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Abstract
Given a set P of n points and a set S of n segments in the plane, we consider the problem of
computing for each segment of S its closest point in P . The previously best algorithm solves
the problem in n4/32O(log∗ n) time [Bespamyatnikh, 2003] and a lower bound (under a somewhat
restricted model) Ω(n4/3) has also been proved. In this paper, we present an O(n4/3) time algorithm
and thus solve the problem optimally (under the restricted model). In addition, we also present
data structures for solving the online version of the problem, i.e., given a query segment (or a line
as a special case), find its closest point in P . Our new results improve the previous work.
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1 Introduction

Given a set P of n points and a set S of n segments in the plane, we consider the problem of
computing for each segment of S its closest point in P . We call it the segment-closest-point
problem. Previously, Bespamyatnikh [6] gave an n4/32O(log∗ n) time algorithm for the problem,
improving upon an O(n4/3 logO(1) n) time result of Agarwal and Procopiuc. The problem can
be viewed as a generalization of Hopcroft’s problem [1, 10, 13, 20, 30], which is to determine
whether any point of a given set of n points lies on any of the given n lines. Erickson [21]
proved an Ω(n4/3) time lower bound for Hopcroft’s problem under a somewhat restricted
partition model. This implies the same lower bound on the segment-closest-point problem.
For Hopcroft’s problem, Chan and Zheng [10] recently gave an O(n4/3) time algorithm, which
matches the lower bound and thus is optimal.

In this paper, with some new observations on the problem as well as the techniques from
Chan and Zheng [10] (more specifically, the Γ-algorithm framework for bounding algebraic
decision tree complexities), we present a new algorithm that solves the segment-closest-point
problem in O(n4/3) time and thus is optimal under Erickson’s partition model [21]. It should
be noted that our result is not a direct application of Chan and Zheng’s techniques [10], but
rather many new observations and techniques are needed. For example, one subroutine in our
problem is the following outside-hull segment queries: Given a segment outside the convex
hull of P , find its closest point in P . Bespamyatnikh and Snoeyink [7] built a data structure
in O(n) space and O(n log n) time such that each query can be answered in O(log n) time.
Unfortunately, their query algorithm does not fit the Γ-algorithm framework of Chan and
Zheng [10]. To resolve the issue, we develop another algorithm for the problem based on new
observations. Our approach is simpler, and more importantly, it fits into the Γ-algorithm
framework of Chan and Zheng [10]. The result may be interesting in its own right.
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We also consider the online version of the problem, called the segment query prob-
lem: Preprocess P so that given a query segment, its closest point in P can be found
efficiently. For the special case where the query segment is outside the convex hull of
P , one can use the data structure of Bespamyatnikh and Snoeyink [7] mentioned above.
For simplicity, we use (T1(n), T2(n), T3(n)) to denote the complexity of a data struc-
ture if its preprocessing time, space, and query time are on the order of T1(n), T2(n),
and T3(n), respectively. Using this notation, the complexity of the above data struc-
ture of Bespamyatnikh and Snoeyink [7] is O(n log n, n, log n). The general problem,
however, is much more challenging. Goswami, Das, and Nandy [25]’s method yields a
result of complexity O(n2, n2, log2 n). We present a new data structure of complexity
O(nm(n/m)δ, nm log(n/m),

√
n/m log(n/m)), any m with 1 ≤ m ≤ n log2 log n/ log4 n and

any δ > 0. Note that for the large space case (i.e., when m = n log2 log n/ log4 n), the complex-
ity of our data structure is O(n2/ log4−δ n, n2 log3 log n/ log4 n, log2 n), which improves the
above result of [25] on the preprocessing time and space by a factor of roughly log4 n. We also
give a faster randomized data structure of complexity O(nm log(n/m), nm log(n/m),

√
n/m)

for any m with 1 ≤ m ≤ n/ log4 n, where the preprocessing time is expected and the query
time holds with high probability. In addition, using Chan’s randomized techniques [8]
and Chan and Zheng’s recent randomized result on triangle range counting [10], one can
obtain a randomized data structure of complexity O(n4/3, n4/3, n1/3). Note that this data
structure immediately leads to a randomized algorithm of O(n4/3) expected time for the
segment-closest-point problem. As such, for solving the segment-closest-point problem, our
main effort is to derive an O(n4/3) deterministic time algorithm. Note that this is aligned
with the motivation of proposing the Γ-algorithm framework in [10], whose goal was to obtain
an O(n4/3) deterministic time algorithm for Hopcroft’s problem although a much simpler
randomized algorithm of O(n4/3) expected time was already presented.

If each query segment is a line, we call it the line query problem, which has been ex-
tensively studied. Previous work includes Cole and Yap [17]’s and Lee and Ching [28]’s
data structures of complexity O(n2, n2, log n), Mitra and Chaudhuri [31]’s work of complex-
ity O(n log n, n, n0.695), Mukhopadhyay [32]’s result of complexity O(n1+δ, n log n, n1/2+δ)
for any δ > 0. As observed by Lee and Ching [28], the problem can be reduced to ver-
tical ray-shooting in the dual plane, i.e., finding the first line hit by a query vertical ray
among a given set of n lines. Using the ray-shooting algorithms, the best deterministic res-
ult is O(n1.5, n,

√
n log n) [35] while the best randomized result is O(n log n, n,

√
n) [11];

refer to [2, 4, 10, 16] for other (less efficient) work on ray-shootings. We build a
new deterministic data structure of complexity O(nm(n/m)δ, nm log(n/m),

√
n/m), for

any 1 ≤ m ≤ n/ log2 n. We also have another faster randomized result of complexity
O(nm log(n/m), nm log(n/m),

√
n/m), for any m with 1 ≤ m ≤ n/ log2 n, where the prepro-

cessing time is expected while the query time holds with high probability. Our results improve
all previous work except the randomized result of Chan and Zheng [11]. For example, if
m = 1, our data structure is the only deterministic one whose query time is O(

√
n) with near

linear space; if m = n/ log2 n, our result achieves O(log n) query time while the preprocessing
is subquadratic, better than those by Cole and Yap [17] and Lee and Ching [28].

Other related work. If all segments are pairwise disjoint, then the segment-closest-point
problem was solved in O(n log2 n) time by Bespamyatnikh [6], improving over the O(n log3 n)
time algorithm of Bespamyatnikh and Snoeyink [7].

If every segment of S is a single point, then the problem can be easily solved in O(n log n)
time using the Voronoi diagram of P . Also, for any segment s ∈ S, if the point of s closest to
P is an endpoint of s, then finding the closest point of s in P can be done using the Voronoi
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diagram of P . Hence, the remaining issue is to find the first point of P hit by s if we drag s

along the directions perpendicularly to s. If all segments of S have the same slope, then the
problem can be solved in O(n log n) time using the segment dragging query data structure of
Chazelle [12], which can answer each query in O(log n) time after O(n) space and O(n log n)
time preprocessing. However, the algorithm [12] does not work if the query segments have
arbitrary slopes. As such, the challenge of the problem is to solve the dragging queries for
all segments of S when their slopes are not the same.

The segment-farthest-point problem has also been studied, where one wants to find for
each segment of S its farthest point in P . The problem appears much easier. For the line
query problem (i.e., given a query line, find its farthest point in P ), Daescu et al. [18] gave a
data structure of complexity O(n log n, n, log n). Using this result, they also proposed a data
structure of complexity O(n log n, n log n, log2 n) for the segment query problem. Using this
segment query data structure, the segment-farthest-point can be solved in O(n log2 n) time.

Outline. The rest of the paper is organized as follows. In Section 2, we introduce some
notation and concepts. In Section 3, we present our O(n4/3) deterministic time algorithm
for the segment-closest-point problem. We actually solve a more general problem where the
number of points is not equal to the number of segments, referred to as the asymmetric case,
and our algorithm runs in O(n2/3m2/3 + n log n + m log2 n) time with n as the number of
points and m as the number of segments. For the line case of the problem where all segments
are lines, a simpler algorithm is presented in the full paper and the algorithm also runs in
O(n4/3) time (and O(n2/3m2/3 + (n + m) log n) time for the asymmetric case). The online
query problem is sketched in Section 4 with details in the full paper. Due to the space limit,
many lemma proofs are omitted but can be found in the full paper.

2 Preliminaries

For two closed subsets A and B in the plane, let d(A, B) denote the minimum distance between
any point of A and any point of B. The point p of A closest to B, i.e., d(p, B) = d(A, B),
is called the closest point of B in A. For any two points a and b in the plane, we use ab to
denote the segment with a and b as its two endpoints.

For any point p in the plane, we use x(p) and y(p) to denote its x- and y-coordinates,
respectively. For a point p and a region A in the plane, we say that p is to the left of A if
x(p) ≤ x(q) for all points q ∈ A, and p is strictly to the left of A if x(p) < x(q) for all points
q ∈ A; the concepts (strictly) to the right is defined symmetrically.

For a set Q of points in the plane, we usually use VD(Q) to denote the Voronoi diagram
of Q and use CH(Q) to denote the convex hull of Q; we also use Q(A) to denote the subset
of Q in A, i.e., Q(A) = Q ∩ A, for any region A in the plane.

Cuttings. Let H be a set of n lines in the plane. Let HA denote the subset of lines of H

that intersect the interior of A (we also say that these lines cross A), for a compact region
A in the plane. A cutting is a collection Ξ of closed cells (each of which is a triangle) with
disjoint interiors, which together cover the entire plane [13, 30]. The size of Ξ is the number
of cells in Ξ. For a parameter r with 1 ≤ r ≤ n, a (1/r)-cutting for H is a cutting Ξ satisfying
|Hσ| ≤ n/r for every cell σ ∈ Ξ.

A cutting Ξ′ c-refines another cutting Ξ if every cell of Ξ′ is contained in a single cell of
Ξ and every cell of Ξ contains at most c cells of Ξ′. A hierarchical (1/r)-cutting for H (with
two constants c and ρ) is a sequence of cuttings Ξ0, Ξ1, . . . , Ξk with the following properties.

STACS 2024
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Ξ0 is the entire plane. For each 1 ≤ i ≤ k, Ξi is a (1/ρi)-cutting of size O(ρ2i) which c-refines
Ξi−1. In order to make Ξk a (1/r)-cutting, we set k = ⌈logρ r⌉. Hence, the size of the last
cutting Ξk is O(r2). If a cell σ ∈ Ξi−1 contains a cell σ′ ∈ Ξi, we say that σ is the parent of
σ′ and σ′ is a child of σ. As such, one could view Ξ as a tree in which each node corresponds
to a cell σ ∈ Ξi, 0 ≤ i ≤ k.

For any 1 ≤ r ≤ n, a hierarchical (1/r)-cutting of size O(r2) for H (together with Hσ for
every cell σ of Ξi for all i = 0, 1, . . . , k) can be computed in O(nr) time [13]. Also, it is easy
to check that

∑k
i=0

∑
σ∈Ξi

|Hσ| = O(nr).

3 The segment-closest-point problem

In this section, we consider the segment-closest-point problem. Let P be a set of n points
and S a set of n segments in the plane. The problem is to compute for each segment of S its
closest point in P . We make a general position assumption that no segment of S is vertical
(for a vertical segment, its closest point can be easily found, e.g., by building a segment
dragging query data structure [12] along with the Voronoi diagram of P ).

We start with a review of an algorithm of Bespamyatnikh [6], which will be needed in
our new approach.

3.1 A review of Bespamyatnikh’s algorithm [6]
As we will deal with subproblems in which the number of lines is not equal to the number of
segments, we let m denote the number of segments in S and n the number of points in P .
As such, the size of our original problem (S, P ) is (m, n).

Let H be the set of the supporting lines of the segments of S. For a parameter r with
1 ≤ r ≤ min{m,

√
n}, compute a hierarchical (1/r)-cutting Ξ0, Ξ1, . . . , Ξk for H. For each

cell σ ∈ Ξi, 0 ≤ i ≤ k, let P (σ) = P ∩ σ, i.e., the subset of the points of P in σ; let S(σ)
denote the subset of the segments of S intersecting σ. We further partition each cell of Ξk

into triangles so that each triangle contains at most n/r2 points of P and the number of new
triangles in Ξk is still bounded by O(r2). For convenience, we consider the new triangles as
new cells of Ξk (we still define P (σ) and S(σ) for each new cell σ in the same way as above;
so now |P (σ)| ≤ n/r2 and |S(σ)| ≤ m/r hold for each cell σ ∈ Ξk).

For each cell σ ∈ Ξk, form a subproblem (S(σ), P (σ)) of size (m/r, n/r2), i.e., find for
each segment s of S(σ) its closest point in P (σ). After the subproblem is solved, to find the
closest point of s in P , it suffices to find its closest point in P \ P (σ). To this end, observe
that P \ P (σ) is exactly the union of P (σ′′) for all cells σ′′ such that σ′′ is a child of an
ancestor σ′ of σ and s ̸∈ S(σ′′). As such, for each of such cells σ′′, find the closest point of s in
P (σ′′). For this, since s ̸∈ S(σ′′), s is outside σ′′ and thus is outside the convex hull of P (σ′′).
Hence, finding the closest point of s in P (σ′′) is an outside-hull segment query and thus
the data structure of Bespamyatnikh and Snoeyink [7] (referred to as the BS data structure
in the rest of the paper) is used, which takes O(|P (σ′′)|) space and O(|P (σ′′)| log |P (σ′′)|)
time preprocessing and can answer each query in O(log |P (σ′′)|) time. More precisely, the
processing can be done in O(|P (σ′′)|) time if the Voronoi diagram of P (σ′′) is known.

For the time analysis, let T (m, n) denote the time of the algorithm for solving a problem of
size (m, n). Then, solving all subproblems takes O(r2) · T (m/r, n/r2) time as there are O(r2)
subproblems of size (m/r, n/r2). Constructing the hierarchical cutting as well as computing
S(σ) for all cells σ in all cuttings Ξi, 0 ≤ i ≤ k, takes O(mr) time [13]. Computing P (σ)
for all cells σ can be done in O(n log r) time. Preprocessing for constructing the BS data
structure for P (σ) for all cells σ can be done in O(n log n log r) time as

∑
σ∈Ξi

|P (σ)| = n
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for each 0 ≤ i ≤ k, and k = O(log r). We can further reduce the time to O(n(log r + log n))
as follows. We build the BS data structure for cells of the cuttings in a bottom-up manner,
i.e., processing cells of Ξk first and then Ξk−1 and so on. After the preprocessing for P (σ)
for a cell σ ∈ Ξk, which takes O(|P (σ)| log(n/r2)) time since |P (σ)| ≤ n/r2, the Voronoi
diagram of P (σ) is available. After the preprocessing for all cells σ of Ξk is done, for each
cell σ′ of Ξk−1, to construct the Voronoi diagram of P (σ′), merge the Voronoi diagrams of
P (σ) for all children σ of σ′. To this end, as σ′ has O(1) children, the merge can be done
in O(|P (σ′)|) time by using the algorithm of Kirkpatrick [27], and thus the preprocessing
for P (σ′) takes only linear time. In this way, the total preprocessing time for all cells in
all cuttings Ξi, 0 ≤ i ≤ k, is bounded by O(n(log r + log(n/r2))) time, i.e., the time spent
on cells of Ξk is O(n log(n/r2)) and the time on other cuttings is O(n log r) in total. Note
that log r + log(n/r2) = log(n/r). As for the outside-hull segment queries, according to
the properties of the hierarchical cutting,

∑k
i=0

∑
σ∈Ξi

|S(σ)| = O(mr). Hence, the total
number of outside-hull segment queries on the BS data structure is O(mr) and thus the
total query time is O(mr log n). In summary, the following recurrence is obtained for any
1 ≤ r ≤ min{m,

√
n}:

T (m, n) = O(n log(n/r) + mr log n) + O(r2) · T (m/r, n/r2). (1)

Using the duality, Bespamyatnikh [6] gave a second algorithm (we will not review this
algorithm here because it is not relevant to our new approach) and obtained the following
recurrence for any 1 ≤ r ≤ min{n,

√
m}:

T (m, n) = O(nr log n + m log r log n) + O(r2) · T (m/r2, n/r). (2)

Setting m = n and applying (2) and (1) in succession (using the same r) obtain T (n, n) =
O(nr log n) + O(r4) · T (n/r3, n/r3). Setting r = n1/3/ log n leads to

T (n, n) = O(n4/3) + O((n/ log3 n)4/3) · T (log3 n, log3 n). (3)

The recurrence solves to T (n, n) = n4/32O(log∗ n), which is the time bound obtained in [6].

3.2 Our new algorithm
In this section, we improve the algorithm to O(n4/3) time.

By applying recurrence (3) three times we obtain the following:

T (n, n) = O(n4/3) + O((n/b)4/3) · T (b, b), (4)

where b = (log log log n)3.
Using the property that b is tiny, we show in the following that after O(n) time prepro-

cessing, we can solve each subproblem T (b, b) in O(b4/3) time (for convenience, by slightly
abusing the notation, we also use T (m, n) to denote a subproblem of size (m, n)). Plugging
the result into (4), we obtain T (n, n) = O(n4/3).

More precisely, we show that after O(2poly(b)) time preprocessing, where poly(·) is a
polynomial function, we can solve each T (b, b) using O(b4/3) comparisons, or alternatively,
T (b, b) can be solved by an algebraic decision tree of height O(b4/3). As b = (log log log n)3,
2poly(b) is bounded by O(n). To turn this into an algorithm under the standard real-RAM
model, we explicitly construct the algebraic decision tree for the above algorithm (we may
also consider this step as part of preprocessing for solving T (b, b)), which can again be done
in O(2poly(b)) time. As such, that after O(n) time preprocessing, we can solve each T (b, b) in
O(b4/3) time. In the following, for notational convenience, we will use n to denote b, and our
goal is to prove the following lemma.

STACS 2024
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▶ Lemma 1. After O(2poly(n)) time preprocessing, T (n, n) can be solved using O(n4/3)
comparisons.

We apply recurrence (1) by setting m = n and r = n1/3, and obtain the following

T (n, n) = O(n log n + n4/3 log n) + O(n2/3) · T (n2/3, n1/3). (5)

Recall that the term n4/3 log n is due to that there are O(n4/3) outside-hull segment queries.
To show that T (n, n) can be solved by O(n4/3) comparisons, there are two challenges: (1)
solve all outside-hull segment queries using O(n4/3) comparisons; (2) solve each subproblem
T (n2/3, n1/3) using O(n2/3) comparisons.

Γ-algorithm framework. To tackle these challenges, we use a Γ-algorithm framework for
bounding decision tree complexities proposed by Chan and Zheng [10]. We briefly review it
here (see Section 4.1 [10] for the details). Roughly speaking, this framework is an algorithm
that only counts the number of comparisons (called Γ-comparisons in [10]) for determining
whether a point belongs to a semialgebraic set of O(1) degree in a constant-dimensional space.
Solving our segment-closest-point problem is equivalent to locating the cell C∗ containing a
point p∗ parameterized by the input of our problem (i.e., the segments of S and the points of
P ) in an arrangement A of the boundaries of poly(n) semialgebraic sets in O(n)-dimensional
space. This arrangement can be built in O(2poly(n)) time without examining the values of
the input and thus does not require any comparisons. In particular, the number of cells
of A is bounded by nO(n). As a Γ-algorithm progresses, it maintains a set Π of cells of A.
Initially, Π consisting of all cells of A. During the course of the algorithm, Π can only shrink
but always contains the cell C∗. At the end of the algorithm, C∗ will be found. Define the
potential Φ = log |Π|. As A has nO(n) cells, initially Φ = O(n log n). For any operation or
subroutine of the algorithm, we use ∆Φ to denote the change of Φ. As Φ only decreases
during the algorithm, ∆Φ ≤ 0 always holds and the sum of −∆Φ during the entire algorithm
is O(n log n). This implies that we may afford an expensive operation/subroutine during the
algorithm as long as it decreases Φ a lot.

Two algorithmic tools are developed in [10] under the framework: basic search lemma
(Lemma 4.1 [10]) and search lemma (Lemma A.1 [10]). Roughly speaking, given r predicates
(each predicate is a test of whether γ(x) is true for the input vector x), suppose it is promised
that at least one of them is true for all inputs in the active cells; then the basic search lemma
can find a predicate that is true by making O(1 − r · ∆Φ) comparisons. Given a binary
tree (or a more general DAG of O(1) degree) such that each node v is associated with a
predicate γv, suppose for each internal node v, γv implies γu for a child u of v for all inputs
in the active cells. Then, the search lemma can find a leaf v such that γv is true by making
O(1 − ∆Φ) comparisons.

An application of both lemmas particularly discussed in [10] is to find a predecessor of a
query number among a sorted list of input numbers. In our algorithm, as will be seen later,
the subproblem that needs the Γ-algorithm framework is also finding predecessors among
sorted lists and thus both the basic search lemma and the search lemma are applicable.

In the following two subsections, we will tackle the above two challenges, respectively. By
slightly abusing the notation, let P be a set of n points and S a set of n segments for the
problem in recurrence (5).
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Figure 1 Illustrating an outside-hull segment query.

3.3 Solving outside-hull segment queries
Recall that we have used the BS data structure to answer the outside-hull segment queries.
Unfortunately the algorithm does not fit the Γ-algorithm framework. Indeed, the BS data
structure is a binary tree. However, each node of the tree represents a convex hull of a subset
of points and it is not associated with a predicate that we can use to apply the Γ-algorithm
framework (e.g., the search lemma as discussed above).

In the following, we first present a new algorithm for solving the outside-hull segment
queries. Our algorithm, whose performance matches that of the BS data structure, is simpler,
and thus may be of independent interest; more importantly, it leads to an algorithm that fits
the Γ-algorithm framework to provide an O(n4/3) upper bound.

Let Q be a set of n′ points. The problem is to preprocess Q so that given any query
segment s outside the convex hull CH(Q) of Q, the closest point of s in Q can be computed
efficiently. Recall that in our original problem (i.e., the recurrence (5)) Q is a subset of P

and the sum of n′ for all subsets of P that we need to build the outside-hull query data
structures is O(n log n). We make this an observation below, which will be referred to later.

▶ Observation 2. The size of the subsets of P that we need to build the outside-hull query
data structures is O(n log n), i.e.,

∑
n′ = O(n log n).

In the preprocessing, we compute the Voronoi diagram VD(Q) of Q, from which we can
obtain the convex hull CH(Q) in linear time. For each edge e of CH(Q), we determine the
subset Qe of points of Q whose Voronoi cells intersect e in order along e. This order is
exactly the order of the perpendicular projections of the points of Qe onto e [7].

Consider a query segment s that is outside CH(Q). Let ps be the first point of Q hit by s

if we drag s along the direction perpendicularly to s and towards CH(Q); see Fig. 1. For
ease of exposition, we assume that ps is unique. Our goal is to compute ps in the case where
the point of s closest to Q is not an endpoint of s since the other case can be easily solved
by using VD(Q). Henceforth, we assume that the point of s closest to Q is not an endpoint
of s, implying that ps is the point of Q closest to s. Without loss of generality, we assume
that s is horizontal and s is below CH(Q). Let a and b be the left and right endpoints of s,
respectively (see Fig. 1).

We first find the lowest vertex v of CH(Q), which can be done in O(log n′) time by doing
binary search on CH(Q). If x(a) ≤ x(v) ≤ x(b), then v is ps and we are done with the query.
Otherwise, without loss of generality, we assume that x(b) < x(v). By binary search on
CH(Q), we find the edge e in the lower hull of CH(Q) that intersects the vertical line through
b. Since x(a) ≤ x(b) < x(v), e must have a negative slope (see Fig. 1). Then, as discussed
in [7], ps must be in Qe. To find ps efficiently, we first make some observations (which were
not discovered in the previous work).
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Suppose p1, p2, . . . , pm are the points of Qe, sorted following the order of their Voronoi
cells in VD(Q) intersecting e from left to right. We define two special indices i∗ and j∗ of Qe

with respect to a and b, respectively.

▶ Definition 3. Define j∗ as the largest index of the point of Qe that is to the left of b.
Define i∗ as the smallest index of the point of Qe such that pj is to the right of a for all
j ≥ i∗.

Note that j∗ must exist as ps is in Qe and is to the left of b. We have the following lemma.

▶ Lemma 4. If i∗ does not exist or i∗ > j∗, then ps cannot be the closest point of s in Q.

By Lemma 4, if i∗ does not exist or if i∗ > j∗, then we can simply stop the query
algorithm. In the following, we assume that i∗ exists and i∗ ≤ j∗. Let Qe[i∗, j∗] denote the
subset of points of Qe whose indices are between i∗ and j∗ inclusively. The following lemma
implies that we can use the supporting line of s to search ps.

▶ Lemma 5. Suppose ps is the closest point of s in Q. Then, ps is the point of Qe[i∗, j∗]
closest to the supporting line of s (i.e., the line containing s).

Based on Lemma 5, we have the following three steps to compute ps: (1) compute j∗; (2)
compute i∗; (3) find the point of Qe[i∗, j∗] closest to the supporting line ℓs of s.

The following Lemma 6, which is for outside-hull segment queries, is a by-product of our
above observations. Its complexity is the same as that in [7]. However, we feel that our new
query algorithm is simpler and thus this result may be interesting in its own right.

▶ Lemma 6. Given a set Q of n′ points in the plane, we can build a data structure of O(n′)
space in O(n′ log n′) time such that each outside-hull query can be answered in O(log n′) time.
The preprocessing time is O(n′) if the Voronoi diagram of Q is known.

The query algorithm of Lemma 6 actually does not fit the Γ-algorithm framework. Instead,
following the above observations we will give another query algorithm that fits the Γ-algorithm
framework. We now give a new algorithm that fits the Γ-algorithm framework. The new
algorithm requires slightly more preprocessing than Lemma 6. But for our purpose, we are
satisfied with O(n4/3) preprocessing time. We have different preprocessing for each of the
three steps of the query algorithm, as follows.

The first step: computing j∗. For computing j∗, we will use the basic search lemma (i.e.,
Lemma 4.1) in [10]. In order to apply the lemma, we perform the following preprocessing.

Recall that Qe = {p1, p2, . . . , pm} is ordered by their Voronoi cells intersecting e. We
partition the sequence into r contiguous subsequences of size roughly m/r each. Let Qi

e denote
the i-th subsequence, with 1 ≤ i ≤ r. For each i ∈ [1, r], we compute and explicitly maintain
the convex hull CH(i) of all points in the union of the subsequences Qj

e, j = i, i + 1, . . . , r.
Next, for each subsequence Qi

e, we further partition it into r contiguous sequences of size
roughly |Qi

e|/r and process it in the same way as above. We do this recursively until the
subsequence has no more than r points. In this way, we obtain a tree T with m leaves such
that each node has r children. For each node v, we use CH(v) to denote the convex hull
that is computed above corresponding to v (e.g., if v is the child of the root corresponding
to Qi

e, then CH(v) is CH(i) defined above). The total time for constructing T can be easily
bounded by O(mr log m logr m) as the height of T is O(logr m).

Now to compute j∗, we search the tree T : starting from the root, for each node v, we
apply the basic search lemma on all r children of v. Indeed, this is possible due to the
following. Consider the root v. For each i with 1 ≤ i ≤ r, let xi denote the x-coordinate
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of the leftmost point of the union of the subsequences Qj
e, j = i, i + 1, . . . , r; note that

xi is also the leftmost vertex of CH(i). It is not difficult to see that x1 ≤ x2 ≤ . . . ≤ xr.
Observe that pj∗ is in Qi

e if and only if xi ≤ x(b) < xi+1. Therefore, we find the index i

such that xi ≤ x(b) < xi+1 and then proceed to the child of v corresponding to Qi
e. This

property satisfies the condition of the basic search lemma (essentially, we are looking for the
predecessor of b in the sequence x1, x2, . . . , xr and this is somewhat similar to the insertion
sort algorithm of Theorem 4.1 [10], which uses the basic search lemma). By the basic search
lemma, finding the index i can be done using O(1 − r∆Φ) comparisons provided that the
x-coordinates x1, x2, . . . , xr are available to us (we will discuss how to compute them later).
We then follow the same idea recursively until we reach a leaf. In this way, the total number
of comparisons for computing j∗ is O(logr m − r∆Φ).

By setting r = mϵ for a small constant ϵ, the preprocessing time is O(m1+ϵ log m) and
computing j∗ can be done using O(1 − mϵ∆Φ) comparisons. Recall that there are O(n4/3)
queries in our original problem (i.e., recurrence (5)) and the total time for −∆Φ during the
entire algorithm is O(n log n). Also, since m is the number of points of Q whose Voronoi
cells intersecting the edge e of CH(Q), the sum of m for all outside-hull segment query data
structures for all edges of CH(Q) is |Q|, which is n′. By Observation 2, the sum of n′ for all
data structures in our original problem is O(n log n). Hence, the total preprocessing time
for our original problem is O(n1+ϵ log2+ϵ n), which is bounded by O(n4/3) if we set ϵ to a
small constant (e.g., ϵ = 1/4). As such, with a preprocessing step of O(n4/3) time, we can
compute j∗ for all queries using a total of O(n4/3) comparisons.

The above complexity analysis for computing j∗ is based on the assumption that the
leftmost point of CH(v) for each node v of T is known. To find these points during the
queries, we take advantage of the property that all queries are offline, i.e., we know all query
segments before we start the queries. Notice that although there are O(n4/3) queries, the
number of distinct query segments is n, i.e., those in S (a segment may be queried on different
subsets of P ). Let s be the current query segment and p be the leftmost point of a convex
hull CH(v) with respect to s (i.e., by assuming s is horizontal). Let ρ1 be the ray from p

going vertically upwards. Let ρ2 be another ray from p going through the clockwise neighbor
of p on CHv, i.e., ρ2 contains the clockwise edge of CHv incident to v. Observe that for
another query segment s′, p is still the leftmost point of CHv with respect to s′ as long as
the direction perpendicular to s′ is within the angle from ρ1 clockwise to ρ2. Based on this
observation, before we start any query, we sort the perpendicular directions of all segments
of S along with the directions of all edges of all convex hulls of all nodes of the trees T for all
outside-hull segment query data structures in our original problem (i.e., the recurrence (5)).
As analyzed above, the total size of convex hulls of all trees T is O(n1+ϵ log2+ϵ n). Hence, the
sorting can be done in O(n1+ϵ log3+ϵ n) time. Let L be the sorted list. We solve the queries
for segments following their order in L. Let s and s′ be two consecutive segments of S in L.
After we solve all queries for s, the directions between s and s′ in L correspond to those nodes
of the trees T whose leftmost points need to get updated, and we then update the leftmost
points of those nodes before we solve queries for s′. The total time we update the tree nodes
for all queries is proportional to the total size of all trees, which is O(n1+ϵ log2+ϵ n).

In summary, after O(n4/3) time preprocessing, computing j∗ for all O(n4/3) outside-hull
segment queries can be done using O(n4/3) comparisons.

The second step: computing i∗. For computing i∗, the idea is similar and we only sketch
it. In the preprocessing, we build the same tree T as above for the first step. One change is
that we add the first point p of the subsequence Qi

e to the end of Qi−1
e , i.e., p appears in

both Qi
e and Qi−1

e . This does not change the complexities asymptotically.

STACS 2024



58:10 Algorithms for Computing Closest Points for Segments

For each query, to compute i∗, consider the root v. Observe that i∗ is in Qi
e if and only

if xi < x(a) ≤ xi+1 (xi and xi+1 are defined in the same way as before). As such, we can
apply the basic search lemma to find i∗ in O(1 − mϵ∆Φ) comparisons. We can use the same
approach as above to update the leftmost points of convex hulls of nodes of the trees T (i.e.,
computing a sorted list L and process the queries of the segments following their order in L).

In summary, after O(n4/3) time preprocessing, computing i∗ for all O(n4/3) outside-hull
segment queries can be done using O(n4/3) comparisons.

The third step. The third step is to find the point ps of Qe[i∗, j∗] closest to ℓ(s), where
ℓ(s) is the supporting line of s. We first discuss the preprocessing step on Qe.

We build a balanced binary search tree Te whose leaves corresponding to the points of
Qe = {p1, p2, . . . , pm} in their index order as discussed before. For each node v of Te, we use
Qe(v) to denote the set of points in the leaves of the subtree rooted at v. For each node v of
Te, we explicitly store the convex hull of Qe(v) at v. Further, for each leaf v, which stores a
point pi of Qe, for each ancestor u of v, we compute the convex hull CHr(v, u) of all points
pi, pi+1, . . . , pj , where pj is the point in the rightmost leaf of the subtree at u. We do this
in a bottom-up manner starting from v following the path from v to u. More specifically,
suppose we are currently at a node w, which is v initially. Suppose we have the convex hull
CHr(v, w). We proceed on the parent w′ of w as follows. If w is the right child of w′, then
CHr(v, w′) is CHr(v, w) and thus we do nothing. Otherwise, we merge CHr(v, w) with the
convex hull of Qe(w′′) at w′′, where w′′ is the right child of w′. Since points of CHr(v, w)
are separated from points of Qe(w′′) by a line perpendicular to e [7], we can merge the two
hulls by computing their common tangents in O(log m) time [33]. We use a persistent tree to
maintain the convex hulls (e.g., by a path-copying method) [19, 34] so that after the merge
we still keep CHr(v, w). In this way, we have computed CHr(v, w′) and we then proceed on
the parent of w′. We do this until we reach the root. As such, the total time and extra
space for computing the convex hulls for a leaf v is O(log2 m), and the total time and space
for doing this for all leaves is O(m log2 m). Symmetrically, for each leaf v, which stores a
point pi of Qe, for each ancestor u of v, we compute the convex hull CHl(v, u) of all points
ph, ph+1, . . . , pi, whether ph is the point in the leftmost leaf of the subtree at u. Computing
the convex hulls CHl(v, u) for all ancestors u for all leaves v can be done in O(m log2 m) in
a similar way as above. In addition, we construct a lowest common ancestor (LCA) data
structure on the tree Te in O(m) time so that the LCA of any two query nodes of Te can be
found in O(1) time [5, 26]. The total preprocessing time for constructing the tree Te as above
is O(m log2 m). Recall that the sum of m for all outside-hull segment query data structures
is O(n log n). Hence, the total preprocessing time of all data structures is O(n log3 n).

Now consider the third step of the query algorithm. Suppose i∗ and j∗ are known. The
problem is to compute the point ps of Qe[i∗, j∗] closest to the supporting line ℓ(s) of s. Let
u and v be the two leaves of Te storing the two points pi∗ and pj∗ , respectively. Let w be
the lowest common ancestor of u and v. Let u′ and v′ be the left and right children of w,
respectively. It is not difficult to see that the convex hull of CHr(u, u′) and CHl(v, v′) is the
convex hull of Qe[i∗, j∗]. As such, to find ps, it suffices to compute the vertex of CHr(u, u′)
closest to ℓ(s) and the vertex of CHl(v, v′) closest to ℓ(s), and among the two points, return
the one closer to ℓ(s) as ps. To implement the algorithm, finding w can be done in O(1) time
using the LCA data structure [5, 26]. To find the closest vertex of CHr(u, u′) to ℓ(s), recall
that the preprocessing computes a balanced binary search tree (maintained by a persistent
tree), denoted by Tr(u, u′), for maintaining CHr(u, u′). We apply a search lemma of Chan
and Zheng (Lemma A.1 [10]) on the tree Tr(u, u′). Indeed, the problem is equivalent to
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finding the predecessor of the slope of ℓ(s) among the slopes of the edges of CHr(u, u′).
Using the search lemma, we can find the vertex of CHr(u, u′) closest to ℓ(s) using O(1 − ∆Φ)
comparisons. Similarly, the vertex of CHl(v, v′) closest to ℓ(s) can be found using O(1 − ∆Φ)
comparisons. In this way, ps can be computed using O(1 − ∆Φ) comparisons.

In summary, with O(n log3 n) time preprocessing, the third step of the query algorithm
for all O(n4/3) queries can be done using a total of O(n4/3) comparisons (recall that the sum
of −∆Φ in the entire algorithm is O(n log n)).

Summary. Combining the three steps discussed above, all O(n4/3) outside-hull segment
queries can be solved using O(n4/3) comparisons. Recall that the above only discussed the
query on the data structure for a single edge e of the convex hull of Q. As the first procedure
of the query, we need to find the vertex of CH(Q) closest to the supporting line of s. For
this, we can maintain the convex hull CH(Q) by a balanced binary search tree and apply
the search lemma of Chan and Zheng (Lemma A.1 [10]) in the same way as discussed above.
As such, this procedure for all queries uses O(n4/3) comparisons. The second procedure of
the query is to find the edge of CH(Q) intersecting the line through one of the endpoints of
s and perpendicular to s. This operation is essentially to find a predecessor of the above
endpoint of s on the vertices of the lower hull of CH(Q). Therefore, we can also apply the
search lemma of Chan and Zheng, and thus this procedure for all queries also uses O(n4/3)
comparisons. As such, we can solve all O(n4/3) outside-hull segment queries using O(n4/3)
comparisons, or alternatively, we have an algebraic decision tree of height O(n4/3) that can
solve all O(n4/3) queries.

3.4 Solving the subproblems T (n2/3, n1/3)
We now tackle the second challenge, i.e., solve each subproblem T (n2/3, n1/3) in recurrence (5)
using O(n2/3) comparisons, or solve all O(n2/3) subproblems T (n2/3, n1/3) in (5) using
O(n4/3) comparisons.

Recall that P is the set of n points and S is the set of n segments for the original problem
in recurrence (5). If the closest point of a segment s ∈ S to P is an endpoint of s, then
finding the closest point of s in P can be done using the Voronoi diagram of P . Hence, it
suffices to find the first point of P hit by s if we drag s along the directions perpendicularly
to s. There are two such directions, but in the following discussion we will only consider
dragging s along the upward direction perpendicularly to s (recall that s is not vertical due
to our general position assumption) and let ps be the first point of P hit by s, since the
algorithm for the downward direction is similar. As such, the goal is to compute ps for each
segment s ∈ S.

For notational convenience, let m = n1/3 and thus we want to solve T (m2, m) using
O(m2) comparisons. More specifically, we are given m points and m2 segments; the problem
is to compute for each segment s the point ps (with respect to the m points, i.e., the first
point hit by s if we drag s along the upward direction perpendicular to s). Our goal is to solve
all O(m2) segment dragging queries using O(m2) comparisons after certain preprocessing.
In what follows, we begin with the preprocessing algorithm.

Preprocessing. For two sets A = {a1, a2, . . . , am} and B = {b1, b2, . . . , bm} of m points
each, we say that they have the same order type if for each i, the index order of the points of
A sorted around ai is the same as that of the points of B sorted around bi (equivalently, in
the dual plane, the index order of the dual lines intersecting the dual line of ai is the same as
that of the dual lines intersecting the dual line of bi); the concept has been used elsewhere,
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e.g., [3, 10, 23]. Because constructing the arrangement of a set of m lines can be computed
in O(m2) time [15], we can decide whether two sets A and B have the same order type in
O(m2) time, e.g., simply follow the incremental line arrangement construction algorithm [15].
We actually build an algebraic decision tree TD so that each node of TD corresponds to a
comparison of the algorithm. As such, the height of TD is O(m2) and TD has 2O(m2) leaves,
each of which corresponds to an order type (note that the number of distinct order types is
at most m6m [24], but here using 2O(m2) as an upper bound suffices for our purpose).

Let Q be a set of m points whose order type corresponds to a leaf v of TD. Let KQ

denote the set of the slopes of all lines through pairs of points of Q. Note that |KQ| = O(m2).
We sort the slopes of KQ. Consider two consecutive slopes k1 and k2 of the sorted KQ. In
the dual plane, for any vertical line ℓ whose x-coordinate is between k1 and k2, ℓ intersects
the dual lines of all points of Q in the same order (because k1 and k2 respectively are
x-coordinates of two consecutive vertices of the arrangement of dual lines). This implies the
following in the primal plane. Consider any two lines ℓ1 and ℓ2 whose slopes are between k1
and k2 such that all points of Q are above ℓi for each i = 1, 2. Then, the order of the lines
of Q by their distances to ℓ1 is the same as their order by the distances to ℓ2. However, if
we project all points of Q onto ℓ1 and ℓ2, the orders of their projections along the two lines
may not be the same. To solve our problem, we need a stronger property that the above
projection orders are also the same. To this end, we further refine the order type as follows.

For each pair of points qi and qj of Q, we add the slope of the line perpendicular to the
line through p and q to KQ. As such, the size of KQ is still O(m2). Although KQ has O(m2)
values, all these values are defined by the m points of Q. Using this property, KQ can be
sorted using O(m2) comparisons [10, 22].

For two sets Q = {q1, q2, . . . , qm} and Q′ = {q′
1, q′

2, . . . , q′
m} of m points each with the

same order type, we say that they have the same refined order type if the order of KQ is
the same as that of KQ′ , i.e., the slope of the line through qi and qj (resp., the slope of
the line perpendicular to the line through qi and qj) is in the k-th position of the sorted
list of KQ if and only if the slope of the line through q′

i and q′
j (resp., the slope of the line

perpendicular to the line through q′
i and q′

j) is in the k-th position of the sorted list of KQ′ .
We further enhance the decision tree TD by attaching a new decision tree at each leaf v of
TD for sorting KQ (recall that KQ can be sorted using O(m2) comparisons, i.e., there is
an algebraic decision tree of height O(m2) that can sort KQ), where Q is a set of m points
whose order type corresponds to v. We still use TD to refer to the new tree. The height of
TD is still O(m2).

We perform the following preprocessing work for each leaf v of TD. Let Q be a set of
m points that has the refined order type of v. We associate Q with v, compute and sort
KQ, and store the sorted list using a balanced binary search tree. Let k1 and k2 be two
consecutive slopes in the sorted list of KQ. Consider a line ℓ whose slope is in (k1, k2) such
that ℓ is below all points of Q. We project all points perpendicularly onto ℓ. According to
the definition of KQ, the order of the projections is fixed for all such lines ℓ whose slopes
are in (k1, k2). Without loss of generality, we assume that ℓ is horizontal. Let q1, q2, . . . , qm

denote the points of Q ordered by their projections on ℓ from left to right and we maintain
the sorted list in a balanced binary search tree. For each pair (i, j) with 1 ≤ i ≤ j ≤ m, let
Q[i, j] = {qi, qi+1, . . . , qj}; we sort all points of Q[i, j] by their distances to ℓ and store the
sorted list in a balanced binary search tree. As such, the time we spent on the preprocessing
at v is O(m5 log m).

Since TD is a decision tree of height O(m2), the number of leaves of TD is 2O(m2).
Therefore, the total preprocessing time for all leaves of TD is m5 log m · 2O(m2). As TD can
be built in O(2poly(m)) time, the total preprocessing time is bounded by O(2poly(m)).
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Solving a subproblem T (m2, m). Consider a subproblem T (m2, m) with a set P ′ of
m points and a set S′ of m2 segments. We arbitrarily assign indices to points of P ′ as
{p1, p2, . . . , pm}. By using the decision tree TD, we first find the leaf v of TD that corresponds
to the refined order type of P ′, which can be done using O(m2) comparisons as the height of
TD is O(m2). Let Q = {q1, q2, . . . , qm} be the set of m points associated with v. Below we
find for each segment s ∈ S′ its point ps in P ′. Let ℓ denote the supporting line of s.

We first find two consecutive slopes k1 and k2 in KP ′ such that the slope of ℓ is in [k1, k2).
Note that we do not explicitly have the sorted list of KP ′ , but recall that we have the sorted
list of KQ stored at v. Since P ′ and Q have the same refined order type, a slope defined by
two points pi and pj is in the k-th position of KP ′ if and only if the slope defined by two
points qi and qj is in the k-th position of KQ. Hence, we can search KQ instead; however,
whenever we need to use a slope whose definition involves a point qi ∈ Q, we use pi instead.
In this way, we could find k1 and k2 using O(log m) comparisons. Further, since we have
the balanced binary search tree storing KQ, we can apply the search lemma of Chan and
Zheng [10] as discussed above to find k1 and k2 using only O(1 − ∆Φ) comparisons.

Without loss of generality, we assume that s is horizontal. Let a and b denote the left
and right endpoints of s, respectively. Suppose we project all points of P ′ perpendicularly
onto ℓ. Let pπ(1), pπ(2), . . . , pπ(m) be the sorted list following their projections along ℓ from
left to right, where π(i) is the index of the i-th point in this order. We wish to find the index
i such that a is between pπ(i−1) and pπ(i) as well as the index j such that b is between pπ(j)
and pπ(j+1). To this end, we do the following. Since P ′ and Q have the same refined order
type, if we project all points of Q perpendicularly onto ℓ, then qπ(1), qπ(2), . . . , qπ(m) is the
sorted list following their projections along ℓ with the same permutation π(·). Hence, to find
the index i, we can query a in the sorted list qπ(1), qπ(2), . . . , qπ(m), which is maintained at
v due to our preprocessing, but again, whenever we need to use a point qπ(k), we use pπ(k)
instead. Using the search lemma of Chan and Zheng as discussed before, we can find i using
O(1 − ∆Φ) comparisons. Similarly, the index j can be found using O(1 − ∆Φ) comparisons.

Let P ′
ℓ [i, j] = {pπ(i), pπ(i+1), . . . , pπ(j)}. By the definitions of i and j, the point ps we are

looking for is the point of P ′
ℓ [i, j] closest to the line ℓ. To find ps, we do the following. Let

ℓ′ be a line parallel to ℓ but is below all points of P ′ and Q. Let P ′
ℓ′ [i, j] denote the sorted

list of P ′
ℓ [i, j] ordered by their distances from ℓ′. Then, ps can be found by binary search on

P ′
ℓ′ [i, j]. Since P ′ and Q have the same refined order type, we can instead do binary search

on Qℓ′ [i, j], whose order is consistent with that of Q[i, j], which is maintained at v due to
the preprocessing. As such we can search Q[i, j], but again whenever the algorithm wants to
use a point qk ∈ Q[i, j], we will use pk instead to perform a comparison. Using the search
lemma of Chan and Zheng, we can find ps using O(1 − ∆Φ) comparisons.

The above shows that ps can be found using O(1 − ∆Φ) comparisons. Therefore, doing
this for all O(m2) segments can be done using O(m2 − ∆Φ) comparisons.

In summary, with O(2poly(n)) time preprocessing, we can solve each subproblem
T (n2/3, n1/3) using O(n2/3) comparisons without considering the term −∆Φ, whose total
sum in the entire algorithm of recurrence (5) is O(n log n).

3.5 Wrapping things up
The above proves Lemma 1, and thus T (n, n) in (5) can be bounded by O(n4/3) after
O(2poly(n)) time preprocessing as discussed before. Equivalently, T (b, b) in (4) can be
bounded by O(b4/3) after O(2poly(b)) time preprocessing. Notice that the preprocessing work
is done only once and for all subproblems T (b, b) in (4). Since b = (log log log n)3, we have
2poly(b) = O(n). As such, T (n, n) in (4) solves to O(n4/3) and we have the following.
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▶ Theorem 7. Given a set of n points and a set of n segments in the plane, we can find for
each segment its closest point in O(n4/3) time.

The following solves the asymmetric case of the problem (see the full paper for details).

▶ Corollary 8. Given a set of n points and a set of m segments in the plane, we can find for
each segment its closest point in O(n2/3m2/3 + n log n + m log2 n) time.

4 The online query problem

Let P be a set of n points in the plane. We wish to build a data structure so that the point
of P closest to a query segment can be computed efficiently.

4.1 The line query problem
We first consider the special case where the query segment is a line ℓ. The main idea is
to adapt the simplex range searching data structures [9, 29, 30] (which works in any fixed
dimensional space; but for our purpose it suffices to only consider half-plane range counting
queries in the plane). Each of these half-plane range counting query data structures [9, 29, 30]
defines canonical subsets of P and usually only maintains the cardinalities of them. To solve
our problem, roughly speaking, the change is that we compute and maintain the convex hulls
of these canonical subsets, which increases the space by a factor proportional to the height of
the underlying trees (which is O(log n) for the data structures in [9, 30] and is O(log log n)
for the one in [29]). To answer a query, we follow the similar algorithms as half-plane range
counting queries on these data structures. The difference is that for certain canonical subsets,
we do binary search on their convex hulls to find their closest vertices to the query line, which
does not intersect these convex hulls (in the half-plane range counting query algorithms
only the cardinalities of these canonical subsets are added to a total count). This increases
the query time by a logarithmic factor comparing to the original half-plane range counting
query algorithms. We manage to reduce the additional logarithmic factor using fractional
cascading [14] on the data structures of [9, 30] because each node in the underlying trees
of these data structures has O(1) children. Some extra efforts are also needed to achieve
the claimed performance. Finally, the trade-off is obtained by combining these results with
cuttings in the dual space.

In the rest of this subsection, we present a randomized result based on Chan’s partition
tree [9] while the deterministic results are given in the full paper.

A randomized result based on Chan’s partition tree [9]. We first review Chan’s partition
tree [9]. Chan’s partition tree T for the point set P is a tree structure by recursively
subdividing the plane into triangles. Each node v of T is associated with a triangle △(v),
which is the entire plane if v is the root. If v is an internal node, it has O(1) children, whose
associated triangles form a disjoint partition of △(v). Let P (v) = P ∩ △(v), i.e., the subset
of points of P in △(v). For each internal node v, the cardinality |P (v)| is stored at v. If v is
a leaf, then |P (v)| = O(1) and P (v) is explicitly stored at v. The height of T is O(log n) and
the space of T is O(n). Let α(T ) denote the maximum number of triangles △(v) among all
nodes v of T crossed by any line in the plane. Given P , Chan’s randomized algorithm can
compute T in O(n log n) expected time such that α(T ) = O(

√
n) holds with high probability.

To solve our problem, we modify the tree T as follows. For each node v, we compute the
convex hull CH(v) of P (v) and store CH(v) at v. This increases the space to O(n log n), but
the preprocessing time is still bounded by O(n log n).
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Given a query line ℓ, our goal is to compute the point of P closest to ℓ. We only discuss
how to find the closest point of ℓ among all points of P below ℓ since the other case is similar.
Starting from the root of T , consider a node v. We assume that ℓ crosses △(v), which is
true initially when v is the root. For each child u of v, we do the following. If ℓ crosses △(u),
then we proceed on u recursively. Otherwise, if △(u) is below ℓ, we do binary search on
the convex hull CH(u) to find in O(log n) time the closest point to ℓ among the vertices of
CH(u) and keep the point as a candidate. Since each internal node of T has O(1) children,
the algorithm eventually finds O(α(T )) candidate points and among them we finally return
the one closest to ℓ as our solution. The total time of the algorithm is O(α(T ) · log n).

To further reduce the query time, we observe that all nodes v whose triangles △(v) are
crossed by ℓ form a subtree Tℓ of T containing the root. This is because if the triangle △(v)
of a node v is crossed by ℓ, then the triangle △(u) is also crossed by ℓ for any ancestor u of v.
In light of the observation, we can further reduce the query algorithm time to O(α(T )+ log n)
by constructing a fractional cascading structure [14] on the convex hulls of all nodes of T

so that if a tangent to the convex hull at a node v is known, then the tangents of the same
slope to the convex hulls of the children of v can be found in constant time. The total time
for constructing the fractional cascading structure is linear in the total size of all convex
hulls, which is O(n log n). With the fractional cascading structure, we only need to perform
binary search on the convex hull at the root and then spend only O(1) time on each node of
Tℓ and each of their children. As such, the query time becomes O(α(T ) + log n), which is
bounded by O(

√
n) with high probability.

▶ Lemma 9. Given a set P of n points in the plane, we can build a data structure of
O(n log n) space in O(n log n) expected time such that for any query line its closest point in
P can be computed in O(

√
n) time with high probability.

4.2 The segment query problem
To answer the general segment queries, the main idea is essentially the same as the line case
with one change: whenever we compute the convex hull for a canonical subset of P (e.g., the
subset P (v) for a node v in a partition tree) for outside-hull line queries, we instead build
the BS data structure [7] for outside-hull segment queries. Because the fractional cascading
does not help anymore, the query time in general has an additional logarithmic factor, with
the exception that when using Chan’s partition tree [9] we still manage to bound the query
time by O(

√
n) due to some nice properties of the partition tree.

In the rest of this subsection, we present a randomized result based on Chan’s partition
tree [9] while the deterministic results are given in the full paper.

The randomized result. For our randomized result using Chan’s partition tree [9] (by
modifying the one in Section 4.1), for each node v of the partition tree T , we construct the
BS data structure for P (v). The total space is still O(n log n). For the preprocessing time,
constructing the BS data structure can be done in linear time if we know the Voronoi diagram
of P (v). For this, as discussed in Section 3.1, we can process all nodes of T in a bottom-up
manner and using the linear-time Voronoi diagram merge algorithm of Kirkpatrick [27]. As
such, constructing the BS data structures for all nodes of T can be done in O(n log n) time
in total. Therefore, the total preprocessing time is still O(n log n) expected time.

The query algorithm follows the same scheme as before but instead use the BS algorithm
to answer outside-hull segment queries. The total query time becomes O(

√
n log n) with high

probability. In fact, due to certain properties of Chan’s partition tree, the time is bounded
by O(

√
n), as shown in the following lemma (similar idea was used elsewhere, e.g., [11]).
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▶ Lemma 10. The query time is bounded by O(
√

n) with high probability.

As such, we obtain the following result.

▶ Lemma 11. Given a set P of n segments in the plane, we can build a data structure of
O(n log n) space in O(n log n) expected time such that for any query segment its closest point
in P can be computed in O(

√
n) time with high probability.

As discussed in Section 1, another randomized solution of complexity O(n4/3, n4/3, n1/3)
can be obtained using Chan’s randomized techniques [8] and Chan and Zheng’s recent
randomized result on triangle range counting [10]. Refer to the full paper for details. We
thank an anonymous reviewer for suggesting the idea.
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