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Abstract
We address the task of deriving fixpoint equations from modal logics characterizing behavioural
equivalences and metrics (summarized under the term conformances). We rely on an earlier work
that obtains Hennessy-Milner theorems as corollaries to a fixpoint preservation property along Galois
connections between suitable lattices. We instantiate this to the setting of coalgebras, in which
we spell out the compatibility property ensuring that we can derive a behaviour function whose
greatest fixpoint coincides with the logical conformance. We then concentrate on the linear-time case,
for which we study coalgebras based on the machine functor living in Eilenberg-Moore categories,
a scenario for which we obtain a particularly simple logic and fixpoint equation. The theory is
instantiated to concrete examples, both in the branching-time case (bisimilarity and behavioural
metrics) and in the linear-time case (trace equivalences and trace distances).
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1 Introduction

Behavioural equivalences (such as bisimilarity and trace equivalence) are an important
technique to identify states with the same behaviour in a transition system [39]. They have
been complemented by notions of behavioural metrics [14, 38, 10] measuring the distance
between states, in particular in a quantitative setting. We work in a coalgebraic setting [32]
that allows us to answer generic questions about behavioural equivalences and metrics,
parametrized over various branching types (non-deterministic, probabilistic, weighted, etc.).

There are various ways to characterize behavioural equivalences or metrics, which we
illustrate using trace equivalence as an example: (i) direct specification: Two states x, y are
trace equivalent if they admit the same traces; (ii) logic: x, y are trace equivalent if they
cannot be distinguished in a modal logic based on diamond modalities and the constant
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true; (iii) fixpoint equation: x, y are trace equivalent if the pair ({x}, {y}) is contained in
the greatest fixpoint of the bisimulation function on the determinized transition system; (iv)
games: there is an attacker-defender game characterizing the equivalence.

Our focus is on (ii) and (iii), and our take is quite different from the usual approach:
Instead of first defining the behavioural equivalence/metric and then setting up an expressive
logic for it, we start by defining the logic and derive a fixpoint equation from the logic.
Fixpoint equations are of great interest since efficient algorithms for computing behavioural
conformances are almost always based on fixpoint characterizations; in future work, we
aim to exploit such characterizations for algorithmic purposes. However, for a given logic,
corresponding fixpoint equations do not always exist, and we give conditions for ensuring
that they do. We use the Galois connection approach from [4] as a starting point, and
instead of instantiating it for each case study, we propose a generic coalgebraic framework.
By employing fibrations (resp. indexed categories) [17, 18], we parameterize over the notion
of conformance (e.g. equivalence, metric) that is our focus of attention. Moreover, we
parametrize over a quantale in which both conformances and formulae take their values.

One interest, particularly, is in linear-time notions of conformance (such as trace/language
equivalences and their quantitative cousins), for which we work in an Eilenberg-Moore
category where the coalgebras live. We exploit the generalized powerset construction [20, 34]
and characterize those (trace) logics that can be turned into suitable fixpoint equations
on the determinized coalgebra, using a notion of compatibility [4] that has its roots in
up-to techniques [30]. We also study the relation of compatibility to the notion of depth-1
separation used in (quantitative) graded logics [11, 13].

More concretely, we work with coalgebras of the form c : X → FTX, living in some
category C, where a monad T intuitively specifies the implicit branching (or side effects)
and a functor F describes the explicit branching type. For instance, for a non-deterministic
automaton we choose T = P and F = _Σ × 2. We fix an EM-law ζ : TF ⇒ FT [20] allowing
us to obtain a determinized coalgebra, i.e., a coalgebra of the form c# : TX → FTX that
can be viewed as a coalgebra in the Eilenberg-Moore category of T . We can then define
a logic function log that is defined on sets of V-valued predicates on X and whose least
fixpoint induces a behavioural conformance on TX. Alternatively, given the determinization
c#, we can – in a fibrational style – define a conformance on TX as the greatest fixpoint
of a Kantorovich lifting followed by a reindexing via c#. The aim is to show that both
conformances coincide.

We allow arbitrary constants in the logic, which – in particular in the linear-time case –
are able to add extra distinguishing power to the logic. Along the way we give an answer to
the question of why, unlike branching-time logics, linear-time logics often do not need any
additional (boolean) operators, only modalities and constants.

As examples we consider bisimilarity and branching-time pseudometrics for probabilistic
transition systems, as well as linear-time conformances such as trace equivalence and trace
distance.

Roadmap. After reviewing preliminaries in Section 2, we summarize the approach based
on Galois connections (adjunctions) in Section 3. The instantiation to generic coalgebras
is presented in Section 4 and a concrete quantale-valued branching-time logic spelled out
in Section 5. Section 6 specializes to coalgebras in Eilenberg-Moore categories, leading to
results strengthening those for the general case. Finally, Section 7 details the linear-time
case studies mentioned above, and we conclude in Section 8.

The proofs can be found in the full version of this paper [5].
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2 Preliminaries

We recall some basic definitions and facts on lattices, quantales, generalized distances,
coalgebra, monads and their algebras and on indexed categories. We do assume basic
familiarity with category theory (e.g. [1]).

2.1 Lattices, Fixpoints and Galois Connections
A complete lattice (L, ⊑) consists of a set L with a partial order ⊑ such that each Y ⊆ L
has a least upper bound

⊔
Y (also called supremum, join) and a greatest lower bound

d
Y

(also called infimum, meet). The Knaster-Tarski theorem [36] guarantees that any monotone
function f : L → L on a complete lattice L has a least fixpoint µf and a greatest fixpoint νf .

Let L, B be two lattices. A Galois connection from L to B is a pair α ⊣ γ of monotone
functions α : L → B, γ : B → L such that for all ℓ ∈ L, b ∈ B: α(ℓ) ⊑ b ⇐⇒ ℓ ⊑ γ(b).

A closure cl : L → L is a monotone, idempotent and extensive (i.e. ∀x∈L x ⊑ cl(x))
function on a lattice. A co-closure is monotone, idempotent and extensive wrt. ⊒. Given a
Galois connection α ⊣ γ, γ ◦ α is always a closure and α ◦ γ a co-closure.

2.2 Quantales and Generalized Distances
▶ Definition 1. A (unital, commutative) quantale (V, ⊗, 1), or just V, is a complete lattice
with an associative, commutative operation ⊗ : V × V → V with unit 1 that distributes over
arbitrary (possibly infinite) joins

∨
. If 1 is the top element of V, then V is integral.

In a quantale V, the functor − ⊗ y has a right adjoint [y, −] for every y ∈ V; that is,
x ⊗ y ≤ z ⇐⇒ x ≤ [y, z] for all x, y, z ∈ V.

▶ Example 2.
1. The Boolean algebra 2 with ⊗ = ∧ and unit 1 is an integral quantale; for y, z ∈ 2, we

have [y, z] = y → z.
2. The complete lattice [0, 1] ordered by the reversed order of the reals, i.e. ≤ = ≥R, and

equipped with truncated addition r ⊗ s = min(r + s, 1), is an integral quantale; for
r, s ∈ [0, 1], we have [r, s] = s .− r = max(s − r, 0) (truncated subtraction).

Given a quantale V , a directed (V-valued) pseudometric (on X) is a function d : X × X → V
where (i) ∀x∈X d(x, x) ≥ 1 (reflexivity); (ii) ∀x,y,z∈X d(x, z) ≥ d(x, y) ⊗ d(y, z) (transitiv-
ity/triangle inequality). Moreover, d is a pseudometric if additionally, (iii) ∀x,y∈X d(x, y) =
d(y, x) (symmetry). We write DPMetV(X) to denote the lattice of all directed pseudo-
metrics on X, while for pseudometrics we use PMetV(X). Given dX ∈ DPMetV(X),
dY ∈ DPMetV(Y ), a function f : X → Y is non-expansive (wrt. dX , dY ) if dX(x, x′) ≤
dY (f(x), f(x′)) for all x, x′ ∈ X. Note that due to the choice of order in the quantale, the
inequality in the definitions above is reversed wrt. the standard definitions that are typically
given in the order on the reals. As originally observed by Lawvere [26], one may see directed
V-valued pseudometrics as V-enriched categories, or just V-categories, and non-expansive
functions as V-functors.

2.3 Coalgebras and Eilenberg-Moore Categories
Given a functor F : C → C, an F -coalgebra (X, c) (or simply c) consists of an object X ∈ C
and a C-arrow c : X → FX. In the paradigm of universal coalgebra [32], we understand X

as the state space of a transition system, F as specifying the branching type of the system,

STACS 2024
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and c as a transition map that assigns to each state a collection of successors structured
according to F . For instance, when C = Set is the category of sets and functions, then the
powerset functor P assigns to each set its powerset, and P-coalgebras are just sets equipped
with a transition relation. On the other hand, the (finitely supported) distribution functor D
assigns to each set X the set of finitely supported probability distributions on X, given in
terms of maps p : X → [0, 1] with finite support such that

∑
x∈X p(x) = 1. A D-coalgebra

thus is precisely a Markov chain.
Recall that a monad (T, η : Id ⇒ T, µ : TT ⇒ T ) on C, usually denoted by just T , consists

of a functor T : C → C and natural transformations η : Id ⇒ T (the unit) and µ : TT ⇒ T

(the multiplication), subject to certain coherence laws. Monads abstractly capture notions of
algebraic theory, with TX being thought of as terms modulo provable equality over variables
in X. Correspondingly, a T -algebra (X, a) consists of an object X of C and a C-arrow
a : TX → X such that a ◦ ηX = idX and a ◦ Ta = a ◦ µX ; we may think of T -algebras as
algebras for the algebraic theory encapsulated by T . A homomorphism between T -algebras
(X, a), (Y, b) is a C-arrow f : X → Y such that b ◦ Tf = f ◦ a. The Eilenberg-Moore category
of T , denoted EM(T ), is the category of T -algebras and their homomorphisms. There is a
free-forgetful adjunction L ⊣ R : C → EM(T ), where the forgetful functor R maps an algebra
to its underlying C-object and L maps an object X ∈ C to the free algebra (TX, µX).

A (monad-over-functor) distributive law (or EM-law) of a monad T over a functor F

is a natural transformation ζ : TF ⇒ FT satisfying ζX ◦ ηF X = FηX and ζX ◦ µF X =
FµX ◦ ζT X ◦ TζX . This is equivalent to saying that the assignment F̃ (X, a) = (FX, Fa ◦ ζX)
defines a lifting F̃ : EM(T ) → EM(T ) of F (where lifting means that RF̃ = FR). Then, the
determinization [34] of a coalgebra c : X → FTX in C is the transpose c# : LX → F̃LX of c

under L ⊣ R. More concretely the determinization can be obtained as c# = FµX ◦ ζT X ◦ Tc.
For instance, when FX = XΣ × 2 and T = P , then this yields exactly the standard powerset
construction for the determinization of non-deterministic automata.

2.4 Indexed Categories and Fibrations
Our aim is to equip objects of a category with additional information, e.g., consider sets
with (equivalence) relations or metrics. Formally, this is done by working with fibrations,
in particular we will consider fibrations arising from the Grothendieck construction for
indexed categories [17, 18]. For us it is sufficient to consider as indexed categories functors
Φ: Cop → Pos, where Pos is the category of posets (ordered by ⪯) with monotone maps.
Such functors induce a fibration U :

∫
Φ → C where U is the forgetful functor and

∫
Φ is

the category whose objects and arrows are characterized as follows:

X ∈ C ∧ d ∈ ΦX

(X, d) ∈
∫

Φ

X
f−→ Y ∈ C ∧ d ⪯ (Φf)d′

(X, d) f−→ (Y, d′) ∈
∫

Φ

Here, f∗ = Φf is also called reindexing operation and d is called a conformance.
Typical examples are functors Φ: Setop → Pos mapping a set X to the lattice of

equivalence relations or pseudometrics on X.

3 Adjoint Logic: the General Framework

We summarize previous results on relating logical and behavioural conformances using Galois
connections [4]. These results are based on the following well-known property that shows
how fixpoints are preserved by Galois connections (e.g. [3, 8, 9]). The formulation of these
properties involves a notion of compatibility studied for coinductive up-to techniques [30].
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▶ Definition 3. Let log, cl : L → L be monotone endofunctions on a partial order (L, ⊑).
Then log is cl-compatible if log ◦ cl ⊑ cl ◦ log.

▶ Theorem 4 ([4]). Let α : L → B, γ : B → L be a Galois connection between complete
lattices L,B, and let log : L → L, beh : B → B be monotone. Then the following holds.
1. If beh = α ◦ log ◦γ then α(µ log) ⊑ µ beh.
2. If α ◦ log = beh ◦α, then α(µ log) = µ beh. If log reaches its fixpoint in ω steps, i.e.,

µ log = logω(⊥), then so does beh.
3. Let cl = γ ◦ α be the closure operator of the Galois connection, and suppose that beh =

α ◦ log ◦γ. If log is cl-compatible, then α(µ log) = µ beh.

▶ Remark 5. In fact, there is a weaker notion than compatibility that ensures the same
result, i.e., α(µ log) = µ beh. In particular, it is sufficient to show the following condition:

log(cl(ℓ)) ⊑ cl(log(ℓ)) for all ℓ ∈ S ⊆ L where S is an invariant of log, i.e. log[S] ⊆ S,
⊥ ∈ S, and S is closed under directed joins. (If the fixpoint is reached in ω steps, closure
under directed joins is not required.)

We apply this in a scenario where L consists of logical formulas (or more precisely their
semantics, in the shape of sets of definable predicates) and B consists of conformances. These
Galois connections will be contra-variant when we consider the quantalic ordering in B. Then,
log is the “logic function” that adds a layer of modalities and propositional operators to a
given set of predicates, so that µ log is the semantics of the set of formulas of the logic. On
the other hand, beh is the “behaviour function”, whose greatest fixpoint ν beh (remember
the contra-variance) is behavioural conformance.

▶ Example 6. The simplest Galois connection used in [4] for characterizing behavioural equi-
valence is between L = P(2X) (sets of predicates on X) and B = PMet2(X) (equivalences
on X), where α maps every set of predicates to the equivalence relation induced by it and γ

maps an equivalence to the set of predicates closed under it.
Moving to pseudometrics we obtain a Galois connection between L = P([0, 1]X) (sets

of real-valued predicates on X) and B = PMet[0,1](X) (pseudometrics on X) where α

maps every set of functions X → [0, 1] to the least pseudometric making all these functions
non-expansive and γ takes a pseudometric and produces all its non-expansive functions.

So first, define a logical universe L and a logic function log : L → L. Second, choose a
suitable Galois connection α ⊣ γ to a behaviour universe B and show that log is cl-compatible.
Third, derive the behaviour function beh = α ◦ log ◦γ : B → B. From the results above,
we automatically obtain the equality α(µ log) = µ beh, which tells us that logical and
behavioural equivalence respectively distance coincide (Hennessy-Milner theorem).

4 Adjoint Logic for Coalgebras

In this section we will describe a general framework where the adjoint logic is instantiated to
the setting of coalgebraic modal logic.

4.1 Setting up the Adjunction
One can generalize from Example 6 and instead of a set X take an object in a (locally small)
category C. Furthermore we fix an object Ω ∈ C (the truth value object), which in all our
applications will be a quantale. Predicates are represented by the indexed category C(_, Ω);
thus, sets of predicates (lattice L) are given by the indexed category P ◦ C(_, Ω) (where
the order is inclusion). In addition, we use an indexed category Φ specifying the notion of
conformance on X (lattice B) and work with the following assumptions:

STACS 2024



10:6 Expressive Quantale-Valued Logics for Coalgebras: An Adjunction-Based Approach

A1 Each fibre ΦX is a poset having arbitrary meets (thus, a complete lattice) and the
reindexing map preserves these meets (i.e.

∫
Φ has fibred limits).

A2 Let dΩ ∈ ΦΩ be a fixed conformance on the truth value object Ω.

For an arrow f ∈ C(X, Y ), we write f• for the reindexing in C(_, Ω) (f•g = g ◦ f , where
g ∈ C(Y, Ω)) and f∗ for the reindexing in Φ (f∗ = Φf).

▶ Theorem 7. Let X be an object of C. Under Assumptions A1 and A2, there is a dual
adjoint situation (contravariant Galois connection) αX ⊣ γX between the underlying fibres:

αX : P(C(X, Ω)) → Φ(X)op S ⊆ C(X, Ω) 7→
∧

k∈S

k∗(dΩ)

γX : Φ(X)op → P(C(X, Ω)) d ∈ ΦX 7→ {k ∈ C(X, Ω) | d ⪯ k∗(dΩ)}.

More concretely: αX , γX are both antitone (S ⊆ S′ =⇒ αX(S) ⪰ αX(S′), d ⪯ d′ =⇒
γX(d) ⊇ γX(d′)) and we have d ⪯ αX(S) ⇐⇒ S ⊆ γX(d) for d ∈ ΦX and S ∈ PC(X, Ω).

Thus, for X ∈ C, the fibres PC(X, Ω) and (ΦX)op will take the role of B and L
(respectively) as in [4, Theorem 3.2]. Moreover, Theorem 7 will be instantiated to obtain the
desired Galois connections between predicates and conformances for our case studies.

▶ Example 8. Let C = Set and Ω = V be a quantale. We consider ΦX = DPMetV(X)
(resp., ΦX = PMetV(X)) with the order ⪯ on ΦX induced by the pointwise lifting of
the order ≤ on V. The reindexing functor f∗ for a function f : X → Y is given by f∗d =
d ◦ (f × f); thus, satisfying A1. As conformance dΩ on V we take the internal hom [_, _]
(resp., its symmetrization: dΩ(x, y) = [x, y] ∧ [y, x]); thus, satisfying A2. Then we have
αX ⊣ γX : P(Set(X, V)) ⇄ DPMetV(X), where:

αX(S)(x, x′) =
∧

h∈S

dΩ(h(x), h(x′))

γX(d) = {h : X → V | ∀x,x′∈X d(x, x′) ≤ dΩ(h(x), h(x′))}

In both cases, αX assigns to a set of maps the greatest (directed) pseudometric making
all these maps non-expansive, while γX maps a pseudometric all its non-expansive maps.

4.2 Characterizing Closure
Given that the key condition imposed on the logic function in Theorem 4 is compatibility with
the closure of the Galois connection, it is important to understand how this closure operates.
In the setting of Theorem 7 we can characterize the closure in terms of non-expansive
propositional operators, provided that γ is natural. We note first that α is always natural:

▶ Proposition 9. In Theorem 7, the transformation α is natural in X ∈ C, that is, for
f ∈ C(X, Y ), we have αX ◦ P(f•) = f∗ ◦ αY .

For the right adjoint γ, naturality need not hold in general. It does hold for Set and
generalized (directed) metrics over the quantales in Example 2. A counterexample can
however be constructed for C = EM(P) and V = [0, 1] (see [4]).

If γ is natural, then we can characterize the closure γ ◦ α using the internal language
of indexed categories. To this end, suppose that C has (small) products. Then for every
S ⊆ C(X, Ω). we have a unique tupling ⟨S⟩ : X → ΩS such that πk ◦ ⟨S⟩ = k for all k ∈ S,
where πk : ΩS → Ω is the product projection for k.
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▶ Lemma 10. The right adjoint γ in Theorem 7 is laxly natural, i.e. P(f•) ◦ γY ⊆ γX ◦ f∗

for f : X → Y ∈ C. If γ is natural (i.e. the inclusion is an equality) and C has products,
then γX(αX(S)) = P(⟨S⟩•)(γΩS (dΩS )), where dΩS =

∧
k∈S π∗

kdΩ.

This result can be interpreted as follows: γΩS (dΩS ) is the set of all non-expansive functions
ΩS → Ω, hence all non-expansive operators of arbitrary arity on Ω. Reindexing via ⟨S⟩
means to combine all predicates in S via those operators, hence we describe the closure under
all non-expansive operations on Ω.

4.3 Towards a Generic Logic Function
Since our slogan is to generate the behaviour function from the logic function, we start by
setting up our logical framework first. Following [4, 12], we adopt a semantic approach to
defining a (modal) logic, i.e., we specify the operators (including modalities) as a transforma-
tion of predicates; formally, as a (natural) transformation log of type PC(_, Ω) ⇒ PC(_, Ω).
The idea is that the logic function logX adds one “layer” of modal depth; in particular, the
least fixpoint µ logX of logX can be seen as the set of (interpretations of) all modal formulas.

In particular, we require

A3 Fix a family (evλ ∈ C)λ∈Λ of evaluation maps evλ : FΩ → Ω.

As noted in [33], such evaluation maps – commonly used in coalgebraic modal logic –
correspond to natural transformations of type C(_, Ω) → C(F_, Ω) by the Yoneda lemma.

▶ Proposition 11. A family of evaluation maps (evλ)λ∈Λ induces a natural transformation
Λ: PC(_, Ω) ⇒ PC(F_, Ω) given by S 7→ {λX(h) | λ ∈ Λ, h ∈ S}, where λX(h) = evλ ◦ Fh.

Apart from modalities, a logic typically needs operators and constants. We do not consider
constants as 0-ary operators, which allows us to distinguish between operators that arise as
in Lemma 10 from the closure of the Galois connection (that is, non-expansive operators)
and the remaining (constant) operators that bring additional distinguishing power. This is,
for instance, needed in the case of trace equivalence on a determinized transition system to
distinguish the empty set of states from sets of states having no transitions. We need an
additional (constant) predicate for this task that can neither be provided by the closure nor
by a constant modality (see Appendix A.1).

A4 We assume a set ΘX ⊆ C(X, Ω) of constants (which is later restricted to consist of free
extensions of constant maps).

To model the propositional operators, we introduce a closure cl′X :

A5 For each X ∈ C we assume that there is a closure cl′X : PC(X, Ω) → PC(X, Ω) (not
necessarily natural), specifying the propositional operators.

We say that cl′X is a subclosure of clX whenever cl′X ⊆ clX , which means that the
propositional operators implemented by cl′X are already contained in the closure induced by
the Galois connection (cf. Lemma 10).

Now we can define the logic function for a coalgebra c as

logX = P(c•) ◦ ΛX ◦ cl′X ∪ ΘX : PC(X, Ω) → PC(X, Ω).

Its least fixpoint contains all predicates that can be described by modal formulas.1

1 In our setup a formula is either a constant or starts with a modality, which still results in an expressive
logic. One could slightly modify logX and obtain all formulas by adding another closure cl′.
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▶ Example 12. Let C = Set, c : X → FX and ΦX = PMetV(X). Recall the Galois
connection from Example 8 and consider the following two examples, where in both cases no
constants are needed, i.e., ΘX is empty; thus, A4 vacuously holds.
1. Bisimilarity on (unlabelled) transition systems: we let F = Pfin (finite powerset functor),

V = 2, and consider the evaluation map ev♢ : Pfin2 → 2 encoding the usual diamond
modality: ev♢(U) = 1 ⇐⇒ 1 ∈ U . This can be extended to a logic by choosing as cl′

(Assumption A5) the closure under all (finitary) Boolean operators.
2. Behavioural metrics for probabilistic transition systems with termination: we let FX =

DX +1 (where 1 = {✓}) and V = ([0, 1] , ≥R). Define two evaluation maps: evE : D [0, 1]+
1 → [0, 1] corresponds to expectation, i.e. evE(p) =

∑
r∈[0,1] r·p(r) if p ∈ DX (0 otherwise).

Furthermore, ev∗ : D[0, 1] + 1 → [0, 1] with ev∗(p) = 1 if p = ✓ (0 otherwise). We extend
this to a logic by defining cl′ (Assumption A5): we add as operators the constant 1,
min(φ, φ′), 1 − φ and φ .− q for a rational q (where φ is a formula), as in similar logics
for probabilistic transition systems [38].

To ensure that the requirements of Section 3 are met, we have to show compatibility of
the logic function. To this end, we introduce the notion of compability of cl′.

▶ Definition 13. Given a closure cl′X : PC(X, Ω) → PC(X, Ω), we say that cl′X is compatible
if the map ΛX ◦ cl′X (for each X ∈ C) is compatible with the closure clX = γX ◦ αX induced
by the adjoint situation in Theorem 7, i.e., ΛX ◦ cl′X ◦ clX ⊆ clF X ◦ΛX ◦ cl′X .

The following results hold under Assumptions A1-A5 and thus, we avoid stating them in
various lemma/theorem statements.

▶ Proposition 14. For a given compatible closure cl′X , the above logic function logX is
clX-compatible, i.e., logX ◦ clX ⊆ clX ◦ logX .

We will now study equivalent conditions and special cases in which compatibility holds.
First, it is easy to see that cl′ = cl is always compatible, but typically introduces infinitary
operators. Moreover, if cl′ is the identity (that is, there are no propositional operators), then
compatibility of cl′ reduces to cl-compatibility of Λ.

▶ Lemma 15. Let cl′X be a subclosure of clX . It holds that cl′X is compatible if and only if
αF X ◦ ΛX ◦ cl′X ⪯ αF X ◦ ΛX ◦ clX .

We next adapt the separation property establishing expressiveness of graded logics w.r.t.
graded semantics [11, 13] to the present setting, an additional twist being that the conformance
w.r.t. which modalities must be separating is the one induced by the modalities themselves.

▶ Definition 16 (Depth-1 self-separation). A set S ⊆ C(X, Ω) of predicates is initial for
d ∈ ΦX if αX(S) = d. Let cl′X be a subclosure of clX . The depth-1 self-separation property
holds if for every S that is closed under cl′X (i.e., S = cl′X(S)) and initial for d, it follows
that ΛX(S) is initial for κX(d) where κX = αF X ◦ ΛX ◦ γX .

▶ Lemma 17. Let cl′X be a subclosure of clX . Then cl′X is compatible if and only if the
depth-1 self-separation property holds.

Finally, we study a sufficient condition on evaluation maps ensuring cl-compatibility of Λ.

▶ Lemma 18. If each evaluation map evλ arises as a natural transformation η : F ⇒ Id or
η : F ⇒ Ω (Ω is the constant functor mapping every object to Ω), that is evλ = ηΩ, then Λ
is compatible with cl.
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▶ Example 19. We establish compatibility for the logics considered in Example 12. In
branching-time logics in general, depth-1 self-separation usually boils down to establishing a
Stone-Weierstraß type property saying that if S ⊆ C(X, Ω) is initial and closed under cl′X ,
then S is dense in C(X, Ω), for suitably restricted X [12]. For finitary set functors such
as Pfin or D, it suffices to prove self-separation on finite X. Additional details are as follows.
1. In the case of unlabelled transition systems, we are given an equivalence relation R on a

finite set X, a set S ⊆ Set(X, 2) that is initial for R and closed under Boolean combina-
tions, and A, B ∈ Pfin(X) that are distinguished by some predicate ♢Xf : Pfin(X) → 2
where f is invariant under R. We then have to show that A, B are distinguished by ♢g for
some g ∈ S. But by functional completeness of Boolean logic and because X is finite, S

is in fact the set of all R-invariant functions X → 2, so we can just take g = f .
2. The argument is similar for probabilistic transition systems, with some additional consider-

ations necessitated by the quantitative setting. We are now given a set S ⊆ Set(X, [0, 1])
that is initial for d and closed under propositional operators as per Example 12.2. By
a variant of the Stone-Weierstraß theorem, this implies that S is dense in the space of
non-expansive maps (X, d) → [0, 1] (see [43]), which means that in an argument as in the
previous item, we can take g to range over functions in S that approximate the given
non-expansive function f : (X, d) → [0, 1] arbitrarily closely, using additionally that the
predicate lifting induced by evE as in Example 12(2) is non-expansive [42].

4.4 Towards a Generic Behaviour Function
Building on the previous section, we define the behaviour function behX : ΦX → ΦX as
behX = αX ◦ logX ◦γX and – under the assumption of compatibility – we have2 αX(µ logX) =
ν behX . In other words, the notions of logical and behavioural conformances coincide.

This motivates a closer investigation of ν behX : in what sense does it coincide with
known behavioural equivalences or metrics? Defining a behavioural conformance (that is,
an element of ΦX) in a fibrational setting is typically done by taking the greatest fixpoint
of a function defined in two steps: the lifting of a conformance ΦX to Φ(FX), followed by
a reindexing via c. Here, we consider Kantorovich-style [2] or codensity [22] liftings based
on the evaluation maps. Kantorovich liftings have originally been used to lift metrics on a
set X to metrics of probability distributions over X. In the probabilistic case, an alternative
characterization is given via optimal transport plans in transportation theory (earth mover’s
distance) [40].

We use the natural transformation Λ introduced earlier and consider the composite
κX = αF X ◦ ΛX ◦ γX , the mentioned Kantorovich lifting. If F = D and the evaluation map
is expectation, then we obtain exactly the classical Kantorovich lifting.

Given a coalgebra c : X → FX, we use the behaviour function behX = c∗ ◦ κX ∧ αX(ΘX);
here, ΘX is a set of constants as in Section 4.3 (Assumption A4).

▶ Example 20. We derive the behaviour functions for Examples 12 and 19.
1. In the case F = P and V = 2, the lifting κX(R) ⊆ PX × PX of an equivalence

relation R ⊆ X × X is the Egli-Milner lifting, i.e. U κX(R) V ⇐⇒ ∀x∈U ∃y∈V x R

y ∧ ∀y∈V ∃x∈U x R y. It is well-known that the greatest fixpoint of behX = c∗ ◦ κX is
precisely Park-Milner bisimilarity.

2 Note that the adjunction defined in Theorem 7 is contravariant. Hence the least fixpoint of beh from
Theorem 4 becomes the greatest fixpoint ν behX wrt. the lattice order ⪯.
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P(C(X, Ω)) Φ(X)op

P(C(FX, Ω)) Φ(FX)op

P(C(X, Ω)) Φ(X)op

αX

⊥

ΛX

cl′XΘX

logX

γX

κX

behX
αF X

⊥

P(c•)
γF X

c∗

αX

⊥
γX

Figure 1 The adjoint setup with logX =P(c•)◦ΛX ◦cl′X ∪ ΘX and behX =c∗◦κX ∪ αX (ΘX ).

2. In the case FX = DX + 1 and V = [0, 1], we obtain the lifting κX(d) ∈ PMet(DX + 1)
of a pseudometric d ∈ PMet(X). It is easy to see that κX(d)(p1, p2) is the distance given
by the classical Kantorovich lifting of d if p1, p2 ∈ DX. If p1 = ✓ = p2, then the distance
is 0, otherwise 1. The least fixpoint (under the usual order on [0, 1]) of the behaviour
function behX = c∗ ◦ κX agrees with standard notions of bisimulation distance (e.g. [38]).

We conclude the section by showing that behaviour functions defined in this way are actually
the ones obtained from the logic function. For the diagram underlying the proof see Figure 1.

▶ Theorem 21. Assume that cl′X is a subclosure of clX and compatible. For a set ΘX of
constants and a coalgebra c : X → FX, the logic function logX = P(c•) ◦ ΛX ◦ cl′X ∪ ΘX

induces behX = c∗ ◦ κX ∧ αX(ΘX), i.e., αX ◦ logX ◦γX = behX .

Putting everything together via Theorem 4, if cl′X is a compatible closure, then we have
αX(µ logX) = ν behX , that is, logical conformance coincides with behavioural conformance.

5 Logics for Quantale-valued Simulation Distances

We next consider a quantitative modal logic LΛ that we show to be expressive for similarity
distance (a behavioural directed metric) under certain conditions. Throughout this section,
our working category C is Set, we have a fixed functor F on Set, and a fixed quantale
Ω = V with distance dV = [_, _] being the internal hom. Furthermore ΦX = DPMetV(X).
In this section we assume naturality of γ, which holds for the quantales given in Example 2.

φ ∈ LΛ ::=
∧

i∈I
φi | φ ⊗ v | dV(v, φ) | [λ]φ (for v ∈ V, λ ∈ Λ, I ∈ Set)

This logic is the positive fragment of quantale-valued coalgebraic modal logic [41, 12], and
generalizes logics for real-valued simulation distance [42] to the quantalic setting. The first
three operators are regarded as propositional operators of cl′, while the [λ] are the modalities.
We do not use explicit constants (ΘX = ∅), but note that constant truth ⊤ is included as
the empty meet. On a coalgebra c : X → FX ∈ Set, we interpret a formula φ as a function
JφK : X → V as usual (by structural induction on terms). Note that we do not allow negation,
as we aim to characterize similarity distance. Disjunction could be included but, as in the
two-valued case [39], is not needed to characterize simulation. Meet is infinitary, so the logic
function log does not reach its least fixpoint in ω steps.

The next results show that the three operators (as well as join) are all non-expansive and
hence cl′ is a subclosure of cl (cf. Lemma 10), which moreover is compatible.

▶ Proposition 22. Infinitary meets, infinitary joins, negative scaling dV(v, _), and positive
scaling _ ⊗ v (for v ∈ V) are non-expansive.
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▶ Proposition 23. If each λ ∈ Λ is sup-preserving (i.e. λX(
∨

P ) =
∨

P(λX)(P ), for every
subset P ⊆ Set(X, V),) then the sub-closure cl′ of cl as above is compatible.

Diamond-like modalities (for powerset or fuzzy powerset) are typically sup-preserving.
In such cases, Theorem 21 yields expressiveness of the above logic for similarity distance,
defined as the greatest fixpoint of behX(d) = c∗ ◦κX(d) where κX is the directed Kantorovich
lifting.

6 The Adjoint Setup in an Eilenberg-Moore Category

While we have seen in the examples of the previous sections that the framework can
be instantiated to coalgebras living in Set, thus providing Hennessy-Milner theorems for
bisimilarity, we are now interested in tackling trace equivalences and trace metrics. To
this end, we work in Eilenberg-Moore categories [34], which also allows us to determinize a
coalgebra using the generalized powerset construction (cf. 2.3).

In particular, we instantiate the adjoint setup to the category EM(T ) of T -algebras (for
some monad T on C), provide conditions guaranteeing compatibility, and characterize the
behaviour function. Furthermore, taking inspiration from [33], we also introduce a general
syntax for modal formulas that can be interpreted over coalgebras living in EM(T ). As
introduced in Section 2.3, we fix a coalgebra c : X → FTX living in C and its determinization
c# : LX → F̃LX in EM(T ) via a distributive law ζ : TF ⇒ FT .

We assume an indexed category Ψ: Cop → Pos (that has fibred limits) and lift it to the
category EM(T ) of T -algebras by postcomposition, that is, Φ = Ψ ◦ R (thus ensuring A1):

EM(T )op R−→ Cop Ψ−→ Pos.

Here, R is the forgetful functor in the free-forgetful adjunction L ⊣ R : C → EM(T ) from
Section 2.3. To handle A2, we fix a truth value object Ω ∈ C equipped with a T -algebra
structure o : TΩ → Ω and dΩ ∈ ΦΩ. These assumptions ensure that Theorem 7 becomes
applicable. We will denote the reindexing for Φ by _∗, while we overload the notation and
specify the reindexing in both C and EM(T ) by _•.

We focus on free algebras LX = (TX, µX) (over X ∈ C) and apply Theorem 7 to the
above-mentioned indexed category Ψ◦R, which gives the adjoint situations depicted by shaded
rectangles in Figure 2. We note that the middle hom-set EM(T )(LX, (Ω, o)) is isomorphic
to C(X, Ω) at the top left – due to the free-forgetful adjunction – with the bijection between
the respective powersets witnessed by α′, γ′. This allows us to define the logic function on the
lattice P(C(X, Ω)), which is a simpler structure than P(EM(T )(LX, (Ω, o))). In particular,
formulas can then be evaluated directly on the state space X.

6.1 Logic and Behaviour Function for Coalgebras in Eilenberg-Moore
Recall from Section 4.3 that we need evaluation maps in the working category to define a
logic function. So, to ensure A3, we assume a set Λ of evaluation maps for F̃ , i.e., a family
(F̃ (Ω, o) evλ−−→ (Ω, o) ∈ EM(T ))λ∈Λ of algebra homomorphisms. More concretely, a C-arrow
evλ : FΩ → Ω is such an algebra homomorphism if it satisfies o ◦ T evλ = evλ ◦ Fo ◦ ζΩ.

As in Section 4, this induces a natural transformation Λ. Since every homomorphism is
also a map in C, we can define Λ′

X , the predicate lifting on PC(X, Ω):

PC(X, Ω) α′
X−−→ PEM(T )(LX, (Ω, o)) ΛLX−−−→ PEM(T )(F̃LX, (Ω, o)) P(R)−−−→ PC(FTX, Ω).
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PC(X, Ω) P(EM(T )(LX, (Ω, o))) Ψop(TX)

P(EM(T )(F̃LX, (Ω, o))) Ψop(FTX)

PC(FTX, Ω)

PC(X, Ω) P(EM(T )(LX, (Ω, o))) Ψop(TX)

Θ′
X

α′
X

∼=

Λ′
X

log′
X

γ′
X

αLX

⊥

ΛLX

ΘLX

γLX

κLX

behLX

αF̃ LX

⊥

P((c#)•)

γF̃ LX

(c#)∗

P(c•)
α′

X

∼=
γ′

X

αLX

⊥
γLX

Figure 2 The adjoint setup for algebras, where behLX =(c#)∗◦κLX ∧αLX (ΘLX ) and log′
X =P(c•)◦Λ′

X ∪ΘX .

Note that Λ′ is a natural transformation (since α, Λ are natural transformations and R is a
functor); on components it can be easily characterized as follows:

▶ Lemma 24. We have that Λ′
X(S) = {evλ ◦ Fo ◦ FTh | h ∈ S} where S ⊆ C(X, Ω).

That is, Λ′
X(S) is obtained by first lifting the predicates from C(X, Ω) to C(TX, Ω) via

the evaluation map o : T Ω → Ω and then to C(FTX, Ω) via evλ : F Ω → Ω. This process can
be seen as applying a “double modality” for T and F .

We can now invoke the results of the previous chapter and assume that Λ is compatible
with the closure induced by the adjunction, that is, we work without propositional operators
(hence cl′, as mentioned in Assumption A5, is the identity), only constants, at first sight a
strong property. We will however see in the next section that this always holds when F is a
machine functor and we choose suitable evaluation maps.

The next theorem focusses on free algebras and is partly a corollary of Proposition 14
and Theorem 21. However there is a new component: instead of defining the logic function
on (free) Eilenberg-Moore categories, reindexing via the determinized coalgebra c#, it is
possible – as indicated above – to define it directly on arrows of type X → Ω living in C,
reindexing with c. This coincides with the view that formulas should be evaluated on states
in X rather than elements of TX. The diagram in Figure 2 outlines how to show this result.

▶ Theorem 25. We fix a coalgebra (c : X → FTX) ∈ C. Assume that ΛLX is compatible
with the closure clLX and fix ΘLX ⊆ EM(T )(LX, Ω) to ensure that A4 holds.
1. Then the logic function logLX = P((c#)•) ◦ ΛLX ∪ ΘLX is clLX-compatible.
2. For the behaviour function behLX = (c#)∗ ◦ κLX ∧ αLX(ΘLX) (where κLX = αF̃ LX ◦

ΛLX ◦ γLX), we have αLX(µ logLX) = ν behLX .
3. Now define another logic function log′

X = P(c•) ◦ Λ′
X ∪ Θ′

X with ΘLX = α′
X(Θ′

X). It
holds that α′

X ◦ log′
X ◦γ′

X = logLX and we obtain αLX(α′
X(µ log′

X)) = ν behX .

We hence consider a simple logic LEM for EM(T ), where T is a monad on Set:

φ ∈ LEM ::= θ | [λ]φ (where θ ∈ Θ, λ ∈ Λ)

Given a coalgebra c : X → FTX ∈ Set, each formula φ ∈ LEM is interpreted as a function
JφK : X → Ω, which is defined by structural induction as follows:

Let φ = θ. Then JφK is given by a predefined constant X → Ω.
Let φ = [λ]φ′. Then JφK = evλ ◦ Fo ◦ FT JφK ◦ c (see definition of Λ′

X in Lemma 24).
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▶ Corollary 26. Under the requirements of Theorem 25, the logic LEM is expressive for the
behavioural conformance behLX , i.e., αLX(α′

X({JφK | φ ∈ LEM})) = ν behLX .

6.2 The Machine Functor
Our next aim is to show that the machine functor has certain natural evaluation maps
ensuring that the predicate lifting is cl-compatible (one of the conditions of Theorem 25).
Throughout this section, we restrict ourselves to a monad T on Set and fix the machine
functor M = _Σ × B with Σ ∈ Set and (B, b) ∈ EM(T ). Since all monads in Set are strong
and B is endowed with a T -algebra structure b : TB → B, there is a canonical distributive
law ζ [19, Exercise 5.4.4]:

ζX : T (XΣ × B) ⟨a 7→T (πa◦π1),b◦T π2⟩−−−−−−−−−−−−−−→ (TX)Σ × B, (1)

where (πi)i∈{1,2} are the usual projections and πa : XΣ → X is the evaluation map (πa(g) =
g(a) where g : Σ → X). Now let M̃ be the lifting of M to EM(T ), induced by the ζ. We
observe that the evaluation maps suggested by it arise from natural transformations in the
sense of Lemma 18.

▶ Proposition 27.
1. Let a ∈ Σ. Then ηa : M̃ ⇒ Id given by the composite MX

π1−→ XΣ πa−→ X is a natural
transformation.

2. Let f : (B, b) → (Ω, o) be a homomorphism. Then η′
f : M̃ ⇒ Ω given by the composite

MX
π2−→ B

f−→ Ω is a natural transformation.
Thus, eva = ηΩ, evf = η′

Ω satisfy the properties of Lemma 18, and if each evaluation map is
of this form, then Λ is cl-compatible.

6.3 Alternative Formulation of Kantorovich Lifting
The behaviour function in Section 6.1 is based on the generalized Kantorovich lifting κ [2],
which works as follows: given a pseudometric d on Y (here Y = TX), generate all non-
expansive functions Y → Ω wrt. d, lift these functions to FY → Ω and from there generate
a pseudometric on FY . However, κLX – since it is defined in an Eilenberg-Moore category –
works subtly differently: it takes all non-expansive functions that are algebra homomorphisms.
This looks natural in the categorical setting, but may pose problems if we implement the
procedures. The standard (probabilistic) Kantorovich lifting can for instance be computed
based on the Kantorovich-Rubinstein duality, by determining optimal transport plans [40].

Here, both types of liftings coincide at least on relevant metrics. To show this result, we
first define an alternative way of lifting, as opposed to defining the lifting on T -algebra maps.
Applying Theorem 7 on Ψ (rather than on Ψ◦R) gives the adjunction αC

X ⊣ γC
X : PC(X, Ω) ⇄

ΨXop. Now consider the lifting κC
T X = αC

F T X ◦ ΛT X ◦ γC
T X , where ΛT X : PC(TX, Ω) →

PC(FTX, Ω) is defined identically to ΛLX .

▶ Theorem 28. Assume that d is preserved by the co-closure, i.e. d = αLX(γLX(d)), the
co-closure αC

X ◦ γC
X is the identity, and each evaluation map evλ arises from some natural

transformation either of type F ⇒ Id or F ⇒ Ω. Then the two liftings κLX , κC
T X coincide

on d, i.e., κLX(d) = κC
T X(d).

The condition d = αLX(γLX(d)) is a necessary, but not a serious restriction: this property
is typically satisfied by the ⊤ metric and is preserved by the behaviour function. Hence
during fixpoint iteration this invariant is preserved and the greatest fixpoints of behX based
on either version of the Kantorovich lifting coincide (if the fixpoint is reached in ω steps).
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In addition, if C = Set and V is an integral quantale, it can easily be shown that the
co-closure αC

X ◦ γC
X is the identity. This enables us to concretely spell out the behaviour

function for the case of the machine functor M = _Σ × B, provided that the conformances
ΨX are (directed) pseudometrics.

▶ Theorem 29. Assume that C = Set, ΨX = DPMetV(X) (resp. ΨX = PMetV(X)) for
an integral quantale V and let dV = [_, _] (resp. the symmetrized variant of [_, _]). Let
d : LX × LX → V be a pseudometric that is preserved by the co-closure αLX ◦ γLX . Assume
that M is the machine functor and the family of evaluation maps is

{eva | a ∈ Σ} ∪ {evf | f ∈ F ⊆ EM(T )((B, b), (V, o))}.

Then the corresponding behaviour function behLX : Ψ(LX) → Ψ(LX) is defined as follows:
let t1, t2 ∈ LX with c#(ti) = (bi, gi) ∈ B × LXΣ:

behLX(d)(t1, t2) =
∧

a∈Σ
d(g1(a), g2(a)) ∧

∧
f∈F

dV(f(b1), f(b2)) ∧
∧

θ∈ΘLX

dV(θ(t1), θ(t2)),

The above function beh is co-continuous and fixpoint iteration terminates after ω steps.

7 Case Studies for the Linear-time Case

7.1 Workflow

We recall the parameters of our framework and set out a workflow that we follow in our case
studies. Let F be a machine functor and T a monad on a category C.

Model systems as coalgebras of type c : X → FTX with a distributive law ζ : TF ⇒ FT .
Fix a truth value object (Ω, o) ∈ EM(T ) and dΩ ∈ ΨΩ.
Define a fibration (indexed category) Φ = Ψ ◦ R : EM(T )op → Pos by fixing an indexed
category Ψ: Cop → Pos to define the conformances.
Fix a set Λ of evaluation maps (predicate liftings) as homomorphisms F̃ (Ω, o) → (Ω, o).
Fix a set of constants ΘX ⊆ C(X, Ω).

Note that the last four conditions correspond to Assumptions A1-A5, which are necessary
to set up a logic and a behaviour function beh as defined in Section 6.1 and guarantee
expressiveness of the resulting logic. Whenever we choose ΨX = DPMetV(X) or ΨX =
PMetV(X) for an integral quantale V, we can rely on the characterization of the fixpoint
equation in Theorem 29.

We present one worked out case studies based on this workflow, two others are given in
Appendix A.

7.2 Trace Distance for Probabilistic Automata

A probabilistic automaton [31] is a quadruple (X, Σ, µ, p) where for each state x ∈ X and
each possible action a ∈ Σ there is a probability distribution µx,a on the possible successors
in X, and where each state x ∈ X has a payoff value p(x) ∈ [0, 1]. Following [34, 35], we
model them as coalgebras in the Eilenberg-Moore setting as detailed in the table below.
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C = Set, F = _Σ × [0, 1], T = D Logic:
(B = [0, 1], b expectation) evaluation maps: eva (Prop. 27(1))

c : X → (DX)Σ × [0, 1] ev∗(f, r) = r (Prop. 27(2))
c# : DX → (DX)Σ × [0, 1] constants ΘX = ∅

formulas: φ = [a1] · · · [an]∗
Ω = [0, 1] (Ex. 2(2)) Behaviour function:
o : D[0, 1] → [0, 1] expectation behDX : Ψ(DX) → Ψ(DX)
Ψ(X) = PMet[0,1](X) behDX(d)(p1, p2) = max{supa∈Σ d(g1(a), g2(a)), dΩ(r1, r2)}
dΩ(r, s) = |r − s|

Thus, given a formula φ = [a1] . . . [an]∗ and a state x ∈ X, JφK(x) gives us the expected
payoff after choosing actions according to the word a1 . . . an. The distance of two states
x1, x2 is hence the supremum of the difference of payoffs, over all words.

Expressiveness again follows from Corollary 26.

8 Conclusion

Related work. By now there is a large number of papers considering coalgebraic semantics
beyond branching-time, for instance [15, 34, 27, 7]. Furthermore in the same period quite a
wealth of results on the treatment of behavioural metrics in coalgebraic generality has been
published [38, 2, 23, 12]. However, there is little work combining both linear-time semantics
and behavioural metrics in the setting of coalgebra. In that respect we want to mention [13]
that is based on the graded monad framework [27] and which investigates exactly this
combination. However, different from the present paper, the focus is on the expressiveness of
the logics with respect a graded semantics (that intuitively specifies the traces of a state).
Hence, using the classification of the introduction, it studies the relationship of (i) and (ii).

Unlike other approaches, our main focus is on exploiting an adjunction (Galois connection)
and fixpoint preservation results to obtain Hennessy-Milner theorems “for free”. We start by
setting up a logic, characterizing the behavioural equivalence, and investigate under which
circumstances we can derive a corresponding fixpoint characterization. The fixpoint equation
might be defined on an infinite state space, but often there are finitary techniques that can
be employed, such as reducing the state space to a finite subset, linear programming, up-to
techniques, etc. In particular, for systems as in Appendix A.2 we are working on promising
results (based on [3]) for deriving bounds for behavioural distances via finite witnesses using
up-to techniques, even for infinite state spaces. The algorithmic angle of our approach is not
yet fully worked out in the present paper but establishing fixpoint equations as we do here is
a necessary first step in this direction.

Note that our concept deviates from the dual adjunction approach [21, 24, 25, 28] to
coalgebraic modal logic. There the functor on the “logic universe” characterizes the syntax
of the logics, while the semantics is instead given by a natural transformation. Nevertheless,
it complements (at least when restricted to the classical case of Boolean predicates) the
recent approach [37] that combines fibrations in the dual adjunction setup since having
contravariant Galois connections between fibres (at a “local” level) is equivalent to having
dual adjunctions between certain fibred categories (at a “global” level). It is unclear how to
establish this correspondence in the setting of quantitative V-valued predicates.

Future work. Currently the operators of the logic, given by cl′, are rather generic, although
we instantiated them in special cases to ensure expressiveness (see in particular Sections 5
and 6.2). We envision a general theory to ensure expressiveness of the logics, similar to

STACS 2024



10:16 Expressive Quantale-Valued Logics for Coalgebras: An Adjunction-Based Approach

Post’s functional completeness theorem [29], which characterizes complete sets of operators
for the boolean case. This question is strongly related to the notion of an approximating
family in [23] that has again close connections to compatibility as discussed in [4].

We will also study the condition requiring that a conformance (pseudometric) is preserved
by the co-closure (d = αLX(γLX(d))). Previous results [4] suggest that this is related to
the notion of (metric) congruence, as e.g. defined in [6], but the connection seems to be
non-trivial.

Another avenue of research is to further investigate the quantale-valued logic for the
branching case introduced in Section 5, to extend it to the undirected case and restrict to
finitary operators.
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A Case Studies for the Linear-time Case

A.1 Trace Equivalence for Labelled Transition Systems
We spell out a simple case study: trace equivalence [39] for labelled transition systems. The
main ingredients are summarized in the table below.

C = Set, F = _Σ, T = P Logic:
(B = 1) evaluation maps: eva (Prop. 27(1))

c : X → (PX)Σ constants ΘX = {1}, constant 1-function
c# : PX → (PX)Σ formulas: φ = [a1] · · · [an]1
Ω = 2 (Ex. 2(1)) Behaviour function:
o : P2 → 2 supremum behPX : Ψ(PX) → Ψ(PX)
Ψ(X): equivalences on X behPX(R)(U, V ) = (U = ∅ ⇔ V = ∅) ∧
dΩ: equality on Ω ∀a∈Σ(c#(U)(a), c#(V )(a)) ∈ R

The modality [a] boils down to the standard diamond modality (due to the definition
of o); a state x ∈ X satisfies φ = [a1] · · · [an]1 iff there exists a trace a1 · · · an from x. The
constant 1 is needed to start building formulas and to distinguish the empty set from a
non-empty set on LX = PX. (Note that ΘLX = α′

X(ΘX) = {1̃} with 1̃(Y ) = 0 iff Y = ∅.)
Its role cannot be taken by a constant modality or an operator, since those have to be
homomorphisms in EM(P), hence sup-preserving.

Expressiveness of trace logic LEM now directly follows from Corollary 26.

A.2 Directed Fuzzy Trace Distance
We now consider directed trace distances for weighted transition systems over a generic
quantale.

We work with the “fuzzy” monad T = PV (aka V-valued powerset monad [16, Re-
mark 1.2.3]) on Set that is defined as PV = VX on objects and as Tf(g)(y) =

∨
f(x)=y g(x)

(for f : X → Y ) on arrows. Its unit ηX : X → PVX is given by ηX(x)(x′) = 1 if x = x′
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and 0 (the empty join) otherwise. Multiplication µX : PVPVX → PVX is defined as
µX(G)(x) =

∨
g∈PV X G(g) ⊗ g(x). Note that for V = 2 (cf. Example 2(1)) T corresponds to

the powerset monad P.

C = Set, F = _Σ, T = PV Logic:
(B = 1) evaluation maps: eva (Prop. 27(1))

c : X → (PVX)Σ constants ΘX = {1}, constant 1-function
c# : PVX → (PVX)Σ formulas: φ = [a1] · · · [an]1
Ω = V, o : PVV → V Behaviour function:

g 7→
∨

v∈V g(v) ⊗ v behPV X : Ψ(PVX) → Ψ(PVX)
Ψ(X) = DPMetV(X) behPV X(d)(g1, g2) =

∧
a∈Σ d(c#(g1)(a), c#(g2)(a)) ∧

dΩ(v, v′) = [v, v′]
[∨

x∈X
g1(x),

∨
x∈X

g2(x)
]

Evaluating a formula φ = [a1] . . . [an]1 on a state x0 ∈ X results in

JφK(x0) =
∨

{
⊗

0≤i<n

c(xi)(ai+1)(xi+1) | x1 . . . xn ∈ Xn}.

This follows directly from structural induction on φ, from distributivity and from the
evaluation of the modality [a]φ′:

J[a]φ′K(x) =
∨

y∈X

c(x)(a)(y) ⊗ Jφ′K(y).

Intuitively we check how well x can match the trace a1 . . . an, where c(x)(a)(y) measures the
degree to which x can make an a-transition to y.

The second part of the minimum in the definition of beh stems from the constants
ΘX = {1}, since ΘLX = α′

X(ΘX) = {1̃} with 1̃(h) =
∨

x∈X h(x) for h : X → V. Without it,
the fixpoint iteration would stabilize at the constant 1-pseudometric.

Expressiveness again follows from Corollary 26. Expressiveness of a logic for symmetric
fuzzy trace distance has already been shown in previous work [13].
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