
An Arduino Simulator in Classroom – a Case
Study
Paulo F. Gonçalves
Coimbra Polytechnic - ISEC, Portugal
a21171940@isec.pt

João Sá
Escola Secundária de Avelar Brotero, Coimbra, Portugal
joaosa@gmail.com

Anabela Coelho
Agrupamento de Escolas de Pombal, Portugal
anabela.coelho@aepombal.edu.pt

João Durães
Coimbra Polytechnic - ISEC, Portugal
jduraes@isec.pt

Abstract
The Arduino Platform is increasingly being used as a central component in introductory programming
courses of the curricula in middle, high school and even higher education. Given this scenario it
is pertinent to understand how the cost-effectiveness, reliability and accessibility of this central
component can be improved. We propose the use of an Arduino simulator to improve usability, cost,
and class efficiency, allowing for improved and even new forms of use and course benefits. This
paper presents and describes an Arduino simulator that we developed for education purposes, and a
case study of its use in embedded programming courses from two high-schools. We compared its
use against the usual use of real hardware platform analyzing usability, student workload and time
efficiency. Our results, that we present and discuss, suggest that there are no apparent drawbacks
in using the simulator, and some metrics such as basic exercise-solving efficiency and global effort
showed an improvement.

2012 ACM Subject Classification Applied computing → Computer-assisted instruction

Keywords and phrases Arduino, Education, Simulator

Digital Object Identifier 10.4230/OASIcs.ICPEC.2020.12

1 Introduction

Teaching programming with microcontrollers is becoming increasingly common in middle
and high-schools, even outside electronics courses. Several factors promote this scenario:
digital literacy is now viewed as an important aspect of enabled citizenship that should be
promoted as early as possible [11, 14], the increasing pervasiveness of the Internet of Things
(IoT), and the low cost of microcontrollers when compared to traditional desktop computers
making them an interesting tool for programming courses.

One of the platforms most commonly used and best adapted to the learning with
microcontrollers scenario is the Arduino Platform [2] since it combines the simplicity, yet
resourcefulness, of hardware with the easiness of an integrated development environment well
suited for people without significant knowledge on microcontrollers [6], and has the additional
advantage of being an open source platform which means no licensing costs. It is then no
surprise that many middle and high-schools are now including subjects of programming using
Arduino [1, 12, 10].

© Paulo F. Gonçalves, João Sá, Anabela Coelho, and João Durães;
licensed under Creative Commons License CC-BY

First International Computer Programming Education Conference (ICPEC 2020).
Editors: Ricardo Queirós, Filipe Portela, Mário Pinto, and Alberto Simões; Article No. 12; pp. 12:1–12:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3360-7509
mailto:a21171940@isec.pt
mailto:joaosa@gmail.com
mailto:anabela.coelho@aepombal.edu.pt
https://orcid.org/0000-0002-9697-9991
mailto:jduraes@isec.pt
https://doi.org/10.4230/OASIcs.ICPEC.2020.12
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


12:2 An Arduino Simulator in Classroom

Despite its many positive features, the use of the Arduino platform in classroom has several
aspects that may decrease the efficiency of the education effort (e.g., cost and classroom time
efficiency), and may even prevent the use of some forms of learning (e.g., distance learning),
as detailed in the next section. We perceive these aspects as an opportunity for improvement
by introducing the use of a virtual Arduino, that is, an Arduino Simulator that maintains all
the advantages of the real hardware, decreases or removes the aspects that decrease class
performance, and open new avenues and forms of learning not present with the real Arduino.

The use of an Arduino simulator in classroom is not common. In fact, to the best of
our knowledge, no school in our country uses one, and fully or at least usable Arduino
simulators in teaching context are not available. We propose to contribute to this scenario
by developing and making freely available a simulator that can be used in classroom allowing
the development and testing of programs and small circuits in a way that is similar to the
real hardware platform, and is compatible with the use of the same IDE in the same way as
with the real hardware, maintaining the same procedures the developer is used to.

This paper presents the several aspects relevant to our simulator and its use: in the next
section we detail the aspects that lead to the opportunity and advantages of using a simulated
Arduino in classroom, leading to high-level requirements and goals for the simulator. The
overall architecture and technical overview of the simulator implementation is presented in
the following section. Next we describe a case study of its use in the context of two schools
and analyze the results concerning its usability and advantages. We conclude the paper with
a summary of our results concerning the use of the simulator in classroom.

2 Motivation and goals

Arduinos are a key component of computing resource in the classroom, providing the
computing power needed to run small experiments, allowing pure programming exercises,
and enabling a first contact with electronic devices. Given its advantages, the tendency to
use this device in classroom will probably continue and possibly even increase. However, the
use of Arduinos in classroom presents some aspects that can be improved and opportunities
that can be explored to further advance the learning process. We analyze these next.

2.1 Limitations of actual hardware use
We perceive the following limitations when using the Arduino in classroom; device wear-down,
cost, skill mix-up, manual dexterity, assembly issues, time-efficiency.
Device wear-down and cost. The average number of writes of an Arduino’s flash memory

before failure is about 10,000 times [4]. This number is easily reached in just two years
of use in classroom. If we consider the common scenario of one school having 6 classes
interacting with 1 Arduino-equipped room, with 5 exercises per lesson, 10 tries per
exercise (low estimation), and 15 lessons per year, we will have about 4500 writes per
year. This will cause the school having to replace its Arduinos every two years.

Skill mix-up. Typical Arduino setups involve some electronic (LEDs, resistors, etc.), intro-
ducing the need for basic electronics skills, which are not typical for young students and
may act against the goals of learning programming [7].

Manual dexterity. The small components used with Arduino projects require some level
of fine movement control. Students with slight muscle-control disorder will find it very
difficult to assemble the circuits. Schools should be inclusive and even if the number of
affected students is small, this is an issue to consider.



P. F. Gonçalves, J. Sá, A. Coelho, and J. Durães 12:3

Assembly issues. Sometimes the components’ connectors are not in perfect condition and
will not work well causing the project to fail by reasons outside the immediate control of
the student, triggering frustration and wasting time.

Lesson time-efficiency. Arduino projects require some time to collect all the components,
sorting and setting them up, and at the end of the lesson, gathering and storing. When
compared to the typical lesson duration, this may add up to a considerable amount of
time not being used as actual learning time.

2.2 Mitigation offered by simulation
We propose to mitigate these issues with a simulator in the following manner:
Device wear-down and cost. The components used with the simulator are virtual. There is

no wear-down and no need for periodical replacement. This will immediately bring down
the cost of maintaining a room equipped with Arduinos, as the computers used for the
simulator typically are already available.

Skill mix-up. The electronic skill requirement can be reduced or even entirely removed if the
simulator focus more on the logical aspects of the components and alleviate unnecessary
details (e.g., simulated LEDs do not require an extra resistor), enabling students to focus
on the central aspects of programming.

Manual dexterity and Assembly issues. Using a simulator with graphical interface and
moving a pointing device is easier than handling small components. This removes some
impediments to student having fine-grain movement disorders. It also solves the issues
related to defective components and assembly problems.

Lesson time-efficiency. Setting up a simulated project can be as simple and fast as turning
a computer on, executing a program and opening the project file. Sorting and placing
components is replaced by point, click and drag components in the screen. This is faster
than working with physical components, making more time available for learning.

2.3 New opportunities made available by simulation
Using a simulated Arduino opens new opportunities that can greatly improve the learning
outcomes. We list those more immediately relevant:
Distance learning. Students typically don’t take the hardware home. Students that cannot

attend one lesson will loose that lesson; students wishing to improve skills on their own
time will not be able to do so and will have to wait for the next lesson. A simulator can
solve this limitation by allowing the student to use the simulator software at home, either
running the simulator on his personal desktop, or by connecting to a simulator hosted on
a server at school.

Project continuation support. Larger projects that cannot be concluded in one lesson are
dismantled to reuse its components, preventing its continuation on the next lesson. A
simulated project is just information that can be stored in a file and later reopened for
continuation. This opens an entirely new possibility for larger projects.

Debugging. Debugging is not directly available on real Arduino hardware due to hardware
constraints. However, debugging is important and should be encouraged. Simulators do
not share the constraints of the real hardware and can offer the means to debug the code,
including advanced functionality such as step-by-step execution and memory inspection.

We could identify more new uses made available by simulation. However, we see these as
the most immediately relevant. We focused on these first and our simulator already supports
them.

ICPEC 2020



12:4 An Arduino Simulator in Classroom

2.4 High level requirements and goals
The following are a set of high-level requirements that we identified to address the limitations
and provide for the opportunities listed above. These requirements guided the simulator
architecture definition and implementation choices.
Compatibility. To minimize or even remove intrusion and foreign aspects considering the

typical real-Arduino development setup, the simulator must present itself as just another
type of board and all it is required is to use the same IDE and simply configure this new
board type. All the development and code upload to the (simulated) Arduino is then
carried out in the same fashion as with real Arduinos.

Client-server architecture. To provide for easy central management, reduce operational
and maintenance complexity, and allow access to users with minimum local setup, the
simulator is hosted in a server where the actual simulation takes place. The user interacts
with the simulation in two ways: via the usual IDE to develop the code, and via the
client to interact with the circuit and components.

Web-compatibility. We decided that interaction with the simulator should be made via a
web-browser to maximize usability. By using a web-based interface and protocols, we
also gain the accessibility provided by the web.

3 Context and related work

3.1 Simulator implementations
There are several simulators available. We analysed their characteristics considering our
goals (see summary in Table 1):
Binary-level code compatibility. This is important and needed to maintain the program

loading process the same as with the read hardware. Our survey shows that more than
half of the existing simulators are compatible only at the API level, meaning that they
only simulate a fixed known basic functions of the Arduino, simulating their operation
but not the code execution itself. This may prevent many existing libraries for Arduino
from running in the simulator.

IDE compatibility. It is also important to minimize changes in the environment the developer
is used to. None of the simulators we analysed is compatible with the Arduino IDE. This
is contrary to the notion that in a teaching scenario, students should learn using the same
tools that they will later use.

Web accessibility. We previously identified web-based interface as one of the requirements
desirable for the simulator. However, none of the simulators that are binary-level
compatible provide a web interface.

Debug ability. Although several of the simulators that are binary compatible allow debugging,
all except one require an external tool, and the exception to this is not freely available.
This either increases complexity and removes compatibility with the IDE, or causes extra
costs.

3.2 Simulation/virtualization techniques
There are three main virtualization techniques: interpretation, compiled simulation and
dynamic translation. The latter transforms instructions from the target architecture (Arduino
microcontroller) to the host architecture (of the machine running the simulator), in practice,
rewriting the code. This type of transformation may insert undesired effects in timing and



P. F. Gonçalves, J. Sá, A. Coelho, and J. Durães 12:5

Table 1 Arduino simulators comparison.

So
ftw

ar
e

Fr
ee

O
pe
n-
so
ur
ce

Cr
os
s-p

la
tfo

rm
W
eb

in
te
rfa

ce
bi
na
ry

co
m
pa
tib

le
M
ai
nt
ai
ne
d

Al
low

s D
eb
ug

Ar
du
in
o
ID
E

Proteus (https://www.labcenter.com/) No No Yes No Binary Yes Yes No

Virtronics Simulator for Arduino (https://virtronics.com.au/
Simulator-for-Arduino.html)

No No No No API No Yes No

VBB4Arduino (http://www.virtualbreadboard.com/) No No No No API Yes Yes No

123D Circuits (https://123d.circuits.io/) Yes No Yes Yes API No – No

ArduinoDebugger (https://github.com/Paulware/ArduinoDebugger) Yes Yes No No API No Yes No

CodeBlocks Arduino IDE (http://arduinodev.com/codeblocks/) Yes Yes No No API Yes – No

Simuino (http://web.simuino.com/home-1) Yes Yes Yes Yes API No Yes No

Emulino (https://github.com/ghewgill/emulino) Yes Yes Yes No Binary No No No

Atmel Studio 7
(https://www.microchip.com/mplab/avr-support/atmel-studio-7)

Yes No Yes No Binary Yes Yes1 No

Emulare (http://emulare.sourceforge.net/) Yes Yes Yes No Binary No Yes2 No

SimAVR (https://github.com/buserror/simavr) Yes Yes Yes No Binary Yes Yes2 No

controllabillity that may affect the intended behavior of the original code and prevents the
debugging ability. Interpretation technique simulates each instruction, one by one, while
compiled simulation builds an entire program in the host architecture with the instructions
needed to simulate the complete sequence of the simulated instructions. Interpretation offers
more controllability to support debugging, but in theory is slower than compiled simulation.
We conducted a study to compare the performance of these two techniques [8] and concluded
that, in our case, using Java, interpretation is faster. Thus, we opted for the interpretation
technique to implement the simulator.

3.3 Arduino platform
Arduino is a platform composed by both hardware and software that can be used to control
many types of electronic components and projects. The hardware is a printed circuit board
with an AVR microcontroller [3], a power supply, a serial interface for programming, input
and output connections, and a bootloader to program the device. The software component
includes an API and libraries to manipulate the hardware and components, and a self-
contained integrated development environment (IDE) to develop and upload code to the
device.

4 Architecture and Implementation

The simulator is organized as a typical web-based client/server system. The server hosts
the simulation logic and mechanisms and can serve multiple independent simulations at the
same time, depending on the computing power. The client handles all the user and IDE
interaction. The user interface is based on common web technology and compatible with
common web-browsers. Figure 1 depicts the modules composing the simulator, which are
described next.

1 with extra hardware
2 with external debugger

ICPEC 2020

https://www.labcenter.com/
https://virtronics.com.au/Simulator-for-Arduino.html
https://virtronics.com.au/Simulator-for-Arduino.html
http://www.virtualbreadboard.com/
https://123d.circuits.io/
https://github.com/Paulware/ArduinoDebugger
http://arduinodev.com/codeblocks/
http://web.simuino.com/home-1
https://github.com/ghewgill/emulino
https://www.microchip.com/mplab/avr-support/atmel-studio-7
http://emulare.sourceforge.net/
https://github.com/buserror/simavr


12:6 An Arduino Simulator in Classroom

Figure 1 Architecture.

Microcontroller simulator. It is in this module that all the features of the microcontroller are
implemented, namely the AVR Instruction Set, the microcontroller peripherals, FLASH
and SRAM. This module executes the microcontroller code, exposes methods to change
pins values and throws events when their state is changed. Its internal structure is
very modular and each part can be easily replaced by other to allow simulating other
Atmel microcontrolers (the one now simulated is the ATmega328P [4]) maintaining the
integration with the parts responsible for simulating the ISA, FLASH, SRAM and the
peripherals.

Web server. This module manages the users, maintains simulation instances, and links
simulations to their respective user client and programmer tool. It is also responsible for
storing user-created projects and all their related data.

Web client. This is where the user creates circuits to simulate. There is a drawing area avail-
able where the user places and connects the Arduino and various electronic components.
All the simulator functionality can be accessed with the client: start/pause the simulation,
execute step-by-step, inspect FLASH and SRAM memory contents, manage breakpoints,
etc. Establishing a relationship between a web-client, the IDE/programmer tool and the
web server cannot be done directly given the way browser sandboxing works. The client
periodically sends information to the programmer tool to establish this relationship.

Programmer tool. This module corresponds to a board driver that is installed in the Arduino
IDE replacing the device programming program (avrdude [5]) so that when uploading
the binary code, instead of programming a real device the binary is sent to the simulator
in the web server.

The web client interface can be seen on Figure 2, with the toolbar, components palette,
drawing area with an example circuit and the inspecting windows for Source Code, FLASH
and SRAM opened.

The usage of the Arduino IDE is the same as programming a real Arduino with the
exception of selecting the new device installed by the board driver. In Figure 3 is possible to
see the IDE with the same program loaded in the simulator.



P. F. Gonçalves, J. Sá, A. Coelho, and J. Durães 12:7

Figure 2 Simulator user interface.

Figure 3 Arduino IDE.

5 Experimental use in real scenario

We conducted a real-use case study in two high-schools of the region to assess the usability
and advantages of using the simulator in the classroom. The case study comprises 5 classes,
3 from Escola Secundária de Avelar Brotero (Coimbra), and 2 from Agrupamento de Escolas
de Pombal (Pombal). In both schools students were aged between 16 and 18 years old. Some
of the classes belonged to courses of technological area, while other belonged to health. The

ICPEC 2020



12:8 An Arduino Simulator in Classroom

Table 2 Characterization of students.

School Class Area Curricular Year # students # Sim. # Real
Avelar Brotero Class 1 Sciences 12th 29 12 17
Avelar Brotero Class 2 Health 12th 29 12 17
Avelar Brotero Class 3 Mixed 12th 20 12 8
Pombal Class 4 Electronics 11th 11 6 5
Pombal Class 5 Electronics 12th 12 7 5

Total: 101 49 52

duration of the lessons was not the same for all tests and to compensate, the number of
exercises also varied. The participation in the experiment was optional and we did not notice
any reservation from any student. In each class, half the students used real Arduinos and
the other half used the simulator. Table 2 summarizes the characteristics of the classes and
students. Our methodology is described next.

5.1 Methodology

We separated each class into two groups of students: one used a real Arduino Uno and the
other used the simulator. We balanced the groups in terms of experience and knowledge
both in programming and in the Arduino Platform. This separation counted on the help of
the respective teachers. The exercises presented to the students consisted on programming
challenges involving simple circuits and were the same for both groups. These exercises were
the usual for those classes, were prepared by the teachers and had no influence or change
related to the simulator.

Due to the size of the classes and the lack of computers for all students at the school
ESAB the exercises were performed in groups of 2 students. This was already the common
scenario for those classes and it had nothing to do with the simulator.

We measured the efficiency of the simulator as a learning tool by observing the time
students took to solve the exercises, comparing real Arduino with the simulator, the number
of exercises completed, and their final result (correct/incorrect). We also used a questionnaire
to evaluate the perception of the students about the use of the simulator.

5.2 Exercises

We used three exercises in each test. These exercises were defined by the teachers following
their usual plan for the classes and there was no influence in the exercise definition related
the Simulator. The exercises had incremental difficulty. All the exercises involved both
programming and building a simple circuit. The circuit was assembled on a breadboard or
in the simulator client; the code was written with the IDE in all cases.

The exercises were as follows:
1. Blink a LED with one second on and one second off.
2. Make 3 LEDs light up in sequence, ensuring that only one is lit at a time, and with a

half-second interval.
3. Flash a set of 3 LEDs intermittently (all at the same time) only when a push button

connected to the Arduino is pressed.



P. F. Gonçalves, J. Sá, A. Coelho, and J. Durães 12:9

5.3 Questionaires
We defined a questionnaire adapted from the NASA Task Load Index (NASA-TLX) [9] which
are questionnaires created by the Human Performance Group of the National Aeronautics
and Space Administration to assess the workload when accomplishing a given task. This has
the dual advantage of considering the point of view of the subjects and including subjective
aspects such as discomfort or stress.

NASA-TLX questionnaires consist of 2 parts. In the first, 6 subjective parameters are
assessed: Mental Demand, Physical Demand, Temporal Demand, Performance, Effort and
Frustration. Subjects grade each parameter using a scale of 1 (very low) to 20 (very high).
This grading is related to the execution of one task and thus, it is repeated for each task.
The second part assesses the importance each subject assigns to each parameter and it is
given only once at the end of the test. In this part, parameters are compared in pairs and
for each pair subjects are asked to identify the parameter most relevant to them. This allows
assigning weights to each parameter (for each subject) and compute an overall workload
index experienced by each individual. We decided not to use the effort parameter since in
our context it can be captured individually by the the physical demand and mental demand.
We also adapted the scale from 1-20 to 1-6 to avoid pressuring the students with excessive
accuracy when classifying each of the parameters. We introduced additional questions
to understand the students background and later assess any possible correlation with the
performance shown when using the simulator (Table 5 in next subsection).

5.4 Results and Discussion
After a first assessment of the questionnaires, we noticed that not all students answered all
questions, either in the first part or in the second part of the questionnaire and we excluded
those from the results. This resulted in a total of 189 valid exercises, 89 of which were
performed in the real environment and 100 in the simulator (Table 3).

Table 3 Valid and invalid inquiries.

Total Invalid Valid
Students 101 3 98
Exercises 212 23 189

It should be noted that not all students performed the 3 exercises proposed in class
because teachers did not impose a time limit for the exercises (and we did not want to change
their usual process) and students only moved on to the next exercise when they finished the
previous one. Table 4 shows the number of students that executed each exercise.

In class 1 the students performed all the exercises in a row, having only counted the total
time and only responded once to the first part of the questionnaire. However, this happened
to both real Arduino and simulator students and the comparison between them remains
possible. This was not planned and happened due to insufficient initial communication
between the parts involved and was corrected in the following tests.

Figure 4 presents for both real and simulated Arduino the average and median workload
index experienced by the students when performing the exercises, and the average and median
time they took to solve the exercises.

As we can see, the workload index appears to be approximately the same for both real
and simulated Arduino, suggesting that the use of the simulator does not greatly interfere
with the overall effort experienced by the students, although when using the simulator it is
about 8% lower, which is a positive result towards the use of the simulator.

ICPEC 2020



12:10 An Arduino Simulator in Classroom

Table 4 Distribution of exercises across classes.

Exercise 1 Exercise 2 Exercise 3
Class Sim. Real Sim. Real Sim. Real
1 8 13 - - - -
2 12 16 12 12 4 3
3 11 8 10 8 8 2
4 5 4 5 4 5 4
5 7 5 7 5 6 5

Simulator Real
0

2

4

6

3.33 3.63.3 3.6

W
or
kl
oa

d

Average Median
Simulator Real

0

5

10

15

11.12

15.11

7

11

T
im

e
(m

in
ut
es
)

Average Median

Figure 4 Comparison of workload and exercise time.

Concerning the time parameter, we noticed that students using the simulator take
significantly less time to solve the exercises: 26% on average and 36% median. Combined
with the lower Physical Demand, this may indicate that using the simulator is more intuitive
than making electrical connections on a breadboard. This result suggests that using the
simulator is beneficial considering the number of exercises possible to execute during the
lesson.

Regarding the Physical Demand (Figure 5), we also observed a significant improvement
(one third of the physical demand). We expected an improvement as it is easier to move a
mouse than handling small components. The fact that the improvements are so significant
is a very encouraging result suggesting that the use of the simulator positively impacts the
learning process. Considering Mental Demand and Performance (exercise completion), the
results are the same for both groups of students (Figure 5). This was also expected: there
was no time limit, so completion depends mostly on the exercise itself; mental performance
should also not vary much as the IDE and the programming effort is the same in both cases.
This actually is in accordance to the goals of not introducing intrusiveness in the development
process.

Simulator Real
0

2

4

6

1

33 3

6 6

Physical Mental Performance

Figure 5 Comparison of the median of Physical Demand, Mental Demand and Performance.



P. F. Gonçalves, J. Sá, A. Coelho, and J. Durães 12:11

To confirm that the results obtained were not influenced by the students background
and previous experience, we analyzed the correlation between the answers about previous
background (in the questionnaire) with the workload and the time taken to solve the exercises.
We computed the Point Biserial Correlation [13] between the “Yes” answer to the three
questions in Table 5 and the average of time to solve the exercises and the average of workload
during the exercises.

In the case of previous experience using drawing software and previous experience with
Arduino, the correlation is very low, suggesting that these two are not related to the tests
results. Concerning the previous experience in programming, the correlation is a little higher
but also not significant.

Table 5 Correlation between “Yes” answer, Time and Workload.

Question Time Workload
Do you use drawing programs? −0.099 0.030
Had you already done programming before this school year? −0.131 −0.158
Have you done programs for Arduino before this course? −0.047 −0.025

5.5 Teacher point of view
The teacher’s point of view is very relevant to our analysis. The teachers of the classes of
the case study were involved in all preparation steps and in their opinion, the use of the
simulator did not introduced any extra class-management work, and dispensing the handling
of components alleviated the beginning and ending of the lesson. There is the need of one
initial explanation to the students about the simulator, but that is just for the first lesson
using it. So far it seems that the simulator does not involve extra workload to the teachers.

6 Conclusions

Given the increasing use of the Arduino Platform as a key learning tool it is pertinent to
address the aspects where this type of use can be improved. We identified a set of aspects
where the use of Arduino in classroom can benefit from the use of an Arduino simulator,
including new opportunities that can be explored to the mutual benefit of teachers and
students. We presented the planning and development of an Arduino simulator that although
it can be used for general purpose, it is specifically aimed at its use in education context
as its goals and requirements were based on the needs we identified for classroom use. The
simulator was implemented in Java and can be run in the typical computers usually found in
schools. It has a web-based client-server architecture allowing it to be centrally managed
and remotely used, enabling distance learning scenarios. Most importantly, it is compatible
with the usual IDE for Arduino and has no impact on the developer usual procedures.

We tested and validated the use of the simulator in classroom in a case-study involving
two high-schools comprising five classes using the same exercises already planned by the
teachers in regular context. We collected metrics regarding mental and physical workload
experienced by the students, and also performance-related metrics such as time spent and
exercise completeness. We concluded that the use of the simulator did not have any negative
impact on the students or class management, and observed a significant improvement on the
physical workload and in the time needed to solve the exercises. This improvement can have
a very positive impact on the efficiency of the lesson time, making possible more exercises per

ICPEC 2020



12:12 An Arduino Simulator in Classroom

lesson. Concerning the point of view of the teachers, our feedback is that no negative aspects
were introduced, class management is easier and all that is needed is one initial explanation
to students concerning the use of the simulator.

We analysed the correlation of the background of the students with the results obtained.
We did not find any significant correlation and we assume that the performance improvements
we observed are indeed related to the use of the simulator, suggesting that its use in classroom
is beneficial for learning goals.

We identify several avenues for future work: the continued enhancement of the simulator
to pursue further functionality and enable new potential, the continuation of tests in more
classroom-related scenarios, and the opening of the simulator as an open-source project 1 to
increase its visibility and use. We believe that this simulator is a positive contribution to
promote early and broadened digital-literacy and we will look for and pursue any opportunities
of partnership with education officials and state-sponsored projects to disseminate the
simulator in schools.

References
1 Francesca Agatolio and Michele Moro. A workshop to promote arduino-based robots as wide

spectrum learning support tools. In Robotics in Education, pages 113–125. Springer, 2017.
2 Arduino.cc. Arduino - home, 2018. URL: https://www.arduino.cc/.
3 Atmel. AVR Instruction Set Manual, 2016.
4 Atmel. ATmega328/P Datasheet, 2018.
5 Avrdude. Avr downloader/uploader, 2019. URL: https://www.nongnu.org/avrdude/.
6 Hernando Barragán. Wiring: Prototyping physical interaction design. Interaction Design

Institute, Ivrea, Italy, 2004.
7 Edward Currie and Carl James-Reynolds. The use of physical artefacts in undergraduate

computer science teaching. In E-Learning, E-Education, and Online Training, pages 119–124.
Springer, 2017.

8 Paulo F. Gonçalves, Jorge Bernardino, and João Durães. Virtualization technologies for
arduino simulation. In 2019 14th Iberian Conference on Information Systems and Technologies
(CISTI). IEEE, June 2019. doi:10.23919/cisti.2019.8760727.

9 Sandra G Hart and Lowell E Staveland. Development of nasa-tlx (task load index): Results
of empirical and theoretical research. In Advances in psychology, volume 52, pages 139–183.
Elsevier, 1988.

10 Peter Jamieson. Arduino for teaching embedded systems. are computer scientists and engineer-
ing educators missing the boat? In Proceedings of the International Conference on Frontiers
in Education: Computer Science and Computer Engineering (FECS), page 1. The Steering
Committee of The World Congress in Computer Science, Computer Engineering and Applied
Computing (WorldComp), 2011.

11 Marc Prensky. Programming is the new literacy. Edutopia magazine, 2008.
12 John Sarik and Ioannis Kymissis. Lab kits using the arduino prototyping platform. In 2010

IEEE Frontiers in Education Conference (FIE), pages T3C–1. IEEE, 2010.
13 Robert F Tate. Correlation between a discrete and a continuous variable. point-biserial

correlation. The Annals of mathematical statistics, 25(3):603–607, 1954.
14 Annette Vee. Understanding computer programming as a literacy. Literacy in Composition

Studies, 1(2):42–64, 2013. doi:10.21623/1.1.2.4.

1 https://github.com/pafgoncalves/ArduinoSimulator/

https://www.arduino.cc/
https://www.nongnu.org/avrdude/
https://doi.org/10.23919/cisti.2019.8760727
https://doi.org/10.21623/1.1.2.4
https://github.com/pafgoncalves/ArduinoSimulator/

	Introduction
	Motivation and goals
	Limitations of actual hardware use
	Mitigation offered by simulation
	New opportunities made available by simulation
	High level requirements and goals

	Context and related work
	Simulator implementations
	Simulation/virtualization techniques
	Arduino platform

	Architecture and Implementation
	Experimental use in real scenario
	Methodology
	Exercises
	Questionaires
	Results and Discussion
	Teacher point of view

	Conclusions

