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Abstract
Nakamoto’s consensus protocol works in a permissionless model and tolerates Byzantine failures,
but only offers probabilistic agreement. Recently, the Sandglass protocol has shown such weaker
guarantees are not a necessary consequence of a permissionless model; yet, Sandglass only tolerates
benign failures, and operates in an unconventional partially synchronous model. We present Gorilla
Sandglass, the first Byzantine tolerant consensus protocol to guarantee, in the same synchronous
model adopted by Nakamoto, deterministic agreement and termination with probability 1 in a
permissionless setting. We prove the correctness of Gorilla by mapping executions that would violate
agreement or termination in Gorilla to executions in Sandglass, where we know such violations
are impossible. Establishing termination proves particularly interesting, as the mapping requires
reasoning about infinite executions and their probabilities.
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1 Introduction

Nakamoto’s Bitcoin [23] demonstrated that a form of consensus can be reached even if
participation is permissionless. Nakamoto achieved this by introducing the cryptographic
primitive Proof of Work (PoW) [10, 13] into the common synchronous Byzantine model [9].
With PoW, a process can work for a short while and probabilistically succeed in solving
a puzzle. But Bitcoin only achieves a probabilistic notion of consensus: both safety and
liveness fail with negligible probability.

Lewis-Pye and Roughgarden showed that deterministic and permissionless consensus
cannot be achieved in a synchronous network in the presence of Byzantine failures [18].
Nonetheless, previous work (§2) has achieved deterministic safety and termination with
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probability 1 under different models. Sandglass [27] assumes a benign model with a non-
standard hybrid synchrony model. Momose et al. [22] guarantee termination only if the set
of processes stabilizes. Malkhi et al. [20], while leveraging either authenticated channels
or digital signatures, propose a solution whose correctness depends on Byzantine nodes
comprising fewer than a third of the nodes in the system.

The question is whether it is possible to achieve deterministic safety and termination
with probability 1 without limiting either Byzantine behavior or how nodes join and leave,
and without relying on authentication.

We answer this question in the affirmative for a synchronous model (§3) with Byzantine
failures. We present Gorilla Sandglass (or simply Gorilla) (§4), a consensus protocol that
guarantees deterministic safety and termination with probability 1 in this standard model,
which we dub GM (for Gorilla Model). Gorilla relies on a form of PoW: Verifiable Delay
Functions (VDFs) [6]. We consider an ideal VDF [21] that proves a process waited for
a certain amount of time and cannot be amortized. The key difference between a VDF
and Nakamoto’s PoW is that multiple processes can calculate multiple VDFs concurrently,
but cannot, by coordinating, reduce the time to calculate a single VDF. The crux of the
protocol is simple. The protocol proceeds in steps. In each step, all (correct) nodes collect
VDF solutions from their peers and build new VDFs based on those. Intuitively, correct
processes, which are the majority, accrue solutions faster than Byzantine nodes, and progress
through the asynchronous rounds of the protocol faster. Eventually, the round inhabited by
correct nodes is so far ahead of that occupied by Byzantine nodes that, no longer subject to
Byzantine influence, correct nodes can safely decide.

Gorilla Sandglass adopts the general approach of Sandglass [27], in the sense that puzzle
results are accrued, with each puzzle built on its predecessors. In Sandglass participants
are benign and they send, in each step, a message built on previously received messages.
In Gorilla, however, the Byzantine adversary is not limited to acting on step boundaries or
communicating at particular times. Surprisingly, Gorilla’s correctness can be reduced to the
correctness of a variation of Sandglass. We perform this reduction in two steps (§5).

We first show that, for every execution of Gorilla in GM, there is a matching execution
where the Byzantine processes adhere to step boundaries, in a model we call GM+. In the
mapped execution, Byzantine processes only start calculating their VDF at the beginning
of a step and only send messages at the end of a step. GM+ is a purely theoretical device,
as it allows operations that cannot be implemented by actual cryptographic primitives. In
particular, it allows Byzantine processes to start calculating a VDF in a step s building on
any VDF computed by other Byzantine nodes that will be completed by the end of s, rather
than by the start s, as allowed by GM (and actually feasible in reality). Nonetheless, GM+
serves as a crucial stepping stone towards proving Gorilla’s correctness.

Next, we show that, given an execution in GM+ that violates correctness, there exists a
corresponding execution of Sandglass in a model we call SM+. The SM+ model is similar
to that of Sandglass: in both, processes are benign and propagation time is bounded for
messages among correct processes and unbounded for messages to and from so-called defective
nodes. But unlike Sandglass, in SM+ a message from a defective node can reference another
message generated by another defective node during the same step (similar to how GM+
allows Byzantine nodes to calculate a VDF that builds on VDFs calculated by other Byzantine
nodes in the same step).

Together, this pair of reduction steps establishes that if an execution of Gorilla in GM
violates correctness with positive probability, then so does an execution of Sandglass in SM+.
To conclude Gorilla’s proof of correctness, all that is left to show is that Sandglass retains
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deterministic safety and termination with probability 1 in the SM+ model: fortunately, the
correctness proof of Sandglass [27] works almost without change (§A of [29]) in SM+. Thus, a
violation of correctness in Gorilla results in a contradiction, and therefore, Gorilla is correct.

Gorilla demonstrates that it is possible to achieve deterministic safety and liveness with
probability 1 in a permissionless Byzantine model. Yet, possible does not mean practical:
Gorilla is not, since, like the Sandglass protocol that inspires it, it requires an exponential
number of rounds to terminate. By answering the fundamental question of possibility, Gorilla
ups the ante: is there a practical solution to deterministically safe permissionless consensus?

2 Related Work

Lewis-Pye et al. [18] have proven that deterministic consensus is impossible in the permis-
sionless setting. Therefore, for at least one of safety and liveness probabilistic guarantees are
inevitable. Gorilla concedes little: it manages to keep safety deterministic, and guarantees
liveness with probability 1.

Several protocols [3, 4, 7, 11, 12, 16, 24] have embraced Bitcoin’s permissionless partici-
pation and probabilistic safety. All rely for correctness on probabilistic mechanisms, which
leave open the possibility that Byzantine nodes may overturn safety or liveness guarantees
with positive probability. Gorilla avoids this peril by basing correctness on the process of
accruing a deterministic number of messages.

Few proposals achieve deterministic safety in a permissionless setting [20, 22, 27]. Momose
et al. [22] introduce the concept of eventually stable participation, akin to partial synchrony;
it requires that, after an unknown global stabilization time, for each T-wide time interval
[t, t + T ], at least half of the nodes ever awake during the interval are correct and do not
leave. Gorilla guarantees progress without assuming stability in participation.

Pu et al. [27] propose Sandglass, which achieves deterministic safety but only in a benign
setting. Gorilla extends Sandglass to tolerate Byzantine failures.

Malkhi et al. [20] let nodes join and leave at any time, as in Gorilla. Unlike Gorilla,
however, they must rely on authenticated channels to tolerate fluctuations in the number of
adversaries. Further, Byzantine nodes must be fewer than a third of active nodes, while in
Gorilla they must be fewer than one half.

Several works have modeled permissionless participation [2, 17, 26].
Pass et al. [26] introduce the sleepy participation model, in which honest nodes are

either awake or asleep. Awake nodes participate in the protocol, while asleep nodes neither
participate nor relay messages. Byzantine nodes are always awake, but the scheduler can
adaptively turn an honest node Byzantine, as long as Byzantine nodes remain a minority
of awake nodes. Gorilla similarly assumes that correct and Byzantine nodes can join and
leave at any time, as long as a majority of active nodes are correct. Unlike the sleepy
model, however, Gorilla requires no public key infrastructure, and, unlike sleepy consensus,
guarantees deterministic safety.

Unlike Gorilla, Lewis-Pye et al. [17] do not offer a consensus protocol, but rather focus
on introducing resource pools, an abstraction that aims to capture resources used to establish
identity in permissionless systems, e.g., computational power through PoW and fiscal power
through Proof of Stake (PoS).

Aspnes et al. [2] explore consensus in an asynchronous benign model where an unbounded
number of nodes can join and leave, but where at least one node is required to live forever, or
until termination. Gorilla instead assumes a synchronous model, tolerates Byzantine failures,
and allows any node to join and leave, as long as a majority of active nodes is correct.

DISC 2023



31:4 Gorilla: Safe Permissionless Byzantine Consensus

Verifiable Delay Functions (VDFs) [6] have been leveraged as a resource against Byzantine
adversaries in various works [8, 15, 19, 30], specifically to defend PoS systems from attacks
where participants can go back in time and mine blocks. Gorilla leverages VDFs to rate-limit
the ability of Byzantine nodes to create valid messages.

3 Model

The system is comprised of an infinite set of nodes {p1, p2, . . . }. Time progresses in discrete
ticks 0, 1, 2, 3, . . . In each tick, a subset of the nodes is active; the rest are inactive. The upper
bound on active nodes in any tick, necessary to the safety of Nakamoto’s permissionless
consensus [25], is N , and there is at least one active node in every tick. Starting from tick 0,
every K ticks are grouped into a step: each step i consists of ticks iK, iK + 1, . . . , iK + K−1.

A Verifiable Delay Function (VDF) is a function whose calculation requires completing a
given number of sequential steps. Thus, evaluating a VDF requires the evaluator to spend a
certain amount of time in the process. Specifically, we require the evaluation of a single VDF
to take K ticks. We refer to the intermediate random values that this evaluation produces at
the end of each of the K ticks as the units of the VDF evaluation (or, more succinctly, the
units of the VDF). We denote the i-th unit of evaluating the VDF of some input γ by vdf i

γ ;
we denote the final result (i.e., vdf K

γ ) by vdfγ , or, when there is no ambiguity, by vdf.
We model the calculation of VDFs with the help of an oracle Ω. Nodes use Ω both to

iteratively obtain the units of a VDF and to verify whether a given value is the vdf of a given
input. In particular, Ω provides the following API:

Get(γ, vdf i
γ): returns vdf (i+1)

γ . By convention, invoking Get(γ,⊥) returns vdf 1
γ . The oracle

remembers how it responded to a Get query – so that, even though the units of a VDF
are random values, identical queries produce identical responses. Ω accepts at most one
call to Get() in any tick from each node.

Verify(vdf, γ): returns True iff vdf = vdf K
γ . Ω accepts any number of calls to Verify() in any

tick from any node.

If Get(γ,⊥) is called at tick t and step s, we say the VDF calculation for γ starts at tick t

and step s. Similarly, the VDF calculation for γ finishes at tick t and step s if Get(γ, vdf K−1
γ )

is called at tick t and step s.
In each tick, an active node receives a non-negative number of messages, updates its

variables – potentially including calls to the oracle – and then communicates with others using
a synchronous broadcast network. The network allows each active node to broadcast and
receive unauthenticated messages. Node pi invokes Broadcasti(m) to broadcast a message m,
and receives broadcast messages from other nodes (and itself) by invoking Receivei. The
network neither generates nor duplicates messages and ensures that if a node receives a
message m in tick t, then m is broadcast in tick (t− 1). The network propagation time is
negligible compared to a tick, i.e., to the time necessary to calculate a unit of a VDF. By
executing the command Receivei, a newly joining node pi receives all messages broadcast by
correct nodes prior to its activation. Nodes whose network connections with other nodes
are asynchronous can be modeled as Byzantine, as Byzantine nodes can deliberately or
unintentionally delay messages sent from or to them. Therefore, Gorilla also tolerates
asynchrony, as long as the nodes that communicate asynchronously are a minority.

Correct nodes do not deviate from their specification and constitute a majority of active
nodes at each tick. Correct nodes always join at the beginning of a step and leave when
a step ends. Hence, a correct node is active from the first to the last tick of a step. The
remaining nodes are Byzantine and can suffer from arbitrary failures. Byzantine nodes can
join and leave at any tick.
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All nodes are initialized with a value vi ∈ {0, 1} upon joining the system. An active
node pi decides by calling Decidei(v) for some value v. A protocol solves the consensus
problem if it guarantees the following properties [9]:

▶ Definition 1 (Agreement). If a correct node decides a value v, then no correct node decides
a value other than v.

▶ Definition 2 (Validity). If all nodes that ever join the system have initial value v and there
are no Byzantine nodes, then no correct node decides v′ ̸= v.

▶ Definition 3 (Termination). Every correct node that remains active eventually decides.

4 Gorilla

Gorilla borrows its general structure from Sandglass (see Algorithm 1) [27]. Executions
proceed in asynchronous rounds (even though, unlike Sandglass, Gorilla assumes a standard
synchronous model of communication between all nodes). Upon receiving a threshold of
valid messages for the current round, nodes progress to the next round; if all the messages
received by a correct node propose the same value v for sufficiently many consecutive rounds,
the node decides v. The number of active nodes is bounded by N but otherwise unknown.
Within this bound, it can fluctuate arbitrarily, but both safety and liveness depend on the
correctness of a majority of nodes.

The key aspects of the protocol can be summarized as follows:

Ticks, steps and VDF Each valid message must contain a vdf. A correct node takes a full
step, i.e., K consecutive ticks, to individually calculate a vdf, and at the end of the step
sends a valid message that contains the vdf. Byzantine nodes may instead share among
themselves the work required to finish the K units of a VDF calculation; even so, it still
takes K distinct ticks for Byzantine nodes to compute a vdf. Requiring valid messages
to carry a vdf limits Byzantine nodes to sending messages at the same rate as correct
nodes; this ensures that, on average across all steps, the correct majority sends at least
one more valid message than the minority of nodes that are Byzantine.

Choosing a threshold A node proceeds to round r if it receives at least T = ⌈N 2

2 ⌉ messages
for round r − 1. Even though setting such a threshold does not prevent Byzantine nodes
from advancing from round to round, it nonetheless gives the correct nodes an edge in
the pace of such progress, since they constitute a majority.

Exchanging messages In each step of the protocol, a node in any round r – based on the
messages it has received so far – searches for the largest round rmax ≥ r for which it
has accrued T messages. It then broadcasts a message for the next round. The message
includes the node’s current proposed value v, the vdf, and four other attributes discussed
below: the message’s coffer, a nonce, as well as v’s priority and unanimity counter.

Keeping history Nodes can join the system at any time. To help a joining node catch up,
every message broadcast by a node p in round r includes a message coffer that contains:
(i) messages from round r − 1 received by p to advance to round r; (ii) recursively,
messages included in those messages’ coffers; and (iii) messages received by p for round r.

Nonce By making it possible to distinguish between messages that are generated from the
same coffer, nonces allow correct nodes to broadcast multiple valid messages during a
round while, at the same time, preventing Byzantine nodes from reusing the same vdf to
send multiple valid messages based on a given message coffer.

DISC 2023
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Priority and unanimity counter If a node p only receives the value v from a majority for
a sufficient number of consecutive rounds, it decides v. To guarantee the safety of this
decision, p assigns a priority to the value v that it proposes. This priority is incremented
once v is unanimously proposed for a long stretch of consecutive rounds. To record the
length of this stretch, each node computes it upon entering a round r, and includes it as
the unanimity counter in the messages it sends for round r. If a node collects more than
one value in a round r, it chooses the one with the highest priority, and proposes it for
round r + 1. In case of a tie, it uses vdf as a source of randomness to choose one of the
values randomly. Since vdf is a random number calculated based on the message coffer
and a nonce (lines 13-15), a Byzantine node is unable to deliberately pick an input to
VDF to deterministically get the desired value.

Message internal consistency and validity A message m is internally consistent if the at-
tributes carried by m can be generated by following Gorilla correctly based on the message
coffer carried in m. We denote the vdf in m by vdfm.
A message m is valid (and thus isValid(m) returns true), if (i) vdfm can be verified by
the message coffer and the nonce of m; (ii) m is internally consistent; and (iii) for any
message m′ in m’s coffer, m′ is also valid. Otherwise, m is invalid.

In addition to demonstrating variable initialization, Algorithm 1 presents the algorithm
each node pi runs at each step. Each node pi starts every step by adding all valid messages,
in addition to the messages in their coffers, to the set Reci (lines 4-6).

Iterating over Reci, node pi computes the largest round rmax for which it has received
at least T messages, and updates its current round to rmax + 1 (line 8) if the condition in
line 7 holds. Once in a new round, pi does the following: (i) resets its message coffer M and
adds to it the messages it has received from the previous round – alongside the messages in
their coffers (lines 9-11); (ii) picks a nonce and calculates a vdf based on its coffer and the
nonce (lines 13-15); (iii) chooses its proposal value (lines 16 -20); it chooses the proposal
with the highest priority among the previous round messages in its coffer; in case of a tie, it
chooses a random number utilizing the randomness in vdf ; (iv) determines the priority and
the unanimity counter for the messages it will broadcast in the current round (lines 21-25);
and finally (v) the node decides v if v’s priority is high enough (lines 26-27). If pi does
not enter a new round, it starts to create a message nonetheless: it adds to the message’s
coffer all messages received for the current round (line 29), and calculates a vdf with the
new message coffer and a different nonce as the input (lines 30-32), so that the message is
unique. Regardless of whether it enters a round or not, pi ends every step by broadcasting
the message it has created (line 33).

Comparing Sandglass and Gorilla
Gorilla retains the structure of Sandglass, adding the requirement that valid messages must
include a vdf and a nonce. The differences between the protocols are highlighted in orange
in Algorithm 1: (i) vdf is calculated for each message sent (lines 13-15,30-32), (ii) received
messages are checked to see if they are valid (line 5); (iii) vdf is used as the source of
randomness (line 20) where the protocol requires choosing a value randomly.

These additions are critical to handling Byzantine faults. Both Gorilla and Sandglass
rely on correct (respectively, good) nodes sending the majority of unique messages during an
execution. In Sandglass, where defective nodes are benign, this property simply follows from
requiring correct nodes to be a majority in each step; not so in Gorilla, where faulty nodes
can be Byzantine. Requiring valid message in Gorilla to carry a vdf preserves correctness by
effectively rate-limiting Byzantine nodes’ ability to create valid messages.



Y. Pu, A. Farahbakhsh, L. Alvisi, and I. Eyal 31:7

Algorithm 1 Gorilla: Code for node pi. The orange text highlights where Gorilla departs from
Sandglass.

1: procedure Init(inputi)
2: vi ← inputi; priorityi ← 0; uCounteri ← 0; ri = 1; Mi = ∅; Reci = ∅;
3: procedure step
4: for all m = (·, ·, ·, ·, ·, M) received by pi do
5: if isValid(m) then
6: Reci ← Reci ∪ {m} ∪M

7: if max|Reci(r)|≥T (r) ≥ ri then
8: ri = max|Reci(r)|≥T (r) + 1
9: Mi = ∅

10: for all m = (·, ri − 1, ·, ·, ·, M) ∈ Reci(ri − 1) do
11: Mi ←Mi ∪ {m} ∪M

12: Mi ←Mi ∪Reci(ri)
13: vdf← ⊥; nonce← a new arbitrary value
14: for j : 1..k do
15: vdf← Get((Mi, nonce), vdf)
16: Let C be the multi-set of messages in Mi(ri − 1) with the largest priority.
17: if all messages in C have the same value v then
18: vi ← v

19: else
20: vi ← vdf mod 2
21: if all messages in Mi(ri − 1) have the same value vi then
22: uCounteri ← 1 + min{uCounter|(·, ri − 1, vi, ·, uCounter, ·) ∈Mi(ri − 1)}
23: else
24: uCounteri ← 0
25: priorityi ← max(0,

⌊ uCounteri

T
⌋
− 5)

26: if priorityi ≥ 6T + 4 then
27: Decidei(vi)
28: else
29: Mi ←Mi ∪Reci(ri)
30: vdf← ⊥; nonce← a new arbitrary value
31: for j : 1..k do
32: vdf = Get((Mi, nonce), vdf)
33: broadcast (ri, vi, priorityi, uCounteri, Mi, nonce, vdf)

Given their differences in both failure model and timing assumptions, it is perhaps
surprising that so little needs to change when moving from Sandglass to Gorilla. After all,
Sandglass assumes a model where failures are benign and a hybrid synchronous model of
communication [28]; Gorilla instead assumes a Byzantine failure model, and a synchronous
network model (§3). Note, however, that although Sandglass assumes benign failures, its
hybrid communication model implicitly accounts for Byzantine nodes strategically choosing
the timing for receiving and sending messages to correct nodes: Gorilla can then simply
inherit from Sandglass the mechanisms for tolerating such behaviors.

DISC 2023
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5 Correctness

Despite the similarlity between the Gorilla and Sandglass protocols, proving Gorilla’s cor-
rectness directly is challenging. Unlike Sandglass, Byzantine nodes can act between step
boundaries, interleave VDF computations instead of producing one VDF (and hence one
message) at the time, etc. To overcome this complexity, our approach is to leverage as much
as possible Sandglass’s proof of correctness.

Our battle plan was to first map executions of Gorilla to executions of Sandglass. Then
we intended to proceed by contradiction: assume that a correctness guarantee is violated in
Gorilla, and map this violation to Sandglass; since correctness violations are not possible in
Sandglass [27], we could then conclude that neither they can be in Gorilla.

The best laid plans often go awry, and, as we discuss below, ours was no exception – but
we were able to nonetheless retain the conceptual simplicity of our initial approach.

5.1 The Main Story, and How it Fails
The mapping from Gorilla to Sandglass must satisfy certain well-formedness and equivalence
conditions. The former specify how to map a Gorilla execution into one that satisfies
the Sandglass model (SM) and follows the Sandglass protocol; the latter allow us to map
violations from Gorilla to Sandglass, i.e., they preserve certain properties of the behavior of
correct nodes in Gorilla and reinterpret them as the behavior of good nodes in Sandglass.

Well-formedness requires mapping correct nodes to good nodes, and Byzantine nodes to
defective nodes, while respecting model constraints (e.g., at each step defective nodes should
be fewer than good nodes). The first half of this mapping is easy: except for calculating a
VDF, correct nodes in GM are not doing anything different than good nodes in SM. Thus,
mapping a step in GM to a step in SM yields a straightforward connection between correct
and good nodes. The second half, however, is trickier. Defective nodes in SM can suffer from
benign faults like omission and crashing, but these fall short of fully capturing Byzantine
behavior in GM. In particular, Byzantine nodes, even when sending valid messages, can
violate the timing constraints that Gorilla places on a node’s actions, e.g., by splitting the
calculation of a single VDF into multiple steps. Thus, before a Gorilla execution can be
mapped to a Sandglass execution, Byzantine nodes’ actions must be brought to conform
to step boundaries and not spill across steps. After tidying things up this way, it must
become possible to map the faulty actions of the Byzantine nodes to a combination of crashes,
omissions, and network delays, i.e., to the faults and anomalies that SM allows.

Equivalence in turn requires that, when mapping executions from Gorilla to Sandglass, a
correct node and its corresponding good node send and receive in every step messages that
allow them to update their proposed value, round number, priority, and unanimity counter
in the same way. Since messages play the same role in both protocols, this is sufficient for
good nodes in Sandglass to decide identically to the corresponding correct nodes in Gorilla.

Our plan to realize this logical mapping involved splitting it into two concrete, intermediate
mappings: a first mapping from an initial Gorilla execution to an intermediate Gorilla
execution in which Byzantine actions conform to step boundaries; and a second mapping from
that intermediate execution to a Sandglass execution. We require all of our well-formedness
and equivalence conditions to hold throughout these mappings: (i) model constraints must
be always respected, (ii) correct nodes in the intermediate execution send and receive the
equivalent (indeed, the same!) messages as their counterparts in the initial execution, at the
same steps, and (iii) good nodes in the final execution send and receive equivalent messages
as their correct counterparts in the intermediate execution, at the same steps.
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0 1 2 3 4

11 1 3 3 3 2 2 2

4 4 4

6 6 6

5 5 5

(b) The solution enabled by peeking.

Figure 1 An execution that cannot be reorganized in GM (a), and how peeking solves the problem
in GM+ (b).

Unfortunately, well-formedness and equivalence cannot be satisfied by the first mapping.
To see why, consider Figure 1a. Here, each square represents a VDF unit calculated by a
Byzantine node for a specific input, denoted by a unique color. Numbered circles represent
the corresponding messages, e.g., the VDF units containing 1⃝ are associated with message
1⃝. Each VDF calculation takes three ticks, and a step comprises three ticks. The numbered
dashed lines indicate the steps, i.e., the three ticks between lines i and i + 1 belong to step i.
Assume that, to maintain a majority of correct nodes in the system, the maximum allowable
number of Byzantine nodes in the four steps shown in the figure are, respectively, 1, 1, 3,
and 1. Moreover, assume that messages 4⃝, 5⃝, and 6⃝ all include in their coffers messages
1⃝, 2⃝, and 3⃝. Finally, assume that messages 4⃝, 5⃝, and 6⃝ are sent to correct nodes at
the start of Step 4. Since the actions of Byzantine nodes in Figure 1a do not conform to
step boundaries, the first mapping should be able to organize them in a way that ensures
that (i) correct nodes receive messages 4⃝, 5⃝, and 6⃝ at the beginning of Step 4, and (ii)
each of these messages in turn includes messages 1⃝, 2⃝, and 3⃝. Thus, the calculation of the
VDFs for messages 1⃝, 2⃝, and 3⃝ must be completed before those for 4⃝, 5⃝, and 6⃝ can
start. Now, since steps 0 and 1 include only one Byzantine node, they can only accommodate
one VDF, i.e., only one VDF can be calculated in each of steps 0 and 1. Without loss of
generality, let those VDFs be 1⃝ and 3⃝, respectively. VDF 2⃝ must still complete before
messages 4⃝, 5⃝, and 6⃝: thus, it has to be placed in Step 2. Note that, although Step 2
could accommodate two more Byzantine VDFs at Step 2, they cannot be placed there, since
the completion of VDF 2⃝ must precede the start of the calculation of VDFs 4⃝, 5⃝, and 6⃝:
the earliest step where they can start is Step 3. However, it is impossible to accommodate
all three there, since in Step 3 there is a single Byzantine node.

Our first attempt at mapping executions from Gorilla to Sandglass has thus failed.
Fortunately, though, it is possible to retain the strategy that underlies it and overcome the
above counterexample without weakening our well-formedness and equivalence conditions.
Instead, we proceed to weaken the model in which we operate, by giving Byzantine nodes
extra power.

5.2 A New Beginning

The first step in our two-step process for mapping a Gorilla execution ηG into a Sanglass
execution ηS is to reorganize the actions taken by Byzantine nodes in ηG: we want to map ηG

to an execution where Byzantine nodes join the system and receive valid messages at the
beginning of a step (by the first tick) and broadcast valid messages and leave the system at
the step’s end (at its K-th tick). Since, as explained in Section 5.1, satisfying all of these
requirements is not possible, we extend GM to a new model.

DISC 2023



31:10 Gorilla: Safe Permissionless Byzantine Consensus

We need some way to calculate a VDF on an input that includes the final result of
VDF calculations that are still in progress. To achieve this, we extend the oracle’s API to
allow Byzantine nodes to peek at those future outcomes. By issuing the oracle a peek query,
Byzantine nodes active in any step s can learn the result of a VDF computed by Byzantine
nodes finishing at step s before its calculation has ended.

We thus introduce GM+, a model that extends GM by having a new oracle, Ω+, that
supports one additional method:

Peek(γ): immediately returns vdfγ .

In any tick, a Byzantine node in GM+ can call Peek() multiple times, with different
inputs. However, Byzantine nodes can only call Peek subject to two conditions:

A Byzantine node can peek in step s at vdfγ only if Byzantine nodes commit to finish
the VDF calculation for input γ within s; and
a Byzantine node does not peek at vdfγ , where γ = (M, nonce), if M in turn contains
some VDF result v obtained by peeking, and the calculation of v has yet to finish in this
tick.

Note that these restrictions only limit the additional powers that GM+ grants the adversary:
in GM+, Byzantine nodes remain strictly stronger than in GM.

With this new model, taking a detour, we first map an execution of Gorilla in GM to an
execution of Gorilla in GM+, in which Byzantine behavior is reorganized with the addition of
peeking. Hence follows the first lemma of our scaffolding: the existence of the first mapping.

▶ Definition 4. Consider an execution ηG in GM and an execution η+
G in GM+. We say ηG

and η+
G are equivalent iff the following conditions are satisfied:

Reorg-1 For every correct node p in ηG, there exists a correct node p+ in η+
G, such that p

and p+ (i) join and leave the system at the same ticks in the same steps and (ii) receive
and send the same messages at the same ticks in the same steps.

Reorg–2 Each Byzantine node in η+
G (i) joins at the first tick of a step and leaves after the

last tick of that step; (ii) receives messages at the first tick of a step and sends messages
at the last tick of that step; and (iii) sends and receives only valid messages.

Reorg-3 If in ηG a Byzantine node sends a valid message m at a tick in step s, then in η+
G

a Byzantine node sends m at a tick in some step s′ ≤ s.

▶ Lemma 5. There exists a mapping Reorg that maps an execution ηG in GM to an
execution η+

G in GM+, denoted η+
G = Reorg(ηG), such that ηG is equivalent to η+

G.

While peeking solves the challenge with reorganizing Byzantine behavior, it complicates
our second mapping. The ability to peek granted to Byzantine nodes in GM+ has no
equivalent in Sandglass – it simply cannot be reduced to the effects of network delays or
to the behavior of defective nodes. Therefore, we weaken SM so that defective nodes can
benefit from a capability equivalent to peeking.

We do so by introducing SM+, an extension of SM that is identical to SM, except for the
following change: defective nodes at step s can receive any message m sent by a defective
node no later than s – as opposed to (s− 1) in SM – as long as m does not contain in its
coffer a message that is sent at s. Note that allowing defective nodes to receive in a given
step a message m sent by defective nodes within that very step maps to allowing Byzantine
nodes to peek at a message whose vdf will be finished by Byzantine nodes within the same
step; and the constraint that m shouldn’t contain in its coffer other messages sent in the
same step, maps to the constraint that Byzantine nodes cannot peek at messages whose
coffer also contains a peek result from the same step.
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One might rightfully ask: was not the plan to leverage the correctness of Sandglass in SM?
Indeed, but fortunately, Sandglass still guarantees deterministic agreement and termination
with probability 1 under the SM+ model (§A.3 of [29]). Thus, it is suitable to map a Gorilla
execution in GM+ to a Sandglass execution in SM+, and orient our proof by contradiction
with respect to the correctness of Sandglass in SM+.

Formally, we specify our second mapping as follows.

▶ Definition 6. Given a message m in the Gorilla protocol, the mapping Mapm produces a
message in the Sandglass protocol as follows
1. Omit the vdf and the nonce from m.
2. Let pi be the node that sends m. Include pi as a field in m.
3. If m is the j-th message sent by pi, add a field uid = j to m.
4. Repeat the steps above for all of the messages in m’s coffer.
Denote the result by m̂ = Mapm(m). We say m and m̂ are equivalent. Furthermore, with a
slight abuse of notation, we apply Mapm to a set of messages as well, i.e., if M is a set of
messages, and we map each message m ∈M, we obtain the message set Mapm(M).

▶ Definition 7. Consider an execution η+
G in GM+ and an execution η+

S in SM+. We say η+
G

and η+
S are equivalent iff the following conditions are satisfied:

1. The nodes in η+
G are in a one-to-one correspondence with the nodes in η+

S . For every
node p in η+

G, we denote the corresponding node in η+
S with p̂.

2. Nodes p and p̂ join and leave at the same steps in η+
G and η+

S , respectively. Furthermore,
their initial values are the same.

3. If p is a Byzantine node, then p̂ is defective in SM+; otherwise, p̂ is a good node in SM+.
4. p̂ sends m̂ at step s in η+

S , iff p generates a message m in η+
G at step s. Note that in η+

G,
correct nodes send their messages to all as soon as they are generated, while Byzantine
nodes may only send their messages to a subset of nodes once their messages are generated.

5. p̂ receives m̂ at step s in η+
S , iff p receives m at step s in η+

G.

▶ Lemma 8. Consider any execution ηG in GM, and an execution η+
G in GM+ equivalent

to ηG. There exists a mapping Interpret that maps η+
G to an execution η+

S in SM+, denoted
as η+

S = Interpret(η+
G), such that η+

S is equivalent to η+
G.

Finally, for our proof by contradiction to work, we have to show that Sandglass is correct in
SM+. The proof is deferred to §A.3 of [29].

▶ Theorem 9. Sandglass satisfies agreement and validity deterministically and termination
with probability 1 in SM+.

5.3 Safety
We prove that Gorilla satisfies Validity and Agreement. The proofs follow the same pattern:
assume a violation exists in some execution ηG of Gorilla running in GM; map that execution
to η+

G = Reorg(ηG) in GM+; then, map η+
G again to η+

S = Reorg(η+
G) in SM+; and, finally,

rely on the fact that these mappings ensure that correct nodes in ηG and good nodes in η+
S

reach the same decisions in the same steps to drive a contradiction.
This approach is made rigorous in following lemmas, proved in §B.2 of [29].

▶ Lemma 10. Consider an arbitrary Gorilla execution ηG, and η+
G = Reorg(ηG). If a

correct node p decides a value v at step s in ηG, then p’s corresponding node p+ decides v at
step s in η+

G.
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▶ Lemma 11. Consider any execution ηG in GM. If an execution η+
G = Reorg(ηG) in GM+

and an execution η+
S in SM+ are equivalent, then the following statements hold:

1. If a correct node p decides a value v at step s in η+
G, then p̂ decides v at step s in η+

S .
2. Consider the first message m = (r, v, priority, uCounter, M, nonce, vdf) that p generates

for round r. Let the step when m is generated be s. If uCounter is 0, then p̂ randomly
chooses value v as the proposal value at step s in η+

S .

We can now state and prove the safety guarantees.

▶ Theorem 12. Gorilla satisfies agreement in GM.

Proof. By contradiction, assume that there exists a Gorilla execution ηG in GM that
violates agreement. This means that there exist two correct nodes p1 and p2, two steps s1
and s2, and two values v1 ̸= v2 such that p1 decides v1 at s1 and p2 decides v2 at s2.
Consider η+

G = Reorg(ηG). According to Lemma 10, p+
1 decides v1 at s1 and p+

2 decides v2
at s2, in η+

G. Now, consider η+
S = Interpret(η+

G). According to Lemma 11, p̂+
1 decides v1

at s1 and p̂+
2 decides v2 at s2, in η+

S . However, this contradicts the fact Sandglass satisfies
agreement in SM+ (Theorem 9). Therefore, Gorilla satisfies agreement in GM. ◀

▶ Theorem 13. Gorilla satisfies validity in GM.

Proof. By contradiction, assume that there exists a Gorilla execution ηG, such that (i) all
nodes that ever join the system have initial value v; (ii) there are no Byzantine nodes; and
(iii) a correct node p decides v′ ̸= v.

Since GM+ is an extension of GM, ηG conforms to GM+. According to Definition 4, η+
G =

ηG in GM+ is trivially equivalent to ηG. Consider η+
S = Interpret(η+

G).
By the construction of the Interpret mapping (in Lemma 8), good nodes in η+

S have
the same initial values as their corresponding correct nodes in ηG. Furthermore, since there
are no Byzantine nodes in η+

G, there are no defective nodes in η+
S by Definition 7. Therefore,

by Validity of Sandglass in SM+ (Theorem 9), no good node decides v′ ̸= v. However, by
Lemma 10 and Lemma 11, p decides v′ ≠ v, which leads to a contradiction. Therefore,
Gorilla satisfies validity in GM. ◀

5.4 Liveness
Similar to the safety proof, the liveness proof proceeds by contradiction: it starts with a
liveness violation in Gorilla, and maps it to a liveness violation in Sandglass.

Formalizing the notion of violating termination with probability 1 requires specifying the
probability distribution used to characterize the probability of termination. To do so, we
first have to fix all sources of non-determinism [1, 5, 14]. For our purposes, non-determinism
in GM and GM+ stems from correct nodes, Byzantine nodes and their behavior; in SM+, it
stems from good nodes, defective nodes and the scheduler.

For correct, good, and defective nodes, non-determinism arises from the joining/leaving
schedule and the initial value of each joining node. For Byzantine nodes in GM and GM+,
fixing non-determinism means fixing their action strategy according to the current history of
an execution. Similarly, fixing the scheduler’s non-determinism means specifying the timing
of message deliveries and the occurrence of benign failures, based on the current history. We,
therefore, define non-determinism formally in terms of an environment and a strategy.

To this end, we introduce the notion of a message history, and define what it means for a
set of messages exchanged in a given step to be compatible with the message history that
precedes them.
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▶ Definition 14. For any given execution in GM and GM+ (resp., SM+), and any step s,
the message history up to s, MHs, is the set of ⟨m, p, s′⟩ triples such that p is a correct node
(resp., good node) and p receives m at s′ ≤ s.

▶ Definition 15. We say a set MPs+1 of ⟨m, p, s + 1⟩ triples is compatible with a message
history up to s, MHs, if there exists an execution such that for any ⟨m, p, s + 1⟩ ∈ MPs+1,
the correct node (resp., good node) p receives m at step (s + 1).

▶ Definition 16. An environment E in GM and GM+ (resp., SM+) is a fixed joining/leaving
schedule and fixed initial value schedule for correct nodes (resp., good and defective nodes).

▶ Definition 17. Given an environment E, a strategy ΘE for the Byzantine nodes (resp.,
scheduler) in GM and GM+ (resp., SM+) is a function that takes the message history MHs

up to a given step s as the input, and outputs a set MPs+1 that is compatible with MHs.

Before proceeding, there is one additional point to address. The most general way
of eliminating non-determinism is to introduce randomness through a fixed probability
distribution over the available options. However, the following lemma, proved in §B.3 of [29],
establishes that Byzantine nodes do not benefit from employing such a randomized strategy.

▶ Lemma 18. For any environment E, if there exists a randomized Byzantine strategy for
Gorilla that achieves a positive non-termination probability, then there exists a deterministic
Byzantine strategy for Gorilla that achieves a positive non-termination probability.

Since the output vdf of a call to the VDF oracle is a random number, the (vdf mod 2)
operation in line 20 of Gorilla is equivalent to tossing an unbiased coin. Given a strategy ΘE ,1
the nodes might observe different coin tosses as the execution proceeds; thus, the strategy
specifies the action of the Byzantine nodes for all possible coin toss outcomes. The scheduler’s
strategy in SM+ is similarly specified for all coin toss outcomes. Therefore, once a strategy
is determined, it admits a set of different executions based on the coin toss outcomes; we
denote it by HΘ. Specifically, a strategy determines an action for each outcome of any coin
toss.

Given a strategy Θ, we can define a probability distribution PHΘ over HΘ. For each
execution η ∈ HΘ, there exists a unique string of zeros and ones, representing the coin tosses
observed during η. Denote this bijective correspondence by Coins : HΘ → {0, 1}∗ ∪ {0, 1}∞,
and the probability distribution on the coin toss strings in Coins(HΘ) by P̃HΘ . For every
event E ⊂ HΘ, if Coins(E) is measurable in Coins(HΘ), then P̃HΘ(Coins(E)) is well-
defined; thus, PHΘ(E) is also well-defined and PHΘ(E) = P̃HΘ(Coins(E)). We denote PHΘ

as the probability distribution induced over HΘ by its coin tosses.
Equipped with these definitions, we can formally define termination with probability 1.

▶ Definition 19. The Gorilla protocol terminates with probability 1 iff for every environment E
and every Byzantine strategy Θ based on E, the probability of the termination event T in HΘ,
i.e., PHΘ(T ), is equal to 1.

This definition gives us the recipe for proving by contradiction that Gorilla terminates with
probability 1. We first assume there exists a Byzantine strategy Θ that achieves a non-zero
non-termination probability, and map this strategy through the Reorg and Interpret
mappings to a scheduler strategy Λ that achieves a non-zero non-termination probability
in SM+. However, Λ cannot exist, as the Sandglass protocol terminates with probability 1
in SM+ (Theorem 9).

1 When it is clear from the context, we will omit the environment from the subscript of the strategy.
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▶ Lemma 20. If there exists an environment E and a Byzantine strategy ΘE in GM that
achieves a positive non-termination probability, then there exists an environment E ′ and a
Byzantine strategy ΨE′ in GM+ that also achieves a positive non-termination probability.

Proof. Assume there exist an environment E and a Byzantine strategy ΘE in GM that
achieves a positive non-termination probability. Consider the Reorg mapping. Since,
according to Lemma 5, the joining/leaving and initial value schedules for correct nodes
remain untouched by the Reorg mapping, we just set E ′ = E . In the rest of the proof, we
omit the environments for brevity.

We now show that the strategy Ψ exists, and is in fact the same as Θ. For brevity,
let RΘ denote Reorg(HΘ), and consider any execution η in HΘ. By Lemma 5, correct nodes
in η receive the same messages, at the same steps, as the correct nodes in Reorg(η) and,
moreover, the coin results in η are exactly the same as the ones in Reorg(η). Thus, the
message history of correct nodes up to any step s in η is the same as the message history of
correct nodes up to the same step in Reorg(η). In addition, because Reorg(η) is a GM+
execution, compatibility is trivially satisfied. Thus, we conclude that Byzantine nodes in RΘ
follow the same strategy as in Θ, conforming to the same coin toss process. Let us denote
this strategy with Ψ.

Note that according to Lemma 10, whenever a correct node decides at some step s

in η, its corresponding correct node in Reorg(η) decides the same value at the same
step. Therefore, the set of non-terminating executions in HΘ are mapped to the set of
non-terminating executions in RΘ in a bijective manner. Let us denote these sets as NTH

and NTR, respectively. Since the same coin toss process induces probability distributions PHΘ

and PRΘ on HΘ and RΘ, respectively, we conclude that PHΘ(NTH) = PRΘ(NTR). Therefore,
since PHΘ(NTH) > 0 by assumption, this concludes our proof, as we have shown the existence
of a strategy Ψ in GM+ that achieves a positive non-termination probability. ◀

A similar lemma applies to the second mapping. We prove it in §B.3 of [29].

▶ Lemma 21. If there exists an environment E and a strategy Ψ for Byzantine nodes in GM+
that achieves a positive non-termination probability, then there exists an environment E ′ and
a scheduler strategey ΛE′ in SM+ that also achieves a positive non-termination probability.

Based on these lemmas, we are finally ready to prove Gorilla’s liveness guarantee.

▶ Theorem 22. The Gorilla protocol terminates with probability 1.

Proof. By contradiction, assume that there exist a GM environment and a Byzantine
strategy Θ in Gorilla that achieve a positive non-termination probability. By Lemma 20,
there exist a GM+ environment and a strategy Ψ for the Byzantine nodes in GM+ that
achieve a positive non-termination probability. Similarly, by Lemma 21, there exists an SM+
environment and a scheduler strategy Λ in SM+ that achieve a positive non-termination
probability. But this is a contradiction, since Sandglass terminates with probability 1 in SM+
(Theorem 9). Thus, Byzantine strategy Θ cannot force a positive non-termination probability;
Gorilla terminates with probability 1. ◀

6 Conclusion

Gorilla Sandglass is the first Byzantine-tolerant consensus protocol to guarantee, in the same
synchronous model adopted by Nakamoto, deterministic agreement and termination with
probability 1 in a permissionless setting. To this end, Gorilla leverages VDFs to extend the
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approach of Sandglass, the first protocol to provide similar safety guarantees in the presence
of benign failures. Neither Gorilla nor Sandglass are practical protocols, however: they
exchange a very large number of messages and the number of rounds they require to decide
is large even under favorable circumstances, and can, in general, be exponential. Is there
a practical permissionless protocol that can achieve deterministic safety and tolerate fewer
than a half Byzantine nodes?
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