Incremental HMM with an improved Baum-Welch
Algorithm

Tiberiu S. Chis! and Peter G. Harrison?

1,2 Department of Computing, Imperial College London
South Kensington Campus, London, UK
tiberiu.chisO7@imperial.ac.uk , pgh@doc.ic.ac.uk

—— Abstract

There is an increasing demand for systems which handle higher density, additional loads as
seen in storage workload modelling, where workloads can be characterized on-line. This paper
aims to find a workload model which processes incoming data and then updates its parameters
"on-the-fly." Essentially, this will be an incremental hidden Markov model (IncHMM) with an
improved Baum-Welch algorithm. Thus, the benefit will be obtaining a parsimonious model which

updates its encoded information whenever more real time workload data becomes available. To
achieve this model, two new approximations of the Baum-Welch algorithm are defined, followed
by training our model using discrete time series. This time series is transformed from a large
network trace made up of I/O commands, into a partitioned binned trace, and then filtered
through a K-means clustering algorithm to obtain an observation trace. The IncHMM, together
with the observation trace, produces the required parameters to form a discrete Markov arrival
process (MAP). Finally, we generate our own data trace (using the IncHMM parameters and
a random distribution) and statistically compare it to the raw I/O trace, thus validating our
model.

1998 ACM Subject Classification G.3 Probability and Statistics

Keywords and phrases hidden Markov model, Baum-Welch algorithm, Backward algorithm,
discrete Markov arrival process, incremental workload model

Digital Object Identifier 10.4230/0OASIcs.ICCSW.2012.29

1 Introduction

A hidden Markov model (HMM) is a bivariate Markov chain which encodes information
about the evolution of a time series. First developed by Baum and Petrie in 1966 [1], HMMs
can faithfully represent workloads for discrete time processes and therefore be used as port-
able benchmarks to explain and predict the complex behaviour of these processes. When
constructing a HMM, the three main problems that need to be addressed are: First, given
the model parameters, compute the probability that the HMM generates a particular se-
quence of observations, solved by the Forward-Backward algorithm; Second, given a sequence
of observations, find the most likely set of model parameters, solved by statistical inference
through the Baum-Welch algorithm, which uses the Forward-Backward algorithm; Third,
find the path of hidden states that is most likely to generate a sequence of observations,
solved using a posteriori statistical inference in the Viterbi algorithm. In this paper, we pro-
pose an incremental variation of the Baum-Welch algorithm by creating two approximations
of the Forward-Backward algorithm. This way, we will be able to process incoming I/O trace
data incrementally and update our HMM parameters "on-the-fly" as new trace data becomes
available. The HMM which uses this incremental Baum-Welch algorithm (IncHMM) pro-
duces the required parameters to form a discrete Markov arrival process (MAP), which we

@@@@ © Tiberiu S. Chis and Peter G. Harrison;
G licensed under Creative Commons License NC-ND
2012 Imperial College Computing Student Workshop (ICCSW’12). I‘ GW
Editor: Andrew V. Jones; pp. 29-34

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.29
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

30

Incremental HMM with an improved Baum-Welch Algorithm

refer to as our Workload Model. For our results, we validate two Workload Models using
averages from the raw and IncHMM-generated traces. Finally, we compare our results with
current work in the field, identifying any improvements for the future.

2 Forward-Backward Algorithm

The Forward-Backward algorithm, which is used in our incremental Baum-Welch algorithm,
solves the following problem: Given the observations O = (O1,0Os,...,Or) and the model
A = (A, B, 7)Y, calculate P(O | \) (i.e. the probability of the observation sequence given
the model), and thus determine the likelihood of O. Based on the solution in [5], we ex-
plain the "Forward" part of the algorithm, which is the a-pass, followed by the "Backward"
part or the 8-pass. We define the forward variable oy (i) as the probability of the observa-
tion sequence up to time ¢ and of state ¢; at time ¢, given our model A. In other words,
(i) = P(O1,04,...,0,8; = ¢; | A), where i = 1,2,... N, N is the number of states,
t=1,2,...,7, T is the number of observations, and s; is the state at time ¢. The solution
of ay(4) is inductive:

1. Imitally, for i = 1,2,...,N: a1(i) = m;b;(O1)

2. Then, fori=1,2,...,Nand t =2,3,...,T: ay(i) = [0} au—1(5)ai]bi(Or)
where a;—1(j)aj; is the probability of the joint event that Oy, O, ...0O;—1 are observed
(given by a—1(j)) and there is a transition from state g; at time ¢ — 1 to state ¢; at time
t (given by a;;), and also b;(Oy) is the probability that O, is observed from state g;.

3. It follows that: P(O | \) = vazl o ()
where we used the fact that ar(i) = P(O1,042,...,071,87 = q; | A).

Similarly, we can define the backward variable, 5;(¢) as the probability of the observation
sequence from time ¢t + 1 to the end, given state ¢; at time ¢ and the model A. Then,
B(i) = P(O441,0442,...07 | st = ¢;, A) and the recursive solution is:

1. Initially, for i =1,2,...,N: Br(i) =1
2. Then, fori=12,... . Nandt=T—1T—-2,...,1: B(i) = X1, aijb;(Or1)Bis1(j)
where we note that the observation O;41 can be generated from any state g;.

With the « and 3 values now computed, we attempt to create an incremental version of
the Baum-Welch algorithm, which will use both of these values.

3 Incremental Baum-Welch Algorithm

Given the model A\ = (A, B,), the Baum-Welch algorithm (BWA) trains a HMM on a fixed
set of observations O = (O1,03,...,0r). By adjusting its parameters A, B, 7, the BWA
aims to maximise P(O | A). As explained in Section 2.3.2 of [6], the parameters of the BWA
are updated iteratively by the following formulas:

1. Imitially, for i = 1,2,...,N: 7, = v1(i)

T—1 ..
. &e(4,9)
2. For A: d/. = 2o =
Eha SN0 Syt

1 A is the state transition matrix, B is the observation matrix, and 7 is the initial state distribution.

T. S. Chis and P. G. Harrison

T .
’ Et:l,ot:k 7e(9)

> 1)
where gt(i,]) _ at(l’)aijbl_g((gt‘-;;)ﬁt-f—l(j) and 'Yt(i) _ Z;‘v:1 &(Z,])

We can now re-estimate our model using \' = (A’, B',7') where A’ = {a;;}, B' = {b;(k)'}
and 7" = {n}}. However, this re-estimation only works on a fixed set of observations, and a
useful upgrade for the BWA would be to handle infrequent, higher density, additional loads
mainly for on-line characterization of workloads [2]. To have an incremental HMM auto-
matically updating its parameters as more real time workload data becomes available would
achieve this, as well as consistently analyse processes over time in a computationally efficient
manner. This new model will be a hybrid between a standard HMM and an incremental

3. For B: b;(k)

HMM which updates the current parameters A, B, w based on the new set of observations.
Therefore, after the standard HMM has finished training on its observation set, we aim to
calculate the a, 5, £ and «y variables on the new incoming set of observations. For example,
if we have trained a HMM on T observations and wish to add new observations to update
our model incrementally, we notice that cpyq(i) = [Zjvzl ar(j)a;j;lbi(Or). Since we pos-
sess the values of ar(j), a;; and b;(Or), the new « values can be computed quite easily
using the forward recurrence formula. However, to find Sr1(%) is not so easy as it relies on
the backward formula with a one step lookahead Br41(i) = Z;\le a;jb;(Or42)Bri2(j) and
unfortunately we do not have Sr42(j). Therefore an approximation for the 5 variables is
needed, preferrably a forward recurrence formula similar to the a formula. The new & and
7 variables (and therefore the new entries a;; and b;(k)’) can be calculated easily once we
have the complete « and 8 sets. Building on previous work seen in Section 4.8.3 of [6], we
attempt to find several new approximations for the 5 values.

3.1 First § Approximation

The first approximation for the 5 variables will assume that, at time ¢ and for state i, we
have that B:(i) = d(t,¢) is a decay function which tends to 0 as ¢ — 0. Therefore, for
a sufficiently large observation set and at a sufficiently small ¢, we obtain the approximate
result 0(t,4) —d(t, j) ~ 0, where 7 and j are different states. This then gives the near equality
d(t,4) =~ 0(t,) and hence by our earlier assumption we have the important approximation:

Be(i) =~ Bi(5) (1)

Let us now transform our S recurrence formula S5;(i) = E;VZI a;jb;(Or41)Bi+1(j) into

matrix form, using the notation b; = b;(O41) for ease of use. Since we are using two states
in our Workload Model, we set N = 2. It then follows that

(30 = (o) (i)
then pre-multiply by (a:(1) a(2)):
(et @) (1)) =) (G5 2e) (503)
and multplying out we get

Z?:l Oét(’t)ﬁt(Z) = (at(l)aubl + at(2)a21b1 O[t(].)algbg + Oét(2)a22b2) (ﬂt+1(1)>

Br+1(2)

31

ICCSW’'12

32

Incremental HMM with an improved Baum-Welch Algorithm

where by defintion of a;11(3) it follows that

£, @) — (o) (@) (4510)

We notice that Z?:l a(D)Be(i) = P(O | A) = Z?Zl ar(i) where T is the total number
of observations. Quite fittingly, the term P(O | A) is already calculated for us from the
a-pass. Finally, assuming that ¢ + 1 is sufficiently small and using (1) we can deduce that

Br+1(1) = Bi41(2), giving us

PO =~ (ap1(1) @rt1(2)) (Btﬂ(l))

Bi1(1)

we then factor out S41(1)
1
POIN = Ben (D) (@ra(®) ana) ()
and multiply out the RHS
P(O | A) & B (D]ou41(1) 4+ u41(2)]
which gives our final approximation result:

PO A)
2?21 At (Z)

The approximation seen in (2) produced very good results in our simulation. To

Bir1(1) = Bey1(2) = (2)

achieve this simulation, we obtained a network trace (aka raw trace) from NetApp servers
made up of timestamped I/O commands (single Common Internet File System reads and
writes). We then partitioned this raw trace into one second intervals (aka binned trace)
counting the number of reads and writes present in each interval or "bin". This binned
trace was then filtered through a K-means clustering algorithm (assigning 7 clusters, i.e.
K=7) and we obtained a discrete time series (aka observation trace) where each point is an
integer between 1 and 7. This observation trace was given as a training set of 7000 points
(i.e. 7000 seconds) to a HMM. Afterwards, 3000 new observations were added to this set,
evaluating the 3000 points using our new [approximation. Thus, we were able to create the
IncHMM, which stored information on 10000 consecutive observation points. Statistics on
a raw trace of 10000 observations were compared with those of an IncHMM-generated trace
(using our model parameters A, B, 7 and a random distribution to generate this trace) also
of size 10000. The results are summarised below in Figure 1:

Reads/bin Writes/bin

Raw Mean: 111.350 Raw Mean: 0.382
IncHMM Mean: 111.278 IncHMM Mean: 0.366
Raw Std Dev: 254.942 Raw Std Dev: 0.550
IncHMM Std Dev: 255.039 | IncHMM Std Dev: 0.461

Figure 1 Statistics for raw and IncHMM traces using the first 8 approximation.

Figure 1 is divided into Reads/bin and Writes/bin to simplify analysis, where the bin is
simply a one second interval. For example, a "Raw Mean of 111.350 Reads/bin" means that
the raw I/O trace produced on average 111.350 read commands per second. Similarly, we

T. S. Chis and P. G. Harrison 33

analyse the average number of writes per second as our I/O trace contains both reads and
writes. Therefore, we can see from Figure 1 that the statistics for raw reads and IncHMM
reads match extremely well, almost identical over the 10000 points. For the writes, there is
a higher difference in the standard deviations than in the means. This is possibly due to a
significant drop in the number of write procedures presented by the I/O trace, which the
IncHMM did not reproduce entirely when generating its trace.

3.2 Second [Approximation
As before, we begin with the following vectors and the 2 x 2 transformation matrix (D):
<5t(1)> _ <a11b1 al2b2> <5t+1(1)>
B (2) az by azebs) \Bii1(2)
where we use b; = b;(O;41), for ease of notation.
We then pre-multiply by the inverse of the transformation matrix (D~1):

-1
<a11b1 alsz) <ﬁt(1)> s (Btﬂ(l))
az1by aabe Bi(2) Bi+1(2)
where D™'D = I, and I, is the 2 x 2 identity matrix.
By using Gauss-Jordan elimination to work out D~!, the final equation is

<5t+1(1)> _ 1 (azzbz —a12b2) (Bt(l))
Be41(2) biba(araze=az1012) \ —ao1by agqby Be(2)

where bl 7é 0, bg 7é 0 and a11a922 7é a21012.

In the case that b; = 0 for a state i, D has a column of all zero values, which means
that D~! cannot exist, and therefore a simple approximation for £;,1(i) is needed here.
Considering all three cases, we present the full set of equations in (3). Underneath this,
Figure 2 summarises the results of the simulation with the 8 approximation from (3):

1.0
(zw))’ if by =0
a22b2
Be(1)
ﬂt+1(]~)> b .
= @b | ifbg =0 3
(5t+1(2) 1.0 ?)

1
D71 </Bt()> s if bl 7é 07b2 7é 07a11a22 7é 21012

Bi(2)
Reads/bin Writes/bin
Raw Mean: 111.350 Raw Mean: 0.382
IncHMM Mean: 110.231 IncHMM Mean: 0.357
Raw Std Dev: 254.942 Raw Std Dev: 0.550
IncHMM Std Dev: 254.155 | IncHMM Std Dev: 0.463

Figure 2 Statistics for raw and IncHMM traces using the second 8 approximation.

ICCSW’'12

34

Incremental HMM with an improved Baum-Welch Algorithm

The results obtained were satisfying, including the reads which performed very well. In
comparison, the writes slightly underperformed, possibly due to the read-dominated trace
or perhaps a slight misjudgement by our clustering algorithm.

4 Conclusion and Future Work

The [approximations used in this paper have been successful after statistical comparisons
between raw and IncHMM-generated traces. Thus, we have created two Workload Models
(each with their own 8 approximation) which characterize data traces incrementally. Ana-
lysing current work in this field, for example Stenger et al. in 2001 [4] (where all new
variables were given a value of 1), it is clear that either Workload Model provides a better
B approximation. When comparing our models with the incremental HMM from [3], all
three models produced accurate results, except the latter had a backward formula that was
not recursive in terms of the values. A general improvement to our models would be
to increase the accuracy for the standard deviation of the IncHMM writes. This may be
achieved by using significantly more observations from our I/O trace to obtain a greater
variation in write entries. Perhaps adjusting the K parameter for our K-means clustering
algorithm might also improve our results. Finally, we could test the IncHMM with another
discrete time data trace, for example using a binned trace of hospital arrival times which
stores the number of patients arriving every hour. Then, by choosing the most accurate
[approximation of the two, we would obtain an incremental Workload Model capable of
analysing a variety of discrete time series.

—— References

1 Baum, L. E., Petrie, T, Stastical Inference for Probabilistic Functions of Finite Markov
Chains. In The Annals of Mathematical Statistics, 37, pp. 1554-63, 1966

2 Harrison, P. G., Harrison, S. K., Patel N. M., Zertal, S. Storage Workload Modelling by
Hidden Markov Models: Application to Flash Memory, In: Performance Evaluation, 69,
pp. 17-40, 2012

3 Florez-Larrahondo, G., Bridges, S., Hansen, E. A., Incremental Estimation of Discrete
Hidden Markov Models on a New Backward Procedure, Department of Computer Science
and Engineering, Mississippi State University, Mississippi, USA, 2005

4 Stenger, B., Ramesh, V., Paragois, N., Coetzee, F., Buhmann, J. M., Topology free Hidden
Markov Models: Application to background modeling, pp. 297-301, Proceedings of the
International Conference on Computer Vision, 2001

5 Rabiner, L. R., Juang, B. H., An Introduction to Hidden Markov Models. In IEEE ASSP
Magazine, 3, pp. 4-16, January, 1986

6 Chis, Tib, Hidden Markov Models: Applications to Flash Memory Data and Hospital Arrival
Times, Department of Computing, Imperial College London, London, UK, 2011

	Introduction
	Forward-Backward Algorithm
	Incremental Baum-Welch Algorithm
	First Approximation
	Second Approximation

	Conclusion and Future Work

