Ranking Secure Coding Guidelines for Software
Developer Awareness Training in the Industry

Tiago Gasiba

Siemens AG, Miinchen, Germany

Universitdt der Bundeswehr Miinchen, Germany
tiago.gasiba@siemens.com

Ulrike Lechner
Universitat der Bundeswehr Miinchen, Germany
ulrike.lechner@Qunibw.de

Jorge Cuellar

Siemens AG, Miinchen, Germany
Universitdt Passau, Germany
jorge.cuellar@siemens.com

Alae Zouitni
Universitat Passau, Germany
zouitni.alae@gmail.com

—— Abstract

Secure coding guidelines are essential material used to train and raise awareness of software developers

on the topic of secure software development. In industrial environments, since developer time is
costly, and training and education is part of non-productive hours, it is important to address and
stress the most important topics first. In this work, we devise a method, based on publicly available
real-world vulnerability databases and secure coding guideline databases, to rank important secure
coding guidelines based on defined industry-relevant metrics. The goal is to define priorities for
a teaching curriculum on raising cybersecurity awareness of software developers on secure coding
guidelines. Furthermore, we do a small comparison study by asking computer science students from
university on how they rank the importance of secure coding guidelines and compare the outcome
to our results.

2012 ACM Subject Classification Security and privacy — Software security engineering; Security
and privacy — Web application security; Applied computing — Interactive learning environments;
Applied computing — E-learning

Keywords and phrases education, teaching, training, secure coding, industry, cybersecurity, capture-
the-flag, game analysis, game design, cybersecurity challenge

Digital Object Identifier 10.4230/0ASIcs.ICPEC.2020.11

Acknowledgements We would like to thank the anonymous reviewers for the valuable comments
and careful reviews. We would also like to thank all survey participants as well as our colleagues

Holger Dreger and Thomas Diefenbach for many fruitful discussions.

1 Introduction

It is widely known that developers (humans) make mistakes during software development
which result in bugs [7, 21, 24, 27, 34]. In particular, these bugs can lead to software
vulnerabilities that can result in potentially fatal consequences, both for the user of the
software, the owner or service provider and the company that sells the software.

Many security standards, e.g. [8, 5, 6, 26, 29, 25], nowadays mandate the implementation
of a secure software development life-cycle (e.g [17]), which aims at significantly reducing the
number of vulnerabilities in software. In order to be effective, companies should make sure

© Tiago Gasiba, Ulrike Lechner, Jorge Cuellar, and Alae Zouitni;

licensed under Creative Commons License CC-BY
First International Computer Programming Education Conference (ICPEC 2020).
Editors: Ricardo Queirés, Filipe Portela, Mario Pinto, and Alberto Simdes; Article No. 11; pp. 11:1-11:11

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-1462-6701
mailto:tiago.gasiba@siemens.com
https://orcid.org/0000-0002-4286-3184
mailto:ulrike.lechner@unibw.de
https://orcid.org/0000-0002-2364-359X
mailto:jorge.cuellar@siemens.com
https://orcid.org/0000-0002-8809-7657
mailto:zouitni.alae@gmail.com
https://doi.org/10.4230/OASIcs.ICPEC.2020.11
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

11:2

Cybersecurity Games for Secure Programming Education in the Industry

that their software developers are properly trained in writing secure software, i.e. secure code.
Not only is this an important factor in reducing the number of software vulnerabilities, but
this is typically checked during audits and certification. As such, specialized training that
addresses how to write secure code is needed in order to raise the cybersecurity awareness [13]
of software developers in the industry.

Since training of software developers in the industry costs precious time and money, it
makes more sense to focus first the effort of training and raising awareness on issues that
cause a larger impact to the business [10]. In particular, we are interested in ranking secure
coding guidelines for teaching purposes.

In this work we intend to focus on C and C++ programming languages, since they are
currently widely used in the industry [28]. For these two programming languages, we use the
well known secure coding guidelines (SCG) from Carnegie Mellon University [31] as the basis
for the teaching curriculum.

One possible way to prioritize this curriculum, is to base the ranking of the SCG
on two steps: 1) the impact rating from real-world software vulnerabilities and 2) the
mapping of vulnerabilities to secure coding guidelines. One common and widely used way
to rate the impact of software vulnerabilities is to use the common vulnerability scoring
system (CVSS) [15]. Online databases, such as the Common Vulnerabilities and Exposure
database [23], give extensive lists of known vulnerabilities (CWE - Common Weakness
Enumeration), their CVSS scoring and also provides a mapping from these vulnerabilities to
secure coding guidelines.

Towards the goal of prioritizing SCG, we need to compute ranking metrics for secure
coding guidelines. Note, however, that the goal of this work is not to establish new metrics
for secure coding guidelines, but to understand what are the most important SCG that
should be taught during awareness training for industrial software developers. However, due
to the lack of well-known metrics that combine all the previously mentioned factors, we
first define four different CWE metrics, based on well-known mathematical functions (e.g.
average value, weighted average, etc.). These metrics are also based on [23], CVSS scoring
and also on discussions with cybersecurity experts.

In order to determine and motivate the need for education of secure coding guidelines, we
also try to understand the gap between academia and industry. The main question we would
like to address here is: are future industry software developers aware which are the secure
coding guidelines that have the most relevancy for the industry (i.e. based on real-world
data)? This is done by asking last-year university students of computer-science course (not
specific to cybersecurity) to rank secure coding guidelines using a likert scale [18] through
the means of a questionnaire.

Our main contributions in this work are the following;:

Methodology to compute ranks of secure coding guidelines as basis for prioritization of
the education of software developers

Tables with ranked secure coding guidelines for C and C++ based on real-world data

Analysis of different ranked SCG, leading to the conclusion that the exact CVSS score
values do not significantly contribute to the ranking

Comparison study between real-world data and student perception of ranking of secure
coding guidelines

T. Gasiba, U. Lechner, J. Cuellar, and A. Zouitni

2 Related Work

In industry several IT security standards, e.g. [8, 5, 6, 26, 29, 25] mandate not only the
implementation of secure coding guidelines into the software development life-cycle but also
that the developers are properly trained in secure software development. C and C++ are
typical and widely used programming languages in the industry [28]. The major secure
coding standards in existence for C and C++ are from the Carnegie Mellon University [31]
and from MISRA [2, 3].

The importance of secure programming guidelines in the software development life-cycle
is discussed by Tabassum et al. and Whitney et al. in [30] and [32] respectively. In order to
to raise awareness [13] of software developers on the topic of secure coding guidelines, they
study two different methods: ESIDE, an educational IDE plugin, and coaching by security
experts. Their preliminary results give indicators that both methods are suitable towards
this goal. In a related work, Gadient et al. [9] develop an IDE plugin to detect security code
smells as a supportive measure for (Java) software developers. They found out that, out of
the 100 applications they investigated, 44 contained security vulnerabilities.

Additionally, many developers lacking knowledge or training in secure coding tend to
search online forums on solutions to secure coding problems [33, 24, 20]. It has been shown
that the information provided in these online forums can lead to the introduction of further
vulnerabilities into the source code [7, 34], if the developers are not aware on how to write
secure code. Furthermore, Meng et al. [21] show that the a substantial number of developers
does not appear to understand the security implications of coding options and also links this
to the lack of cybersecurity training.

Bagnara et al. [4] discuss the MISRA-C guidelines, which are C-specific guidelines
composed of safety guidelines and secure coding guidelines. In their work, they distinguish
between guidelines that can be verified by automatic tools such as static code analysis, those
that require information that is beyond the reach contained in the source code and those that
relate to compliance. In [11], Goodall et al propose a method, based on static code analysis,
which can be used by software developers to visualize code security. However, in [12] Goseva

et al. point out that the coverage of static code analysis tools can vary across different tools.

They conclude that one should not rely only on static code analysis tools, otherwise a large
number of vulnerabilities can be left undiscovered.

This further points out the need to train software developers in secure coding guidelines,
specifically on high impact rules. If software developers are not aware of secure coding
guidelines and the issues that can be caused by exploiting vulnerable code, the effectiveness
of such kind of tools will be limited. Results presented by Rexxa et al [27] corroborate with
these observations. Although focused on web technologies, their results point out that one
major reason for software vulnerabilities is the lack of experience and lack of knowledge
about secure coding and secure application development.

Recent research results explore promising, new and innovative ways to raise awareness
about secure coding to software developers using capture-the-flag methodology [10, 16]. The
results presented in this work are directly applicable to this education methodology as a
means to prioritize on developed challenges and awarded game points.

3 Outlook of the work

In this section we give a brief overview of our work. It was done in two phases: Phase 1:
ranking of SCG using online databases and Phase 2: raking of SCG through questionnaires
administered to academia students. Note, this process was repeated for the C programming
language and for the C++ programming language.

11:3

ICPEC 2020

11:4

Cybersecurity Games for Secure Programming Education in the Industry

3.1 Phase 1: ranking of SCG using online databases

CWEs Step 2: SCG Step 3:
with metrics Mapping with metrics Tie resolving

==

R-SCG

Step 1:
Vulnerability Metric
Database computation
IT Security
Expert

Mapping of CWEs to
Secure Coding Rules

Figure 1 Derivation of Ranked Secure Coding Guidelines.

Figure 1 shows the process that followed in order to derive ranked secure coding guidelines
(R-SCG). Tt consists of the following three steps:
Step 1 compute CWE metric m(®)(c) for each of the four defined metrics (see section 3.3)
Step 2 compute SCG metric based on CWE — SCG mapping and then filtering the top 15
SCG by computed metric
Step 3 generate R-SCG table by resolving ambiguous ranks (i.e. using expert opinion for
SCG that have the same metric value)

3.1.1 Details on step 1: computing CWE metric

Based on the CVE details online database [23], we have extracted and grouped the CWEs and
their corresponding CVSS scores s(c, A). Here ¢ represents the CWE ID and A represents the
observation index, which ranges from 1 to n(c), i.e. the total existing entries (observations) in
the database that have CWE with ID= c. At the time that we consulted the online database
(May 2019), it consisted of 114.686 observations from 1st January 1999 until 5th May 2019
containing 112 unique CWE identifiers. The computation of the four metric functions m) (c)
to m¥(c) will be detailed in section 3.3.

3.1.2 Details on step 2: compute SCG metric based on CWE metric

The MITRE CWE database [22], contains pointers from CWE to the affected SCG from
Carnegie Mellon CERT-SEI Secure Coding Guideline database [31]. The mapping provided
by this database was used as the mapping rule. Note that, in this database, one CWE can
map more than one SCG (see Figure 2). The final SCG metric was taken as the sum of the
related CWE metrics multiplied by the CERT-SEI priority level (see sub-section 3.4).

3.1.3 Details on step 3: generate R-SCG table

After step 2, some SCG still had the same computed metric. At this stage, it was decided to
disambiguate the tied SCG by gathering input from three different IT cybersecurity experts
from the industry. The experts were asked to rank the relative importance of only those
guidelines that had the same metric. After this, a table containing the ordered SCG was
produced, which we call the ranked secure coding guidelines (R-SCG).

T. Gasiba, U. Lechner, J. Cuellar, and A. Zouitni

3.2 Phase 2: ranking of SCG by academia students

In order to understand how students in the academia perceive the importance of secure coding
guidelines, we have conducted an online questionnaire using Google forms. The number of
participants in this questionnaire, which lasted one month and was done in September 2019,
was 34. The age of the participants ranged from 23 to 30, they were all Master students in
computer science (not specializing in cybersecurity), in their second year (last year). All of
the participants were familiar with programming in C, and half of them (17 participants)
were familiar with programming in C++.

Participants were asked to rank every secure coding rule, which was the outcome of
phase 1, in a five point likert scale [18] ranging from “not important” to “very important”.
For every SCG, the individual likert points were averaged. The resulting SCG were sorted
based on the average likert points, resulting in a ranked secure coding guidelines Po and
Pcy+ from academia.

3.3 Metrics

Four different metrics as defined below were used to rate the importance of the CWE in
relation to each other (see Table 1). In this table, ¢ represents a CWE ID, n(c) the number of
occurrences of incidents in the online database related to ¢ and s(c, A) represents the CVSS
score (with values in the range 0..10) present in the online database where ¢ is the attached
CWE ID and A a running index of the entries (in the range 1..n(c) entries). A CVSS score is
a quantitative severity ranking measure, with 0 being the lowest and 10 being the highest.
The reason why four metrics were used, was due to the lack of previous work that gives
a metric on SCG based on CVSS scores. Note that all formulas use standard well-know
formulas adjusted by the number of occurrences n(c), in order to penalize CWEs that occur
more often.

In our work, we define these four metrics as a mean to aggregate the individual CVSS
scores into a high-level individual CWE score, i.e. m(*)(c), with z being the selected metric
according to Table 1. This metric is then used, as shown in the next sections, to make a
further breakdown to individual secure coding guidelines, as shown in Figure 1, step 1.

Table 1 CWE Metrics.

Metric Description Formula
#1 Average CVSS Scoring m® (¢) = n(c) x #
#2 Weighted average CVSS Scoring m® (c) = n(c) x %
#3 Worst-case Score m® (¢) = n(c) x max s(c, \)
#4 Number of occurrences m® (c) = n(c)

3.4 Mapping CWE metrics to SCG metrics

The CWE metrics, as obtained above, are mapped to SCG metrics, as shown in step 2 of
Figure 1. In order to achieve this, we used the existing mapping from CWE IDs to SCGs
as given by MITRE [22]. It was observed that using this mapping, a single CWE ID can
relate to several SCGs. Therefore, we aggregate the final metric computation as given in
the exemplary Figure 2. In this example, SCG; is referenced by two CWE IDs: CW E; and

11:5

ICPEC 2020

11:6

Cybersecurity Games for Secure Programming Education in the Industry

CW E3, where each CWE has its own attached metric, as given section 3.3. The resulting
SCG metric is then given by p(SCG;) x (m®(CWE;) + m®) (CW E3)), where z in the
range [1, 4], and p(SCG;) represents the SCG priority given by Carnegie Mellon SCG in [31].

’\
(=,

& >

(SCG,) x (mW(cwe,)+mW(cwe,)) ==+ p(SCGs) x M™(cwe,)+m™)(cwe,)

(p

Figure 2 Details on Mapping CWE metrics to SCG metrics.

4 Results

After step 2 and step 3 of phase 1, the results for the C and C++ ranked secure coding
guidelines, can be seen in Table 2 and Table 3. Note that in this section, we present the final
results, corresponding to step 3 in Figure 1, which are the ranks of the SCG (e.g R(C}), R(C?),
Rg),Rg)), after computing the different metrics 1..4 for each secure coding guideline. We
also present the SCG ranked by the students (Pg) by means of the survey. In the tables,
lower numbers indicate higher ranks and higher numbers indicate lower ranks.

Table 2 Top 16 C Ranked Secure Coding Table 3 Top 15 C++ Ranked Secure Coding
Guidelines. Guidelines.

cscc | RY R® RY RY po c++SCG | RS, R, RE), RY). Po.
STR38 1 1 1 1 5 MEM50 1 1 1 1 5
EXP34 4 2 2 2 11 MEMS51 2 2 2 2 7
STR31 2 3 3 3 2 MEMS52 3 3 3 3 1
ARR38 3 4 4 4 6 MEMS53 4 4 4 4 3
EXP33 9 5 5 6 12 MEMS54 5 5 5 5 4
FIO30 7 6 7 5 1 MEMb55 6 6 6 6 15
STR32 8 7 6 7 3 MEM56 7 7 7 7 10
ARR30 | 12 8 8 10 4 STRS50 8 13 13 13 2
FIO34 10 9 9 8 13 STR51 9 14 14 14 9
FIO37 11 10 10 9 15 EXP53 10 8 8 8 12
ARR32 | 13 11 11 11 10 EXP60 11 9 9 9 14
ARR39 | 14 12 12 12 9 EXP54 12 10 10 10 6
FI045 16 13 13 13 14 EXP61 13 11 11 11 11
MEM30 5 14 14 14 8 EXP62 14 12 12 12 8
MEM34 6 15 15 15 16 STR52 15 15 15 15 13
MEM35 | 15 16 16 16 7

T. Gasiba, U. Lechner, J. Cuellar, and A. Zouitni

In order to compare the rankings between themselves, we have computed the Kendall’s
tau distance metric [19] between the different ranked lists. The Kendall’s tau distance is
equal to number of exchanges that a bubble sort algorithm needs to apply to one list so that
it becomes equal to the other list, i.e. it results in the same ordering of items. A Kendall
tau distance of 0 means that the lists contain the elements in the same order. For two lists
of size N that are not in the same order, the Kendall tau distance is a value larger than
zero and smaller or equal to N x (N —1)/2, i.e. the maximum number of exchanges that a
bubble sort algorithm can perform.

The normalized Kendall tau distance values, i.e. the Kendall-tau distance divided by
N x (N —1)/2 (possible values ranging from [0..1.0]), is shown in Table 4 and Table 5.

Table 4 Normalized Kendall’s tau distance Table 5 Normalized Kendall’s tau distance
for C SCG. for C++ SCG.
Rg' RY R R Pe RG). RG). REL RE). Pow

RD [0.000 RC), | 0.000

R® | 0.208 0.000 B2, | 0.095 0.000

R® [0217 0.008 0.000 R®) | 0.095 0.000 0.000

R™ | 0183 0.025 0.033 0.000 R®. | 0.095 0.000 0.000 0.000

Po | 0379 0358 0367 0.367 0.000 Poe | 0300 0.367 0.367 0.367 0.000

5 Discussion

5.1 Secure Coding Guidelines for C

Table 2 shows the results of the ranked secure coding guidelines for metrics 1..4 and for the
students, all for the C programming language. In this table, lower numbers mean higher
ranks and larger numbers mean lower ranks. For example, based on Metric 1, the top-5
ranked SCG is [STR38, STR31, ARR38, EXP34, MEM30], while using Metric 2 they are
[STR38, EXP34, STR31, ARR38, EXP33]. Addionally, Table 4 shows the corresponding
Kendall distance between the R-SCG. For example, the distance between the R-SCG using
Metric 1 and Metric 3 is 0.217.

In Table 2 we can see that we can group the obtained results into three different clusters:
lz{Rg)}, 2:{R(02),Rg),Rgl)} and 3:{Pc} according to their relative distances. The 3rd
cluster is the one that is most distant from all the other clusters, with a distance bigger in
the range]0.35,0.38[. Since this cluster represents the feedback given by students, it also

means that their answers are the most farther away from our outcome using real-world data.

Furthermore, the 1st cluster (Metric 1) is also distant from the 2nd cluster (Metric 2, 3 and
4), whereby the normalized Kendall-tau distance is bigger than]0.22,0.25[. It is surprising
that the Metric 2, 3 and 4 have low distance and form a separate cluster to Metric 1. This
discrepancy is most likely due to the the fact that the first metric, since it takes the average
CVSS score, tends to lower the overall metric value, while all the other metrics penalize on
higher CVSS scores, potentially leading to a different sorting of the list. It is nonetheless
interesting to note that, for the defined four metrics, the list of the top-4 most important
SCG still contain the same guidelines.

The secure coding guidelines which has gotten the highest ranking among the students
was FIO30-C, which is “exclude user input from format strings”. The same guideline is
ranked lower using Metric 1, 2, 3 and 4, having ranks 7, 6, 7, 5 respectively. Although

11:7

ICPEC 2020

11:8

Cybersecurity Games for Secure Programming Education in the Industry

not following this SCG can obviously lead to vulnerabilities, in order to exploit it, several
additional conditions must be met - this is reflected, in practice, by the lower rank achieved
by the results based on real-world data.

The lowest normalized Kendall-tau distance is between Metric 2 and Metric 3. This can
also be seen in Table 4, where only R-SCG with Rank 6 and 7 are swapped.

5.2 Secure Coding Guidelines for C++

Table 3 shows the results for the C++ programming language of the ranked secure coding
guidelines for metrics 1..4 and from the students’ input. In this table, lower numbers mean
higher ranks and larger numbers mean lower ranks. Table 5 shows the corresponding Kendall
distance between the ranked lists.

Same as for the C secure coding guidelines, we can group the results into three clusters
1:{R8+)+}, 2:{Rg+)+, lfig’,r)+7 Rg?J and 3:{Pc..} according to their relative distances. For this
case, the following results are immediately apparent: (1) the clusters are the same as for the
C programming language, (2) there are three values which have the zero distance (i.e. are
the same) and (3) the distance {Pc++} to the other ranked lists is about the same as for the
C R-SCG.

For the first observation, this re-states that the metrics 2, 3 and 4 do not produce
significantly different results, as for the C SCG case. The second observation means that, for
the C++ case, the metrics have lead to exactly the same R-SCG results (i.e. the same ranked
list). The third observation means that the students, as for the C R-SCG, have a different
perception for what is important as what was extracted from real-world data.

Furthermore, we see that the Top-7 R-SCG for C++ are all the same, independently
of using Metric 1, 2, 3 or 4. The same cannot be said for the ranking obtained from the
students.

5.3 Threat to Validity

We can see the following possible sources of threats to the validity of this work.

1. We have selected four metrics. However, we might have missed the definition of a metric
that leads to very different results (maybe even close to the Students’ ranking). However,
our experience in the field tells us that the metrics hereby defined and the results obtained
are consistent with what has been observed in practice.

2. Only 34 students have been involved in the questionnaire and the statistical results might
differ if we increase the population size.

3. We have recurred to cybersecurity experts to untie SCG which had the same metric value.
Holm et al. [14], and Allodi et al [1] discuss possible discrepancies that expert opinion
might add to the scoring. Nevertheless, the results hereby presented have shown that the
Kendall distance is not too much sensitive on the values of the scores.

4. Our work did not consider the impact of the standard deviation of the SCG metric.
Taking this into consideration, the Kendall distance between the participants answers
and the computed rankings could change and also lead to different conclusions.

5. This work did not consider SCG that can be checked with an automatic tool, such as
static code analysis. However, our experience is that it is not sufficient to use tools, the
developers should also know how to interpret their results. This is only possible with
training and awareness.

T. Gasiba, U. Lechner, J. Cuellar, and A. Zouitni

6 Conclusions and Further Work

In an industrial context, training of software developers in secure coding is a costly activity
that needs careful thought and planning. Software bugs often result in vulnerabilities which,
when exploited, can lead to serious damage. Secure coding guidelines (SCG) exist nowadays
in order to educate software developers and make them aware on how to avoid writing
such bugs. However, it has been previously shown that not all software developers are
knowledgeable on the said secure coding guidelines. Combined with the restrictions from the
industry, this paper proposes a method to rank secure coding guidelines which in turn can be
used to prioritize the training of software developers on the SCG. By focusing attention and
addressing the most important secure coding guidelines(i.e. the ones that cause the most
impact) first, a trained software developer can avoid the major problems and software bugs
that have been plaguing the industry.

The major contribution of this work are two sets of ranked secure coding guidelines, one
for C and another for C++. Another contribution of this work is the comparison of the gap
between industry relevant ranking and ranking from academic students. Here we also see
that, although academic students might even be well trained in writing secure code, their
ranking of SCG did not match what is obtained from real-world data. As further work we
would like to evaluate how and if the usage of automated tools (e.g. static code analysis)
influences the results hereby presented.

—— References

1 Luca Allodi, Sebastian Banescu, Henning Femmer, and Kristian Beckers. Identifying relevant
information cues for vulnerability assessment using cvss. In Proceedings of the Eighth ACM
Conference on Data and Application Security and Privacy, CODASPY ’18, pages 119-126,
New York, NY, USA, 2018. ACM. doi:10.1145/3176258.3176340.

2 Motor Industry Software Reliability Association. Guidelines for the use of the c¢ language
in critical systems. Standard, Motor Industry Software Reliability Association, Nuneaton,
Warwickshire, UK, March 2012.

3 Motor Industry Software Reliability Association. Additional security guidelines for misra
¢:2012. Standard, Motor Industry Software Reliability Association, Nuneaton, Warwickshire,
UK, March 2016.

4 Roberto Bagnara, Abramo Bagnara, and Patricia Hill. The MISRA C coding standard and

its role in the development and analysis of safety- and security-critical embedded software.

CoRR, abs/1809.00821, 2018. arXiv:1809.00821.

5 International Electrotechnical Commission. Industrial communication networks - network and
system security - part 2-1: Establishing an industrial automation and control system security
program. Standard, International Electrotechnical Commission, October 2010.

6 International Electrotechnical Commission. Security for industrial automation and control
systems - part 4-1: Secure product development lifecycle requirements. Standard, International
Electrotechnical Commission, January 2018.

7 Felix Fischer, Konstantin Béttinger, Huang Xiao, Christian Stransky, Yasemin Acar, Michael
Backes, and Sascha Fahl. Stack overflow considered harmful? the impact of copy&paste on
android application security. In IEEE Symposium on Security and Privacy, pages 121-136,
San Jose, CA, USA, 2017. IEEE Computer Society. doi:10.1109/SP.2017.31.

8 Software Assurance Forum for Excellence in Code. Safecode — fundamental practices for secure

software development — essential elements of a secure development life-cycle program, 3rd ed.

Standard, NIST, March 2018.
9 Pascal Gadient, Mohammad Ghafari, Patrick Frischknecht, and Oscar Nierstrasz. Security
code smells in android ICC. CoRR, abs/1811.12713:3046-3076, 2018. arXiv:1811.12713.

11:9

ICPEC 2020

https://doi.org/10.1145/3176258.3176340
http://arxiv.org/abs/1809.00821
https://doi.org/10.1109/SP.2017.31
http://arxiv.org/abs/1811.12713

11:10

Cybersecurity Games for Secure Programming Education in the Industry

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

25

26

Tiago Gasiba, Kristian Beckers, Santiago Suppan, and Filip Rezabek. On the requirements
for serious games geared towards software developers in the industry. In Daniela E. Damian,
Anna Perini, and Seok-Won Lee, editors, 27th IEEE International Requirements Engineering
Conference, RE 2019, Jeju Island, Korea (South), September 23-27, 2019. IEEE, 2019. URL:
https://ieeexplore.ieee.org/xpl/conhome/8910334/proceeding.

John Goodall, Hassan Radwan, and Lenny Halseth. Visual analysis of code security. In
Proceedings of the Seventh International Symposium on Visualization for Cyber Security,
VizSec ’10, pages 46-51, New York, NY, USA, 2010. ACM. doi:10.1145/1850795.1850800.
Katerina Goseva-Popstojanova and Andrei Perhinschi. On the capability of static code
analysis to detect security vulnerabilities. Inf. Softw. Technol., 68(C):18-33, December 2015.
do0i:10.1016/j.infsof.2015.08.002.

Norman Hansch and Zinaida Benenson. Specifying it security awareness. In 25th International
Workshop on Database and Expert Systems Applications, Munich, Germany, pages 326-330,
September 2014. doi:10.1109/DEXA.2014.71.

Hannes Holm and Khalid Afridi. An expert-based investigation of the common vulnerability
scoring system. Computers & Security, 53, May 2015. doi:10.1016/j.cose.2015.04.012.
Siv Houmb, Virginia Franqueira, and Erlend Engum. Quantifying security risk level from cvss
estimates of frequency and impact. Journal of Systems and Software, 83:1622—1634, September
2010. doi:10.1016/j.jss.2009.08.023.

Hongyi Hu, Bryan Eastes, and Michelle Mazurek. Toward a field study on the impact of
hacking competitions on secure development. In The 4th Workshop on Security Information
Workers Baltimore Marriott Waterfront, Baltimore, MD, USA, August 2018.

Russell Jones and Abhinav Rastogi. Secure coding: Building security into the software
development life cycle. Information Systems Security, 13(5):29-39, 2004.

Ankur Joshi, Saket Kale, Satish Chandel, and Dinesh Pal. Likert scale: Explored and
explained. British Journal of Applied Science & Technology, 7:396-403, January 2015. doi:
10.9734/BJAST/2015/14975.

Maurice Kendall. A New Measure of Rank Correlation. Biometrika, 30(1-2):81-93, June 1938.
doi:10.1093/biomet/30.1-2.81.

Ryo Kurachi, Hiroaki Takada, Masato Tanabe, Jun Anzai, Kentaro Takei, Takaaki linuma,
Manabu Maeda, and Hideki Matsushima. Improving secure coding rules for automotive software
by using a vulnerability database. In IEEE International Conference on Vehicular Electronics
and Safety (ICVES), pages 1-8, September 2018. doi:10.1109/ICVES.2018.8519496.

Na Meng, Stefan Nagy, Danfeng Daphne Yao, Wenjie Zhuang, and Gustavo Arango. Secure
coding practices in java: challenges and vulnerabilities. In IEEE/ACM 40th International
Conference on Software Engineering (ICSE), pages 372-383, May 2018. doi:10.1145/3180155.
3180201.

MITRE-Corporation. Common weaknesses enumeration, 2019. URL: https://cwe.mitre.
org/.

MITRE-Corporation. CVE details, 2019. URL: https://www.cvedetails.com/.

Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, and Matthew Smith. Decep-
tion task design in developer password studies: Exploring a student sample. In Four-
teenth Symposium on Usable Privacy and Security (SOUPS 2018), pages 297-313, Baltimore,
MD, 2018. USENIX Association. URL: https://wuw.usenix.org/conference/soups2018/
presentation/naiakshina.

National Institute of Standards and Technology. Nist special publication 800-37, guide for
applying the risk management framework to federal information systems a security life cycle
approach. Standard, NIST, February 2010.

International Standards Organization. ISO/IEC 27002:2013 — Information technology — Security
techniques — Code of practice for information security controls. Standard, International
Standards Organization, October 2013.

https://ieeexplore.ieee.org/xpl/conhome/8910334/proceeding
https://doi.org/10.1145/1850795.1850800
https://doi.org/10.1016/j.infsof.2015.08.002
https://doi.org/10.1109/DEXA.2014.71
https://doi.org/10.1016/j.cose.2015.04.012
https://doi.org/10.1016/j.jss.2009.08.023
https://doi.org/10.9734/BJAST/2015/14975
https://doi.org/10.9734/BJAST/2015/14975
https://doi.org/10.1093/biomet/30.1-2.81
https://doi.org/10.1109/ICVES.2018.8519496
https://doi.org/10.1145/3180155.3180201
https://doi.org/10.1145/3180155.3180201
https://cwe.mitre.org/
https://cwe.mitre.org/
https://www.cvedetails.com/
https://www.usenix.org/conference/soups2018/presentation/naiakshina
https://www.usenix.org/conference/soups2018/presentation/naiakshina

T. Gasiba, U. Lechner, J. Cuellar, and A. Zouitni

27

28

29

30

31

32

33

34

Blerim Rexha, Arbnor Halili, Korab Rrmoku, and Dren Imeraj. Impact of secure programming
on web application vulnerabilities. In 2015 IEEE International Conference on Computer
Graphics, Vision and Information Security (CGVIS), pages 61-66, November 2015. doi:
10.1109/CGVIS.2015.7449894.

IEEE Spectrum. The Top Programming Languages 2018. https://spectrum.ieee.org/
static/interactive-the-top-programming-languages-2018, 2019. [Online; accessed 27-
October-2019].

PCI SSC. Payment Card Industry — Payment Application Data Security Standard — Require-
menst and Security Assessment Procedures, v3.1. Standard, PCI SSC, May 2015.

Madiha Tabassum, Stacey Watson, Bill Chu, and Heather Richter Lipford. Evaluating two
methods for integrating secure programming education. In Proceedings of the 49th ACM
Technical Symposium on Computer Science Education, SIGCSE 2018, Baltimore, MD, USA,
February 21-24, 2018, pages 390-395, 2018. doi:10.1145/3159450.3159511.

Carnegie Mellon University. Secure Coding Standards. https://wiki.sei.cmu.edu/
confluence/display/seccode, 2019. [Online; accessed 19-March-2019].

Michael Whitney, Heather Richter Lipford, Bill Chu, and Tyler Thomas. Embedding secure
coding instruction into the ide: Complementing early and intermediate cs courses with
eside. Journal of Educational Computing Research, 56:073563311770881, May 2017. doi:
10.1177/0735633117708816.

Xin-Li Yang, David Lo, Xin Xia, Zhi-Yuan Wan, and Jian-Ling Sun. What security questions
do developers ask? a large-scale study of stack overflow posts. Journal of Computer Science
and Technology, 31(5):910-924, September 2016. doi:10.1007/s11390-016-1672-0.

Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan, and Miryung Kim.
Are code examples on an online q&a forum reliable?: A study of api misuse on stack overflow.
In Proceedings of the 40th International Conference on Software Engineering, ICSE 18, pages
886-896, New York, NY, USA, 2018. ACM. doi:10.1145/3180155.3180260.

11:11

ICPEC 2020

https://doi.org/10.1109/CGVIS.2015.7449894
https://doi.org/10.1109/CGVIS.2015.7449894
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018
https://doi.org/10.1145/3159450.3159511
https://wiki.sei.cmu.edu/confluence/display/seccode
https://wiki.sei.cmu.edu/confluence/display/seccode
https://doi.org/10.1177/0735633117708816
https://doi.org/10.1177/0735633117708816
https://doi.org/10.1007/s11390-016-1672-0
https://doi.org/10.1145/3180155.3180260

	Introduction
	Related Work
	Outlook of the work
	Phase 1: ranking of SCG using online databases
	Details on step 1: computing CWE metric
	Details on step 2: compute SCG metric based on CWE metric
	Details on step 3: generate R-SCG table

	Phase 2: ranking of SCG by academia students
	Metrics
	Mapping CWE metrics to SCG metrics

	Results
	Discussion
	Secure Coding Guidelines for C
	Secure Coding Guidelines for C++
	Threat to Validity

	Conclusions and Further Work

