
Computer Programming Education in Portuguese
Universities
Ricardo Queirós
CRACS – INESC-Porto LA, Portugal
uniMAD, ESMAD, Polytechnic of Porto, Portugal
http://www.ricardoqueiros.com
ricardoqueiros@esmad.ipp.pt

Mário Pinto
uniMAD, ESMAD, Polytechnic of Porto, Portugal
mariopinto@esmad.ipp.pt

Teresa Terroso
uniMAD, ESMAD, Polytechnic of Porto, Portugal
teresaterroso@esmad.ipp.pt

Abstract
Computer programming plays a relevant role in the digital age as a key competency for project
leverage and a driver of innovation for today’s modern societies. Despite its importance, this domain
is also well known for their higher learning failure rates. In this context, the study of how computer
programming is taught is fundamental to clarify the teaching-learning process and to ensure the
sharing of the best practices. This paper presents a survey on computer programming teaching in
the first-year courses of Portuguese Universities, more precisely, what is taught and how it is taught.
The study focuses essentially on the following facets: the class characterization, the methodologies
used and the languages/technologies taught. Based on these criteria, a survey was done which
gathers information of 59 courses included in a wide range of Universities spread across Portugal.
The results were collected and analyzed. Based on this analysis a set of conclusions were taken
revealing some interesting results on the teaching methods and languages used which can be useful
to support a discussion on this subject and, consequently, to find new paths to shape the future of
programming teaching.

2012 ACM Subject Classification Social and professional topics → Computer science education

Keywords and phrases computer programming, teaching-learning, universities

Digital Object Identifier 10.4230/OASIcs.ICPEC.2020.21

Funding This work is financed by National Funds through the Portuguese funding agency, FCT –
Fundação para a Ciência e a Tecnologia, within project UIDB/50014/2020.

1 Introduction

Computer programming is considered one of the most important and emerging domains in
today’s society. As a domain with large market demand, educational institutions have been
including in their curricula, a set of related disciplines, ranging from the introductory level
to a more advanced one.

At the same time, this domain has high levels of failure, especially in introductory
programming disciplines. There are several reasons for this fact [2, 5, 14, 11], ranging from
traditional teaching methods, the difficulty of students in enhancing the problem-solving
facet, the small and limited number of programming exercises, to the lack of automated tools
to assist teachers in authoring and evaluating exercises and students in monitoring their
resolutions [4, 6].

© Ricardo Queirós, Mário Pinto, and Teresa Terroso;
licensed under Creative Commons License CC-BY

First International Computer Programming Education Conference (ICPEC 2020).
Editors: Ricardo Queirós, Filipe Portela, Mário Pinto, and Alberto Simões; Article No. 21; pp. 21:1–21:11

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1985-6285
http://www.ricardoqueiros.com
mailto:ricardoqueiros@esmad.ipp.pt
https://orcid.org/0000-0002-6734-5797
mailto:mariopinto@esmad.ipp.pt
https://orcid.org/0000-0003-0224-8301
mailto:teresaterroso@esmad.ipp.pt
https://doi.org/10.4230/OASIcs.ICPEC.2020.21
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


21:2 Computer Programming Education

With the advent of automatic tools for evaluating programming exercises, which came
in part to relief the teachers from the manual burden of manual assessing of student’s
code, and the Web learning environments that came to provide more sustained guidance
to students while solving exercises, we continue to assist to a great lack of motivation in
learning programming [1, 8].

In the last few years, in order to engage students and foster a collaborative and competitive
spirit, elements associated with the mechanics that we typically see in games, the so-called
gamification, began to emerge [12]. Gamification is now a crucial component in learning
environments and has been used in order to motivate students to remain focused on overcoming
their difficulties. Despite the huge buzz with gamification in education, the lack of systems
that can be easily integrated into learning environments and their unbalanced use, reveals
that this technique has not yet been fully exploited [7].

This paper presents the current state of the teaching-learning process of computer
programming in Portugal. For this study, a survey was defined and distributed to several
Portuguese educational institutions, more specifically, to teachers who teach introductory
programming subjects. This survey raises several questions related to the characterization of
the classes, the teaching methods, the languages and tools used, the reasons for the current
difficulties and the desired improvements. Based on the results of the survey, an analysis is
made that essentially aims:

to characterize the teaching of computer programming in Portugal;
to know which methodologies, languages and tools are adopted;
to identify good practices implemented (with satisfactory results);
to outline lines of action for the future of programming teaching.

The remainder of the paper is structured as follows: Section 2 explores the reasons for
the failure of teaching programming. The next section describes the experience made to
obtain data on teaching programming in Portugal, namely, the methodology used for data
collection. The results analysis section presents the results of the survey and analyzes them.
Finally, the conclusions, the main contributions of the article and possible paths for future
work are presented.

2 Programming education issues

In this section, we begin by identifying the main reasons for the difficulties that teachers and
students have in the teaching-learning process of computer programming.

In order to learn to program it is not enough to know the syntax of a language. There
is a set of inherent concepts that requires a level of abstraction and structured reasoning
from the student, which is difficult to achieve, especially in an introductory phase. Several
scientific studies points out several reasons for failure in this area [2, 5, 14, 11]:

Complex domain of complex programming;
Traditional teaching and study methods;
Psychological aspects;
Difficulties in using/integrating automated tools.

In the next subsections, we explore all these facts.



R. Queirós, M. Pinto, and T. Terroso 21:3

2.1 Complex domain
Programming learning requires a range of skills ranging from problem-solving to abstraction.
These skills associated with reasoning structured in order to find the best solutions for a given
problem are decisive for successful progress in this domain. Several studies show [9, 11, 5],
that, at an early stage, students have difficulties in assimilating all of these skills.

In fact, problem-solving is nowadays seen as one of the main soft-skills that anyone must
have in order to be successful in their work. This skill is essentially characterized by five
steps: In a first phase, you start by analyzing a problem (for instance, a programming
assignment) and identifying what needs to be addressed to obtain a solution. In this step,
the necessary skills focus on good reading, interpretation, and analysis of the problem and
adequate identification of the requirements.

In a second phase, and after realizing the problem and identifying needs, it is time to
discuss possible solutions. It is rare that a single strategy is an obvious answer to solving a
complex problem. The creation of a set of alternatives helps to cover all needs and reduces
the risk of exposure if the first strategy that implements fails. At this stage, the necessary
skills focus on good planning for solving a problem (e.g., developing algorithms).

In a third phase, the best solutions are evaluated. Depending on the nature of the
problem, the evaluation of the best solutions can be carried out taking into account several
criteria (e.g. getting from point A to point B more quickly or spending less money). Here
the necessary skills are discussion and teamwork, prioritization and test development.

In a fourth phase, the decision reached in the previous phase is implemented. Here, a
programming language is typically used to implement the best solution in order to solve the
problem. As necessary skills, we highlight the ability to codify and collaborate (in this case,
group work).

Finally, the effectiveness of the solution execution is evaluated.
Many students have also deficits in mathematical and logical knowledge. Several exper-

iments [9] were carried out to find correlations between mathematical knowledge and the
lack of programming skills. In these experiments, the authors concluded that the students
involved had profound difficulties in several areas, such as basic calculus and theory of
numbers or simple geometric and trigonometric concepts. The authors also report difficulties
related to the transformation of a textual problem into a mathematical formula that solves
it. Limitations in terms of abstraction and logical reasoning have also been identified.

At the same time, and still related to the nature of programming, another problem
persists that is closely linked to the syntax of languages. In fact, the syntax of languages is
complex (in fact, they were designed to be used at a professional level and not to support
your learning) and, in some cases, has evolved in a meteoric way [13], making students have
difficulties in its adaptation, memorization and consequent application. Obviously, these
problems can be alleviated by teaching and study techniques that are discussed in the next
subsection.

2.2 Traditional teaching-learning methods
One of the main problems in teaching programming has to do with the fact that teachers
are typically more focused on teaching a programming language and its syntax, rather than
promoting problem-solving using a programming language. This enormous emphasis on
syntax, at the expense of a more practical component, is an obstacle to student’s progress.
Also, in the programming area, where there is a great need for teaching dynamic concepts,
this is usually done using materials of a static nature (e.g. drawings on the board, slides that
are too long and confusing and verbal communication, sometimes deficient and of difficult
understanding).

ICPEC 2020



21:4 Computer Programming Education

At the same time, the study methods are also not the most suitable. Programming
requires a very practical and intensive study. Obviously there are many disciplines that
require study methodologies based on reading and memorizing formulas or procedures.
However, programming, like mathematics, requires a different method of study that involves
intense training. The only way to learn to program is to program. Just watching classes,
watching videos and reading specialized books is not enough. Moreover, students tend to
give up problems whose solutions they cannot find in a simple and quick way, so monitoring
24x7 tools, outside the classroom, would be desirable.

It is unanimous that the most effective method for learning any domain is practice [11]. In
computer programming learning, the practice comes down to solving programming exercises.
In order to have exercises it is necessary to create them or reuse existing ones, which is
complicated as the best exercises are often inaccessible or in proprietary formats. Even
with these exercises, it is necessary to make them available to students in an attractive
and practical way, organized into well-defined thematic modules and ordered by difficulty
levels. This organization and sequencing benefits the student’s progress and consequent
motivation [16].

However, it is not enough to put a battery of exercises for the student to solve in order
to master programming. For practice to be efficient, feedback is required. If the feedback is
null or inaccurate, then practice can be detrimental to the student’s sustained progress. To
have feedback, the teacher must have time to be able to answer all requests from the class,
typically with a large number of students

Another major problem in teaching programming is that it is not personalized. Typically,
teachers’ strategies do not usually address all student learning styles. It is a fact that we all
learn in different ways and consequently have different preferences in learning in order to
assimilate content and good practices. However, by adopting traditional methods, the teacher
is forcing all students to have uniform learning, at the same pace and according to their
pedagogical strategies. However, the high number of students in the classroom combined
with time constraints makes more personalized approaches impossible. In an optimal world,
the teacher should be able to contemplate the enormous diversity of learning styles present in
the classroom and adapt teaching to each of the profiles found. One solution to this problem
is the use of automated tools that support this personalized teaching [10].

2.3 Psychological aspects
The cognitive and motivational aspects are fundamental to the success of learning computer
programming. The lack of motivation is perhaps one of the biggest reasons for school’s
failure. Many students are not motivated enough to study programming, due to its reputation
for being difficult and the extremely negative connotation associated with it. There are
same studies that indicate that there is a public image of a “programmer” as a “social
inadequate” [5,6].

In addition, students have introductory programming disciplines during one of the
most difficult periods of their student life, that is, at the beginning of a college degree in
computer science, coinciding with a period of transition and instability in their life. There
are even authors who consider that the programming disciplines are poorly located in the
curriculum [5,6].

Gamification strategies can be used in the educational process of programming learning.
These strategies foster engagement through collaboration (e.g. students interact each other
in order to solve a challenge) and competition (e.g. students compete to be the first to
solve a challenge). In fact, new methodologies and techniques are appearing aiming to



R. Queirós, M. Pinto, and T. Terroso 21:5

improve retention and foster the motivation and competitiveness of computer programming
learning [12]. While the concept of “winners and losers” can hinder the motivation of
students [15], competitive learning is becoming a trendy learning paradigm that relies on the
competitiveness of students to increase their programming skills [3] with promising results.

2.4 Difficulties in the use/integration of automated tools
Another major problem with this process is the fact that classes are typically very long
which severely undermines the work of teachers. In addition to manually correct students’
resolutions and give feedback, teachers have to give classes more quickly in order to teach all
the course subjects and to foster the delivery of assignments to students.

These issues can be mitigated with the use of specialized online tools to support and guide
the entire teaching-learning process of computer programming. Currently, there is a vast set
of tools ranging from repositories of programming exercises to dynamic code evaluators [13].
However, despite the existence of several tools, their continued use is still scarce. There are
several reasons for that ranging from the lack of time for its adoption and the interoperability
issues in the most diverse infrastructures scenarios.

In this realm, we can organize existing tools into the following categories:
Teaching-learning environments - environments that allow the teacher to create and
manage their exercises and make them available to students and students to solve and
submit them and access the resolution feedback;
Exercise repositories - systems that allow the storage, cataloging and subsequent discovery
of exercises by teaching-learning environments;
Assessment tools - tools or services that receive the resolution for a given programming
exercise and that return an evaluation of it;
Gamification services - services that provide gamification components to be included in
the teaching-learning environment with the specific aim of fostering student’s engagement.

It is also important to state that computer programming learning tools are not limited to
this list. Other systems can be used to assist in the process such as anti-plagiarism tools,
recommendation systems, feedback animators, bots, and others.

3 Survey on Computer Programming Teaching

In order to understand how Higher Education Institutions (HEI) approach the teaching
and learning processes of computer programming, particularly in the introductory units, a
questionnaire survey was conducted. This questionnaire aimed to characterize what is taught
and how it is taught, namely the topics covered in the unit courses, the methodologies adopted,
tools, languages, good practices and the main difficulties encountered in the programming
teaching process. The questionnaire ends with a request for suggestions on what might
improve the teaching and learning process of computer programming. Considering these
objectives, the questionnaire was organized into four sections:

Respondent characterization (institution, course degree and course unit, number of contact
hours and type of classes);
Programming teaching (covered topics, languages and learning and pedagogical resources);
Editors and teaching support tools (code evaluators, testing tools, plagiarism detection
or gamification);
Final considerations (average pass rate, main difficulties identified, good practices and
tools that it intends to incorporate in the teaching process).

ICPEC 2020



21:6 Computer Programming Education

A pilot test of the questionnaire was carried out with four users. These users were invited to
answer a test version of the questionnaire, providing us with suggestions for improvement.
Several suggestions were received, which were incorporated in its final version.

The questionnaire was addressed to university and polytechnic higher education teachers,
who teach introductory programming subjects. This target audience includes professors from
higher professional technical courses (TeSP), bachelor’s and master’s degrees. Considering
the Bologna process, some universities have created courses that combine a bachelor’s with
a master’s, called integrated master’s (five years), which are also included in the target
audience.

The questionnaire was distributed through an online survey, being disseminated by eighty
contacts, which fit in the target audience described above, requesting collaboration in the
response. Some contacts were obtained from research carried out on the institutions’ web
pages, when available. Others were obtained through personal networks. The respondents
were informed that the questionnaire was anonymous, ensuring the confidentiality of responses.
After forty-eight hours a reminder was sent to all contacts, reinforcing the invitation to
participate in this survey, which was available to respond for 10 days.

A total of 59 responses were gathered, which represents a response rate of 74%. The
responses were from teachers of 4 Polytechnic Institutes (Bragança, Cávado e Ave, Oporto and
Viseu) and 9 Universities (Azores, Algarve, Aveiro, Beira Interior, Coimbra, Évora, Minho,
Lisbon, and Oporto). One can see that the responses obtained come from a wide-ranging
geographical scope, with responses from north to south of the country, including islands
(Azores).

4 Results analysis

4.1 Respondent characterization

The questionnaire was answered mostly from professors of curricular units belonging to
bachelor degrees, either from Polytechnics or Universities (Figure 1). Programming classes
can have four different typologies: theoretical (40.7%), theoretical-practical (57.6%), practical
(18.6%) and practical-laboratory class (52.5%). More than 50% of the inquired provide 4
weekly contact hours and 20 to 25 students per class.

Figure 1 Degree.



R. Queirós, M. Pinto, and T. Terroso 21:7

4.2 Programming teaching
Regarding programming teaching (covered topics, programming languages and learning
resources), the questionnaire survey offered options in a multiple-choice format. As expected,
overall introductory programming curricular units covered the basics of programming, like
variables (89.8%), operators (83.1%), structures and data types (89.8%), control structures
(89.8%) and functions (91.5%). As for the languages used in initial programming classes, 16
of the inquired use C, followed by Python and Java (12 and 11 answers, respectively). Only
6 teachers answered C#, and the remaining languages had under 5 responses, Figure 2.

Figure 2 Programming languages.

Regarding the learning resources, mostly use classic non-interactive approaches such as
presentation slides (88.1%), notebooks (25.4%) and books (72.4%). Online tools already have
relevance as a resource in programming teaching, as 22.4% use online tutorials, 6.9% adopt
learning platforms in their classes, like Udemy or code.org, and 5.2% make use of YouTube or
other online videos. Exercise solving is a feature on which the process of teaching computer
programming learning depends on. More than 85% of the professors state that the exercises
are created from scratch to the curricular unit and more than 60% claim their exercises are
revised each year. Almost 80% of the exercises are solved in a code editor; the remaining use
some sort of platform (online or adopted to the programming curricular unit).

4.3 Editors and teaching tools
The questionnaire results revealed that a multiplicity of code editors is used in Portuguese
higher education programming classes, Figure 3.

Figure 3 Code editors.

ICPEC 2020



21:8 Computer Programming Education

Regarding code evaluation tools, the responses obtained demonstrate that most respond-
ents do not use code evaluators. Among those who reported using it, Mooshak stands out as
the preferred option, Figure 4.

Figure 4 Assessment tools.

The same is shown when asked about testing, plagiarism detection or gamification tools.
Only 4 respondents make use of some sort test framework, like Jasmine, Mocha, Enzyme, Jest,
PandionJ, JUnit or QuickCheck, but none stands out as the most used. As for gamification,
6 professors employ gamification in the computer programming learning process: 2 use
some tool integrated with the Learning Management System (LMS), 2 developed their own
gamification and 2 others take advantage of web-based platforms like code.org and Kahoot.
Plagiarism detection proved to be a major concern when compared with the latter two topics:
testing and gamification. 11 answered positively when asked if they used an anti-plagiarism
tool. From those, MOSS stands out as the most used (5 responses), followed, ex aequo,
by Codequiry, JPlag, Urkund, Virtual Programming Lab, Blackboard SafeAssign and a
proprietary application developed by the teaching staff, all of the above with 1 response each.

4.4 Final considerations
The fourth and last section of the questionnaire was composed of three open questions
regarding main difficulties identified in teaching programming, best practices, and tools
that could improve the computer programming teaching/learning process. More than 20%
pointed out that the students’ lack of strong know-how foundations and the complexity of
the programming domain as the most prominent difficulties. Around 18.6% make reference
to the classes with a high number of students and few contact hours (Figure 5).

Even though the average approval rate is considerably high (88% responded that the
approval rate is higher than 50%), there is still potential to improve (Figure 6).

Several ideas were pointed out regarding what could improve the computer programming
teaching-learning process, namely:

More student work and responsibility
Increase contact hours
Motivate students (quizzes, inverted classrooms, other tools)
Emphasis on algorithmic logic
Introduce an automatic code evaluator
Code execution and testing tools that provide intuitive feedback
Smaller classes



R. Queirós, M. Pinto, and T. Terroso 21:9

Figure 5 Main difficulties in teaching programming.

Continuous training of teachers
Introduce problem-based learning methodologies
More projects
More time for tutorial support for each student
Introduce mob programming tool
A pedagogical approach that motivates students
Introductory classes with a view to standardizing students’ knowledge
Peer learning and active learning
Guide learning to topics of interest to students
Individual tutorial guidance
Gamification mechanisms
Use programming together with other curricular units

As for tools professors would like to introduce in their classes, 20 respondents did not
answer or said they do not know which tool to point out. However, 29 promptly acknowledge
that an automated code evaluator would improve their classes. 19 would like to include a
code analyzer and 18 pointed out an open exercise repository would be a plus. Gamification,
anti-plagiarism and recommendation systems were also chosen by 14, 11 and 7 of the inquired
professors.

Figure 6 Average approval rate.

ICPEC 2020



21:10 Computer Programming Education

5 Conclusions

Learning to program is difficult. In this paper, we identify several factors that make students
feel unmotivated from the methodologies used in the classroom to the psychological aspects
inherent to the programming domain.

In order to try to understand how programming is taught in Portugal, a survey was
carried out on more than fifty existing courses in Portugal covering a large part of the national
territory and islands. The objective was to assess how programming classes are constituted,
which methodologies, languages, and tools are used and what are the respondents’ opinions
regarding the main difficulties and which are the best approaches to solve them.

Regarding the characterization of the respondents and their classes, we had responses
essentially from undergraduate courses where teachers give theoretical and practical classes
for 4 hours per week.

The topics covered are initially linked to the basic concepts of languages (variables,
operators, structures and data types). In terms of languages, most responses indicated
C, Phyton, and Java as the programming languages taught in introductory courses. The
teaching approaches are combined between slides exposing the theoretical part and the
resolution of exercises in a code editor (preferably Visual Studio Code). Most exercises are
created from scratch, with slight adaptations at the beginning of each year. The evaluation
of the exercises is mostly done manually. In fact, the same methodology is used for testing,
gamification and plagiarism detection.

Regarding the main obstacles to teaching programming, most teachers complain about
the few student bases, the fact that programming is a complex field that combined with large
classes and few hours of contact makes the process’s time consuming and complex. Despite
this, there has been a reasonable number of approvals.

As ideas for approaches to address programming learning failure, teachers point to the
use of tools that automate various stages of the life cycle of the teaching process and the
decrease in the number of students per class so that teaching can be more personalized.

As future work, the authors wish to improve the survey with new questions and extend
the sample to international universities.

References
1 Kirsti M Ala-Mutka. A survey of automated assessment approaches for programming assign-

ments. Computer Science Education, 15(2):83–102, 2005. doi:10.1080/08993400500150747.
2 Yorah Bosse and Marco Aurélio Gerosa. Why is programming so difficult to learn? patterns of

difficulties related to programming learning mid-stage. SIGSOFT Softw. Eng. Notes, 41(6):1–6,
January 2017. doi:10.1145/3011286.3011301.

3 Juan C. Burguillo. Using game theory and competition-based learning to stimulate student
motivation and performance. Comput. Educ., 55(2):566–575, September 2010. doi:10.1016/
j.compedu.2010.02.018.

4 Micaela Esteves, Benjamim Fonseca, Leonel Morgado, and Paulo Martins. Improving teaching
and learning of computer programming through the use of the second life virtual world. British
Journal of Educational Technology, 42(4):624–637, 2011. doi:10.1111/j.1467-8535.2010.
01056.x.

5 Anabela Gomes, Cristiana Areias, Joana Henriques, and António José Nunes Mendes. Apren-
dizagem de programação de computadores: dificuldades e ferramentas de suporte. Revista
Portuguesa de Pedagogia, 42:161–179, 2008.

6 Tony Jenkins. On the difficulty of learning to program. In 3rd Annual LTSN-ICS Conference,
pages 53–58, 2002.

https://doi.org/10.1080/08993400500150747
https://doi.org/10.1145/3011286.3011301
https://doi.org/10.1016/j.compedu.2010.02.018
https://doi.org/10.1016/j.compedu.2010.02.018
https://doi.org/10.1111/j.1467-8535.2010.01056.x
https://doi.org/10.1111/j.1467-8535.2010.01056.x


R. Queirós, M. Pinto, and T. Terroso 21:11

7 Derviş Kayımbaşıoğlu, Bora Oktekin, and Hüseyin Hacı. Integration of gamification technology
in education. Procedia Computer Science, 102:668–676, 2016. 12th International Conference on
Application of Fuzzy Systems and Soft Computing, ICAFS 2016, 29-30 August 2016, Vienna,
Austria. doi:10.1016/j.procs.2016.09.460.

8 Jackie O’Kelly and J. Paul Gibson. Robocode – problem-based learning: A non-prescriptive
approach to teaching programming. SIGCSE Bull., 38(3):217–221, June 2006. doi:10.1145/
1140123.1140182.

9 Ana Pacheco, Anabela Gomes, Joana Henriques, Ana Maria de Almeida, and António José
Mendes. Mathematics and programming: Some studies. In Proceedings of the 9th Interna-
tional Conference on Computer Systems and Technologies and Workshop for PhD Students
in Computing, CompSysTech ’08, New York, NY, USA, 2008. Association for Computing
Machinery. doi:10.1145/1500879.1500963.

10 José Carlos Paiva, José Paulo Leal, and Ricardo Queirós. Authoring game-based programming
challenges to improve students’ motivation. In Michael E. Auer and Thrasyvoulos Tsiatsos,
editors, The Challenges of the Digital Transformation in Education, page 602–613, Cham,
2019. Springer International Publishing, Springer International Publishing.

11 Ricardo Queirós. A framework for practice-based learning applied to computer programming.
Master’s thesis, FCUP, Porto, 2012.

12 Ricardo Queirós. Gamification-Based E-Learning Strategies for Computer Programming
Education. IGI GLOBAL, 2016. doi:10.4018/978-1-5225-1034-5.

13 Ricardo Queirós. A Survey on Computer Programming Learning Environments, volume 1 of 1,
chapter 4, pages 90–105. IGI GLOBAL, 2019. doi:10.4018/978-1-5225-7455-2.ch004.

14 Anthony Robins, Janet Rountree, and Nathan Rountree. Learning and teaching programming:
A review and discussion. Computer Science Education, 13(2):137–172, 2003. doi:10.1076/
csed.13.2.137.14200.

15 Maarten Vansteenkiste and E. L. Deci. Competitively contingent rewards and intrinsic
motivation: Can losers remain motivated? Motivation and Emotion, 27(4):273–299, 2003.

16 Jacqueline L. Whalley, Raymond Lister, Errol Thompson, Tony Clear, Phil Robbins, P. K. Ajith
Kumar, and Christine Prasad. An australasian study of reading and comprehension skills
in novice programmers, using the bloom and solo taxonomies. In Proceedings of the 8th
Australasian Conference on Computing Education - Volume 52, ACE ’06, page 243–252, AUS,
2006. Australian Computer Society, Inc.

ICPEC 2020

https://doi.org/10.1016/j.procs.2016.09.460
https://doi.org/10.1145/1140123.1140182
https://doi.org/10.1145/1140123.1140182
https://doi.org/10.1145/1500879.1500963
https://doi.org/10.4018/978-1-5225-1034-5
https://doi.org/10.4018/978-1-5225-7455-2.ch004
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1076/csed.13.2.137.14200

	Introduction
	Programming education issues
	Complex domain
	Traditional teaching-learning methods
	Psychological aspects
	Difficulties in the use/integration of automated tools

	Survey on Computer Programming Teaching
	Results analysis
	Respondent characterization
	Programming teaching
	Editors and teaching tools
	Final considerations

	Conclusions

