph G = (V, E) and two vertices u, v ∈ V such that uv ̸∈ E, it is
possible to find a minimum (u, v)-separator S(U) in O((|V |+ |E|)O(1)) time.

▶ Corollary 7. Given a graph G = (V, E) and an edge e, in O((|V | + |E|)O(1)) time it is
possible to find a minimum nearby vertex-separator with respect to e or determine that no
nearby vertex-separator with respect to e exists.

▶ Theorem 8. The following statements are equivalent:
The graph G = (V, E) is κ-connected.
|V | ≥ κ + 1 and for every pair of vertices u, v ∈ V such that uv ̸∈ E there are κ internally
disjoint paths from u to v.
|V | ≥ κ + 1 and every vertex-separator has size at least κ.

▶ Lemma 9. Given a graph G = (V, E), it is possible to determine if G is κ-connected in
O(|G|O(1)) time .

For vertex-cuts in general we have the following.

▶ Lemma 10. The size of vertex-cuts is a submodular function, that is, given two edge-cuts
S(U), S(W ) we have |S(U ∩W )|+ |S(U ∪W )| ≤ |S(U)|+ |S(W )|.

Deletable and Relevant Edges

For a p-κ-VCSS instance (G = (V, E), ℓ) where G is a κ-vertex connected graph, we call a
subset of edge F ⊆ E a solution if G = (V, E \ F ) is κ-connected and |F | ≥ l. To help
distinguish between the edges which may be part of a solution and the edges which can
definitely not be part of a solution we have the following definition:

▶ Definition 11. An edge e ∈ E is deletable if G − e is κ-connected. If an edge is not
deletable then it is undeletable.
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Clearly every edge of a solution F ⊆ E is deletable in G. Let the set of deletable edges of G

be denoted del(G), and denote the remaining edges by undel(G). It means that for a solution
F ⊆ E we have F ⊆ del(G). Instead of working directly with deletable and undeletable edge
we will be working with a subset with the property that R ⊆ del(G), such that if there exists
a solution F then there also exists a solution F ′ ⊆ R. The idea behind the algorithm is that
we will either find a solution or shrink the set R until R is small enough that we can apply a
brute force algorithm to determine if a solution exists or no solution exists.

▶ Definition 12. A set R ⊆ del(G) is a set of relevant edges if one of the following is true.
There exists a solution F ⊆ R.
There exists no solution to the problem.

Now we have the following relation between a deletable edge e ∈ E and a nearby
vertex-separators with respect to e.

▶ Proposition 13. Given a graph G = (V, E) and a deletable edge e ∈ E it holds that every
nearby vertex-separator with respect to e in G is of size at least κ + 1.

3 Overview of the Algorithm

In this section we present an overview of our algorithm, that highlights the main ideas and
techniques of this paper. Broadly we follow the approach of Bang-Jensen et al. [1], who
studied the edge-connectivity version of the problem in both graphs and digraphs, and also
the vertex-connectivity version in digraphs. However we develop some non-trivial new ideas
and methods for vertex connectivity in undirected graphs. Due to limited space, the proofs
and some technical details have been omitted from this extended abstract; they will be
presented in the full version of the paper.

The starting point of our algorithm (similar to Bang-Jensen et al [1]) is the notion of a
deletable edge. Let del(G) be the set of all deletable edges in G. Note that it is computable in
polynomial time. It is clear that any solution F to this instance is a subset of del(G). Here, by
a solution to (G, ℓ) we mean a subset of ℓ edges, F , such that G−F is κ-connected. Note that,
if |del(G)| itself is upper-bounded, by say 49κ2ℓ4, then a simple brute-force algorithm can
find a solution in the time 2O(κ2ℓ4) ·nO(1). Therefore, we may assume that |del(G)| ≥ 49κ2ℓ4.

Consider the effect of removing a deletable edge e ∈ del(G) from G. Observe that a
number of edges in del(G) could become undeletable in G − e, i.e. removing any of these
edges in G− e will violate the κ-connectivity constraint. Let IG

e = del(G) \ del(G− e) denote
the set of all deletable edges in G that become undeletable in G− e. We drop the superscript
when the graph is clear from context. Now consider the following simple greedy algorithm
based on the notion of deletable edges:

If there is a deletable edge e in the current instance (G, ℓ), find the one minimizing
|Ie|. Then recursively solve the instance (G− e, ℓ− 1) to obtain a solution S′ to it.
Finally output the solution S = S′ ∪ {e}. Otherwise, output that there is no solution.

Observe that this algorithm succeeds only if in each sub-instance, the set Ie is not too large
(e.g. O(κ2ℓ3)). In other words, only a bounded number of deletable edges should become
undeletable in each recursive call. Then assuming that del(G) was sufficiently large (e.g.
at least O(κ2ℓ4)) at the beginning, this greedy algorithm produces a solution to (G, ℓ) in
polynomial time.

The remaining case is when there is a sub-instance G′ where, for any deletable edge
e′ ∈ del(G′) |IG′

e′ | > 100κ2ℓ3, that is a large number of deletable edges become undeletable
on removing e′ from G′. We pick such an edge e′ ∈ del(G′) and consider the pair (G′, e′) and
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13:8 A Parameterized Algorithm for Vertex Connectivity SNDP with Uniform Demands

analyze their structural properties. Our main technical result, simplified, is an algorithm
AIrr that given G, G′, e′, where G′ is a κ-connected subgraph G′ of G and e′ ∈ del(G′)
such that |IG′

e′ | > 100κ2ℓ2, either finds a solution to (G, ℓ), or identifies a new irrelevant
edge e′′ ∈ IG′

e′ for the instance (G, ℓ). Here, an irrelevant edge refers to a deletable edge
e′′ ∈ del(G) such that there is a solution F ⊆ del(G) \ e′′. If we mark e′′ as irrelevant, then it
is treated just like an undeletable edge, and it remains in the graph.

The algorithm runs over many iterations, where in each iteration we either find a solution
or find a new irrelevant edge. We maintain a set of relevant edges R which is initially del(G),
and update it over a sequence of iterations until either a solution is found, or we have rule
out the existence of a solution. Note that we ensure that R is always a subset of the deletable
edges. Further, the definition of the set Ie now becomes R \ del(G− e), since we are only
interested in solutions formed with relevant edges. Therefore our updated algorithm for
p-κ-VCSS is as follows:

Let (G, ℓ) be the input instance of p-κ-VCSS, and let R ⊆ del(G) be the set of relevant
edges. We first apply the above greedy algorithm to (G, ℓ), and output a solution if
one is found.
Otherwise the above greedy algorithm fails to find a solution to (G, ℓ), therefore we
find a sub-instance G′ and pick an arbitrary edge e′ ∈ del(G′) such that Ie′ is large.
Then, apply the algorithm AIrr to (G, G′, e′,R). It either finds a solution F to (G, ℓ),
or it finds a new irrelevant edge e′′ ∈ Ie′ ⊆ R for (G, ℓ). In the first case, we output
the solution found by AIrr. In the second case, start a new iteration on the instance
(G, ℓ) with R− e′′ as the new set of relevant edges.

Observe that we have at most |E| iterations of the above algorithm. Hence, the running time
of the above algorithm is (tAIrr

+ 2) · nO(1), where tAIrr
denotes the running time of the

algorithm AIrr. We prove that tAIrr
= 2O(κ2ℓ4) · nO(1) where n = |V |.

Let us also address another special case of the problem that can be solved in polynomial
time. It leads to a bound on the number of relevant edges incident on any single vertex. This
is required for our implementation of AIrr. We begin by observing the following.

▶ Observation 14. Given a κ-connected graph G = (V, E), a set of relevant edges R ⊆ E,
and an edge e = uv ∈ R. In G − e every set of κ internally disjoint paths from u to
v, P = {P1, P2, . . . , Pκ}, will use all of the irrelevant edges with respect to e, that is,
IG

e ⊆ ∪i∈{1,...,κ}E(Pi).

▶ Lemma 15. Given a κ-connected graph G = (V, E) and a set of relevant edges R. If there
exists a vertex u ∈ V such that |δ(u) ∩R| ≥ (κ + 1) · l, then a solution exists and it can be
found in O((|E|+ |V |)O(1)) time.

In the following subsections we give an overview of main ideas of the algorithm AIrr.
For simplicity, we assume that G = G′, and we have an edge e ∈ R ⊆ del(G) such that
|Ie| > 100κ2ℓ3. In the general case, where G′ is a proper subgraph of G, our methods are
identical with one extra step for handling the edges in E(G) \ E(G′). We construct a Wheel
decomposition of the graph G′ and then we lift it back to G (see Lemma 22).

The Wheel Decomposition

The key conceptual idea behind the algorithm AIrr, is what we call the Wheel decomposition
of a graph; the name is derived from the decomposition structure. See Figure 2.
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▶ Definition 16. Let r ≥ 3 and α be integers. We say that G admits an α-wheel decomposition
(W, r) if there is an edge partition W = {X0, X1, . . . , Xr−1} of E(G) into nonempty subsets,
where the subsets are indexed cyclically, such that for every i ∈ {0, . . . , r − 1} the following
holds.
1. |S(Xi)| = α

2. S(Xi) = D(Xi−1, Xi) ∪ D(Xi, Xi+1),
3. |D(Xi−1, Xi)| = |D(Xi, Xi+1)|,
4. D(Xi−1, Xi) ∩ D(Xi, Xi+1) = S(Xi) ∩ S(Xj) for every j < i− 1 and j > i + 1.

Figure 2 A simple example of a Wheel decomposition of a graph; each part contains two edges
and the center vertex is the only middle vertex of this wheel decomposition.

Observe that Property 4, ensures that for every vertex v ∈ V (G) either δ(v) contains an
edge from every part of W, or from at most two consecutive parts of W, where Xr−1 and
X0 are taken to be consecutive giving W a cyclic order. The vertices of the first kind, i.e.
those that have an edge in every part of W are called the middle vertices of W . We think of
these vertices as the hub of a wheel whose ring is formed by the non-middle vertices of W.
Note the highly symmetrical properties of the vertex-cuts induced by the parts of W . These
are extensively applied in our proofs.

For the algorithm AIrr, we shall associate a κ-Wheel decomposition W with a subset
of edges E+ ⊆ R. Recall that the input to this algorithm consists of a tuple (G,R, G′, e′),
and in the simplified case that we are currently considering G = G′. Further, we have that
Ie′ = R \ del(G− e′) contains at least 100κ2ℓ3 edges. We will compute a subset E+ of Ie,
and use a Wheel decomposition to identify an irrelevant edge in E+. Towards this we first
recall the notion of a nearby vertex separator. We then have the following definition.

▶ Definition 17. Let α be an integer. Let G be a graph and let E+ = {e0, e1, · · · , e|U |−1} ⊆
E(G) be a subset of edges. We say that G admits an edge-restricted α-wheel de-
composition (W, E+) if there is an α-wheel decomposition (W, |E+|) such that for every
i ∈ {0, . . . , |E+| − 1};

ei ∈ Xi,
S(Xi) and S(Xi+1) are both nearby vertex-separators with respect to ei.

▶ Observation 18. Let G be a graph and let E+ = {e0, e1, . . . , er−1} ⊆ R be a subset of
relevant edges. Let (W, E+) be an edge-restricted α-Wheel decomposition of G, for some
integer α, where W = {X0, X1, . . . , Xr−1}. Then for each edge ei = uivi ∈ E+ such that
ei ∈ Xi, we have that δ(ui) ⊆ Xi and δ(vi) \ {ei} ∈ Xi+1. Here Xr denotes the set X0.

The key idea is the fact that both S(Xi) and S(Xi+1) are nearby vertex separators for
ei. This means that both S(Xi+1)G−ei

and S(Xi)G−ei
are ui − vi vertex separators. Hence

δ(ui) \ ei ⊆ Xi \ ei and δ(vi) \ ei ⊆ Xi. We can draw similar conclusions about Xi+1, and
then arrive at these observations. It is immediate from Observation 18 that both endpoints
of an edge ei ∈ E+ must be non-middle vertices of the Wheel decomposition (W, E+). This
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fact will be important in our proofs. However, we must also deal with another issue. Suppose
that we have a (κ + 1)-Wheel decomposition (W, E+) and we wish to mark an edge ei ∈ E+

as irrelevant. To argue the correctness, we have to show that there is a solution that excludes
ei. Towards this, given some solution F to (G, ℓ) that contains ei, we construct another
solution F ′ that excludes ei. The construction of F ′ in our proofs must not only exclude ei

but every edge in E′
i = F ∩ E(D(Xi, Xi+1)) \ Z, where Z denotes the set of middle vertices

of the Wheel decomposition (W, E+); this is a constraint of our arguments. These edges
will be replaced by another set of edges contained in E(D(Xj , Xj+1)) \ Z for some j ̸= i. To
describe the construction of F ′ formally we require the following definition.

▶ Definition 19. Given a κ-connected graph G, and a set of relevant edges R ⊆ E(G). If
G admits an edge-restricted (κ + 1)-wheel decomposition (W, E+) where E+ ⊆ R then a
friendly set of edges for ei ∈ E+ is a set of edges Ei ⊆ R such that
1. ei ∈ Ei,
2. every edge e ∈ Ei has at least one of it’s endpoints in D(Xi, Xi+1) and none of the

endpoints of e are middle vertices,
3. G− Ei is κ-connected,
and Ei has the maximum cardinality among all edge subsets fulfilling these three criteria.

Observe that a friendly set of edges Ei for an edge ei ∈ E+ gives an upper-bound on the
set E′

i described above. It suggests that choosing ei that minimizes |Ei| is the most likely
candidate for a new irrelevant edge. The following lemma gives us a way of a computing
friendly set of edges for a given wheel decomposition (W, E+).

▶ Lemma 20. Given a κ-connected graph G, a set of relevant edges R, and an edge-restricted
(κ + 1)-wheel decomposition (W, E+) of G where E+ ⊆ R, it is possible to find a family
of friendly sets E = {Ei|i ∈ {0, . . . , |E+|}} in O(2O(d·(κ+1)) · |G|O(1)) time, where d is the
maximum number of relevant edges incident on a vertex v ∈ V (G).

Note that this lemma assumes that the number of relevant edges incident on any vertex is
bounded by some number d. Here we require Lemma 15, where we have shown that if there
were a vertex v that had (κ + 1) · ℓ relevant edges incident on it, then we can compute a
solution in polynomial time. Hence, we can assume that d < (κ+1) ·ℓ, and therefore compute
a friendly set of edges in 2O((κ+1)2·l) · nO(1) time. This is suitable for an FPT algorithm.

With all these definitions and lemmas in hand, the process of identifying a new irrelevant
edge in an instance (G,R, ℓ) will be as follows. Using the steps described in the following
sub-section, we will arrive at a subset of relevant edges E+ ⊆ R containing more than
6ℓ + κ + 2 edges and an edge-restricted (κ + 1)-Wheel decomposition (W, E+) in polynomial
time. Next, we will compute a friendly set of edges for every ei ∈ E+. Here we apply
Lemma 20, along with the bound on the number of relevant edges incident to a vertex due
to Lemma 15. This yields a friendly set of edges, Ei for each edge in ei ∈ E+, in total time
2O((κ+1)2·l) · nO(1). Finally, we mark the edge in ei ∈ E+ with the smallest friendly set of
edges as irrelevant. The correctness of the last step is from the following lemma, which is
one of our main technical results.

▶ Lemma 21. Given a graph G = (V, E), a set of relevant edges R, an edge-restricted
(κ + 1)-wheel decomposition (W, E+) of G with E+ ⊆ R where |E+| ≥ 6l + κ + 2, and a
family of friendly sets E for the edges in E+ such that Es ∈ E has the minimum cardinality
of all the sets in E, it holds that R− es is a set of relevant edges in G.

To prove this lemma we consider a hypothetical solution F such that es ∈ F and then we
construct another solution F ′ that excludes es. This then implies that es is irrelevant. Let
W = {X0, X1, . . . , X6ℓ+κ+1}. Since |F | = ℓ, there must exist an index i ∈ {1, . . . , 6ℓ + κ + 2}
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such that for every j ∈ {−2, . . . , 3}, Xi+j ∩ F = ∅. Let E′
s = F ∩ D(Xi, Xi+1) and note

that es ∈ E′
s. Let F ′ = (F \ E′

s) ∪ Ei. We claim that F ′ is also a solution. It is clear that
|F ′| ≥ |F | by our choice of es. To argue that G − F ′ is κ-vertex connected, we give an
argument based on (hypergraph) cut submodularity. While the actual argument is quite
long and non-trivial, the essence of it is that if there were a κ− 1 cut in G− F ′, then using
submodularity we can trim it down to a κ − 1 cut that must exist in G − F . This is a
contradiction since F is a solution, i.e. G − F is κ-connected. Here our arguments make
extensive use of the highly symmetric properties of the cuts S(Xi).

The next lemma allows us to lift a Wheel decomposition from a subgraph G′ back to a
graph G. This is required for the case where our simplifying assumption that G′ = G doesn’t
hold. In that case, G = G′ + F ′ and we have a Wheel decomposition in G′ that must be
converted into a decomposition in G.

▶ Lemma 22. Given a graph G′, a nonempty set of edges F ′ ⊆ V (G′) × V (G′),
an edge-restricted (κ + 1)-wheel decomposition (W ′ = {X ′

0, X ′
1, · · · , X ′

|W|′−1}, E′ =
{e′

0, e′
1, · · · , e′

|W|′−1}) of G′ such that |W ′| ≥ 2 · |F ′| · (r + 1) + 1 for an integer r ≥ 4,
it holds that in polynomial time it is possible to find an edge-restricted (κ + 1)-wheel decom-
position (W ′, E+) of G = G′ + F ′ such that |W ′| = r and E+ ⊆ E′.

The proof of this lemma essentially attempts to “merge” those parts {X ′
i} that are damaged

by adding F ′. The details are presented in the full-version.

Wheel Decomposition for p-κ-VCSS

In this section we give an overview of the next part of the algorithm AIrr that computes
a Wheel decomposition with certain useful properties. The input is a κ-connected graph
G on n vertices, an integer ℓ and a set of relevant edges R and an edge e ∈ R such that
Ie = R \ del(G − e) contains at least κℓ · 2(h + 3) edges. Here h ≥ 3 denotes the number
of parts in our Wheel decomposition, and it is an integer whose value is roughly O(κℓ2) in
our final algorithm. We compute a edge-restricted Wheel decomposition (W, E+) where
E+ ⊆ Ie using the following lemma, which is our second main technical result.

▶ Lemma 23. Given a κ-connected graph G = (V, E), an integer h ≥ 3, an edge e = uv ∈ R
where R is a relevant set of edges for G, such that |Ie| ≥ κ · ℓ · 2(h + 3), in polynomial time
G it is possible to either:
1. find a set of edges F ⊆ E such that G− F is κ-connected and |F | = ℓ, or
2. find a set E+ ⊆ Ie such that |E+| = h and an edge-restricted (κ + 1)-wheel decomposition

(W, E+) of G.

Our proof of this lemma relies on several structural properties of e and Ie. In essence, we
first identify a suitable subset of edges in Ie that can lead to the required Wheel decomposition,
and then prove this fact. The first ingredient is the following. Let e = uv and since e ∈ R,
the graph G− e is κ-connected. Then we argue that for any system of κ internally disjoint
paths from u to v in G − e, P, every edge in Ie occurs in one of the paths in P. This
is because if some edge e′ ∈ Ie was excluded from P, then one can show that G − e − e′

must also be κ-connected. From this statement we can conclude that one of the paths
in P must have at least |Ie|/κ ≥ ℓ · 2(h + 3) edges from Ie, and let P ∈ P be such a
path. We say that this path P satisfies the intersection property with respect to e. Observe
that by a simple max-flow computation we can find this path P in polynomial time. Let
{e1, e2, . . . , eℓ·2(h+3)} ⊆ E(P )∩ Ie where the edges are in sequence of traversing P from u to
v. Our objective is to show that a subset of these edges can lead us to the required Wheel
decomposition.
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Let E′ = {ei | i = 1 mod 2(h + 3)}, and let r be the least integer such that er ∈ E′

and G′ = G − {ei | i = 1 mod 2(h + 3) and i ≤ r} is not κ-connected. If r ≥ ℓ + 1, then
clearly {ei | i = 1 mod 2(h + 3) and i < r} is the required solution to (G, ℓ,R). Therefore,
we assume r ≤ ℓ, and let E′′ = {ei | i = 1 mod 2(h + 3) and i < r}. It is clear that G− E′′

and G− er are κ-connected, but G′ = G− E′′ − er is not.
Let us fix a vertex-separator S(U ′)G′ of size less than κ in G′, where U ′ ⊆ E(G′). It

is clear that S(U ′)G′ separates the vertex pairs ur, vr and uj , vj where er = urvr and
ej = ujvj ∈ E′′ for some j < r. Let us fix the largest such j. Note that r− j ≥ 2(h + 3) and
hence r ≥ 2(h + 3). Let E∗ = {ej , er} ∪ {er+2i−2(h+2) | 0 ≤ i ≤ h + 1}. Finally, we define
the edge subset E+ which contains h edges, that forms one half of our Wheel decomposition
(W, E+) as follows:

E+ = E∗ \ {ej , er−2(h+2), er−2, er}

We remark that the choice of E+ may seem rather arbitrary, however it was chosen to
encode several useful properties that are required for our proof. These properties are applied
in the construction of the edge partition W , which forms the other half of our decomposition.

For convenience, let us rename the edges in E∗ as si ← er+2i−2(h+2) and further let
s = ej and t = er. The following lemma is our next key ingredient, that computes a family
of vertex cuts, defined via edge-subsets, corresponding to E∗. These cuts will be used to
define W .

▶ Lemma 24. Given a graph G = (V, E), an edge e = uv ∈ R and a path P between u and
v fulfilling the intersection property such that Ie ∩ P ̸= ∅, in polynomial time it is possible to
find a family of cuts C = {C1, C3 · · · , C|Ie∩P |} such that for each ei ∈ Ie ∩ E(P ),
1. ei ∈ Ci, e ∈ Ci, and S(Ci) is a nearby vertex-separator with respect to both ei and e.
2. vi is the only internal vertex of P in S(Ci).
3. |S(Ci)| = κ + 1,
4. For every ej = ujvj where 1 < j < i, δ(uj), δ(vj) ⊆ Ci

5. For every ej = ujvj where j ≥ i + 2, δ(uj), δ(vj) ⊆ Ci

Further Ci ⊂ Cj for any j ≥ i + 2.

Proving this lemma is not too difficult, although it requires working out some details. The
idea is to start with a collection of arbitrary κ-cuts in G− e containing an endpoint of these
edges, and further exploiting the membership of ei in Ie. These cuts are “untangled” using
the submodularity of hypergraph cuts, to obtain that last containment property. Similar
ideas were used by Bang-Jensen et al [1].

Applying the above lemma to G, e and P we obtain a collection of cuts, C =
{Cr, C0, C1, . . . Ch+1, Ct} corresponding to the edges in E∗ = {s, s0, s1, . . . , sh+1, t}. Note
that these cuts satisfy all the properties of the above lemma, and in particular Ci ⊂ Cj for
any i < j in this collection. We can now define the edge-partition of our Wheel decomposition
as follows:

W = {X1 = E \ (Ch ∩ C1 ∩ U ′} ∪ {Xi = Ci ∩ Ci−1 ∩ U ′ | 2 ≤ i ≤ h}

Finally, to prove that W is indeed the required Wheel decomposition, we prove it’s
properties one by one. The main tool that we use is once again submodularity of cuts. In
particular, from the definition of W, some intutition can be derived. The cut induced by
U ′ is of size κ− 1 in G′. This cut splits each Ci into two pieces, and further because of the
containment property of C, the parts Xi are defined as the portion of Ci \ Ci−1 in U ′. The
part X1 simply contains the remaining edges. The various symmetric properties of the cuts
induced by each Xi are consequences of the choice of E∗, via submodularity of cuts.
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Putting it all together: An algorithm for p-κ-VCSS

We collect all the previous results to arrive at the following algorithm for p-κ-VCSS:
1. If the induced graph G′ = (V,R) contains a vertex with degree at least (κ + 1) · l then

use the algorithm of Lemma 15 to find a solution and return it.
2. If |R| ≤ 49κ2l4, then for every subset F ′ ⊆ R of size l determine if F ′ is a solution. If F ′

is a solution, return F ′ as a solution. If none of the subsets F’ is a solution, return that
no solution exists.

3. Choose an edge fi ∈ Ri, and let Ifi
= Ri \ del(Gi \ fi):

a. If |Ifi
| ≥ κ · l · 2(2i · (6l + κ + 3) + 4) then by Lemma 23

i. we can either find a solution F ′ for Gi of size l, and return F ′ as a solution,
ii. or we can find a set E+ ⊆ Ie such that |E+| = 2i · (6l + κ + 3) + 1 and an

edge-restricted (κ + 1)-wheel decomposition (W, E+) for Gi.
A. If F ̸= ∅ then given Gi, F , and (W, E+) by Lemma 22 find an edge-restricted

(κ + 1)-wheel decomposition (W ′, E′) of G = Gi + F such that E′ ⊆ E+ and
|E′| ≥ 6l + κ + 2.

B. Otherwise, if F = ∅ then set (W ′, E′) = (W, E+) to be an edge-restricted
(κ + 1)-wheel decomposition of G = Gi.

C. Given the set of relevant edges R, and (W ′, E′) use the algorithm from Lemma 20
to find the friendly sets for every edge ej ∈ E′.

D. Find the edge ej ∈ E′ for which the corresponding friendly set Ej has the smallest
cardinality among all the friendly sets. Now set R := R \ ej and go to step 2.
The correctness of this step follows from Lemma 21.

b. Otherwise, set Gi+1 = Gi − fi, Ri+1 = R ∩ del(Gi+1), and F := F ∪ fi. If |F | ≥ l

return F as a solution.

This algorithm proves Theorem 1. The correctness follows from the correctness of each
lemma used in the above. For the running time, observe that Step 1 runs in polynomial
time. The next steps are repeated at most |E(G)| times, for each iteration, where we shrink
the set of relevant edges R until Step 2 is finally applicable. Note that Step 2 runs in time
2O(κ2ℓ4) · nO(1). One of Steps 3(a)i and 3(a)ii is run in each iteration, which is decided
in polynomial time by Lemma 23. In the second case, we obtain a Wheel decomposition
(W, E+) in Step 3(a)iiC we spend 2O((κ+1)2·l) ·nO(1) time computing friendly sets of edges for
E+. We then mark an irrelevant step, and proceed to the next iteration. A straightforward
calculation gives the claimed running time of the algorithm.

Due to space constraints, several proofs were omitted. Complete details may be found in
the full version of the paper, in the appendix. Finally, we also thank anonymous reviewers
for their suggestions on improving this paper.
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