Report from Dagstuhl Seminar 14232

Design and Synthesis from Components

Edited by
Jakob Rehof' and Moshe Y. Vardi?

1 TU Dortmund, DE, jakob.rehof@cs.tu-dortmund.de
2 Rice University, US, vardi@cs.rice.edu

—— Abstract

This report documents the program and the outcomes of Dagstuhl Seminar 14232 “Design and
Synthesis from Components” which took place from June 1st to June 6th, 2014. The seminar
aimed at bringing together researchers from the component-oriented design community, research-
ers working on interface theories, and researchers working in synthesis, in order to explore the
use of component- and interface design in program synthesis. The seminar program consisted of
6 tutorial talks (1 hour) and 16 contributed talks (30 mins) as well as joint discussion sessions.
This report documents the abstracts of the talks as well as summaries of discussion sessions.

Seminar June 1-6, 201401 — http://www.dagstuhl.de/14232

1998 ACM Subject Classification 1.2.2 Automatic Programming — Program synthesis, D.2.2
Design Tools and Techniques, F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases Component design, Component-based synthesis

Digital Object Identifier 10.4230/DagRep.4.6.29

Edited in cooperation with Dror Fried

1 Executive Summary

Jakob Rehof
Moshe Y. Vardi

License) Creative Commons BY 3.0 Unported license
© Jakob Rehof and Moshe Y. Vardi

The purpose of the seminar was bringing together researchers from the component-oriented
design community, researchers working on interface theories, and researchers working in
synthesis, in order to explore the use of component- and interface design in program synthesis.

The seminar proposal was motivated by a recently developing trend in component-based
synthesis, which is seen both as creating a need and providing the potential for a cross-
community effort. Traditionally, synthesis has been pursued in two distinct and somewhat
independent technical approaches. In one approach, synthesis is characterized by temporal
logic and automata theoretic methods, whereas in the other synthesis is characterized
by deductive methods in program logics and in type theory considered under the Curry-
Howard isomorphism. Recent work in component-oriented design has spurred the idea
of component-based synthesis, where systems are synthesized relative to a given collection
(library, repository) of components, within both technical approaches. Recent results in
both communities show that this development allows the two communities to communicate
more intensely on the common ground of component-orientation to their mutual benefit.
The trend opens the door to a new attack on the great challenges of synthesis (including
computational complexity and complexity of specification) by exploiting component design.

Except where otherwise noted, content of this report is licensed
37 under a Creative Commons BY 3.0 Unported license

Design and Synthesis from Components, Dagstuhl Reports, Vol. 4, Issue 6, pp. 29-47
Editors: Jakob Rehof and Moshe Y. Vardi

\\v pagstunL Dagstuhl Reports
rReporTs Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/14232
http://dx.doi.org/10.4230/DagRep.4.6.29
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

30

14232 — Design and Synthesis from Components

The seminar program consisted of 6 tutorial talks (1 hour) and 16 contributed talks (30
mins) as well as joint discussion sessions. Two slots for joint discussions were pre-planned for
each day but were used flexibly and dynamically, depending on the development of discussions
and reactions to the talks. It was felt that the mixture of tutorials, talks and joint discussion
slots turned out to be an altogether very good instrument for making intensive exchanges
among all seminar participants possible. It seems to be the general impression that the
seminar was very succesful in meeting the challenge of bringing together researchers from
quite a diverse range of technical fields, spanning from software engineering to mathematical
logic. The seminar was succesful in generating several concrete cross-community collaboration
projects which would not have been likely to have come into existence by way of traditional
conferences.

Joint discussions were summarized by Dror Fried (Rice University) who is gratefully
acknowledged for undertaking the role of “seminar collector”.

Jakob Rehof and Moshe Y. Vardi

2 Table of Contents

Executive Summary
Jakob Rehof and Moshe Y. Vardi

Overview of Talks

Coordinated Composition of Components
Farhad Arbab

Synthesis for Communication-centred Programming
Mariangiola Dezani e e e

ArchiType: Automatic Synthesis of Component & Connector-Software Architectures
with Bounded Combinatory Logic
Boris Duedder e

Petri Games: Synthesis of Distributed Systems with Causal Memory
Bernd Finkbeiner

Towards Improving Extensibility and Reuse of Modules Within a Product Line
George T. Heineman e

On coercion synthesis for regular expressions
Fritz Henglein 0 0 o e e e e e e e e e

Application-layer Connector Synthesis
Paola Inverardi e

Towards Understanding Superlinear Speedup by Distillation
Neil D. Jones o o e e e e e e e e e

Synthesis of Reactive Systems Components with Data
Bengt Jonssono e

Application of Combinatory Logic Synthesizer in Robotics
Moritz Martens o e e e e e e

Towards Synthesis of Uniform Strategy against Temporal Epistemic Logic
Hongyang Qu e e e

Beyond Two-player Zero-sum Games: Motivations and Highlights of Recent Results
Jean-Francois Raskin e

Combinatory Logic Synthesis
Jakob Rehof e

In search for a strategy to search for a strategy
Sven Schewe

Workflow Synthesis — Concepts and Experience
Bernhard Steffen

What are “good” strategies in infinite games?
Wolfgang Thomas 0

Automated Synthesis of Service Choreographies
Massimo Tivoli e e

Component-Based System Design with Interfaces
Stavros Tripakis e e e e

31

14232

32 14232 — Design and Synthesis from Components

Inhabitation problems
PawelUrzyczyn« o o 0 o e e e e 43

Compositional Temporal Synthesis
Moshe Y. Vardi e 43

Compositional Controller Synthesis for Stochastic Games
Clemens Wiltsche e 43

Programming with Millions of Examples
Eran Yahav oL e 44

A combinatorial view of module composition for OO programming languages
Ugo de’Liguoro o e e 44

Joint Discussions

Component Orientation and Complexity (Tuesday 6/3/2014) 45
Challenges (Wednesday 6/4/2014) 45
Benchmarks (Thursday 6/5/2014) 46
Conclusion (Thursday 6/5/2014) i 46

Participants 47

Jakob Rehof and Moshe Y. Vardi

3 Overview of Talks

3.1 Coordinated Composition of Components
Farhad Arbab (CWI — Amsterdam, NL)

License) Creative Commons BY 3.0 Unported license
© Farhad Arbab

Modeling components as units of behavior offers a rich framework where composition operators
can coordinate the behavior of such constituents into the behavior of arbitrarily more complex
systems. Our work on Reo, its semantics, and tools serves as a concrete instance of such a
framework. The emphasis in Reo is on the externally observable behavior of components
and their coordinated composition into more complex concurrent systems. This emphasis
highlights the eminent role of protocols in concurrent systems of components and services,
and makes concurrency protocols the central focus in Reo.

At its core, Reo proffers an interaction-based model of concurrency where more complex
protocols result from composition of simpler, and eventually primitive, protocols. In Reo,
combining a small set of user-defined synchronous and asynchronous primitives, in a manner
that resembles construction of electronic circuits from gates and elements, yields arbitrarily
complex concurrency protocols. Semantics of Reo preserves synchrony and exclusion through
composition. This form of compositionality makes specification of protocols in Reo simpler
than in conventional models and languages, which offer low-level synchronization constructs
(e.g., locks, semaphores, monitors, synchronous methods). Moreover, the high-level constructs
and abstractions in Reo also leave more room for compilers to perform novel optimizations in
mapping protocol specifications to lower-level instructions that implement them. In on- going
work we currently develop code generators that produce executables whose performance and
scalability on multi-core platforms compare favorably with hand-crafted, hand-optimized
code.

3.2 Synthesis for Communication-centred Programming
Mariangiola Dezani (University of Turin, IT)

License) Creative Commons BY 3.0 Unported license
© Mariangiola Dezani
Joint work of Coppo, Mario; Dezani, Mariangiola; Venneri, Betti
Main reference M. Coppo, M. Dezani-Ciancaglini, B. Venneru, “Self-Adaptive Monitors for Multiparty Sessions,”

in Proc. of the 22nd Euromicro Int’l Conf. on Parallel, Distributed, and Network-Based Processing
(PDP’14), pp. 688-696, IEEE, 2014; pre-print available from author’s webpage.

URL http://dx.doi.org/10.1109/PDP.2014.18

URL http://www.di.unito.it/~dezani/papers/cdv14.pdf

The increasing number of heterogeneous devices interacting in networks claims for a new
programming style, usually called communication-centered programming. In this scenario
possible participants to choreographies expose their interfaces, describing the communications
they offer. Interaction protocols can be synthesised through a phase of negotiation between
participants, in which different pieces of code can be composed in order to get the desired
behaviour. At run time some unexpected event can make the current choreography no longer
executable. In this case the participants should be able to adapt themselves in order to
successfully continue the interaction. In this adaptation both new interfaces and new codes
of participants could need to be synthesised.

33

14232

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/PDP.2014.18
http://dx.doi.org/10.1109/PDP.2014.18
http://dx.doi.org/10.1109/PDP.2014.18
http://dx.doi.org/10.1109/PDP.2014.18
http://www.di.unito.it/~dezani/papers/cdv14.pdf

34

14232 — Design and Synthesis from Components

3.3 ArchiType: Automatic Synthesis of Component &
Connector-Software Architectures with Bounded Combinatory
Logic

Boris Duedder (TU Dortmund, DE)

License @@ Creative Commons BY 3.0 Unported license
© Boris Duedder
Joint work of Duedder, Boris; Moritz, Martens; Rehof, Jakob

Combinatory logic synthesis is a new type-based approach towards automatic synthesis of
software from components in a repository. In this talk we demonstrate how the type-based
approach can naturally be used to exploit taxonomic conceptual structures in software
architectures and component repositories to enable automatic composition and configuration
of components, and also code generation, by associating taxonomic concepts to architectural
building blocks such as, in particular, software connectors. Components of a repository are
exposed for synthesis as typed combinators, where intersection types are used to represent
concepts that the specify intended usage and functionality of a component. An algorithm for
solving the type inhabitation problem in combinatory logic — does there exist a composition
of combinators with a given type? — is then used to automate the retrieval, composition,
and configuration of suitable building blocks with respect to a goal specification. Since type
inhabitation has high computational complexity, heuristic optimizations for the inhabitation
algorithm are essential for making the approach practical. We discuss particularly important
(theoretical and pragmatic) optimization strategies and evaluate them by experiments.
Furthermore, we apply this synthesis approach to define a method for software connector
synthesis for realistic software architectures based on a type theoretic model. We conduct
experiments with a rapid prototyping tool that employs this method on complex concrete
ERP- and e-Commerce- systems and discuss some results.

3.4 Petri Games: Synthesis of Distributed Systems with Causal
Memory

Bernd Finkbeiner (Universitit des Saarlandes, DE)

License) Creative Commons BY 3.0 Unported license
© Bernd Finkbeiner
Joint work of Finkbeiner, Bernd; Olderog; Ernst-Riidiger

We introduce Petri games as a new foundation for the synthesis of distributed systems.
The players of a Petri game consist of the system processes and the external environment,
all represented as tokens on a Petri net. The players memorize their causal history and
communicate it to each other during each synchronization.

Petri games lead to new decidability results and algorithms for the synthesis of distrib-
uted systems. Unlike the classic approaches, which are based on a fixed ordering of the
relative informedness of the processes, we can synthesize systems with dynamically changing
information flow, as in client-server protocols, where the information source moves back and
forth between client and server, or in token ring protocols, where the identity of the sender
changes as the token moves.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Jakob Rehof and Moshe Y. Vardi

3.5 Towards Improving Extensibility and Reuse of Modules Within a
Product Line

George T. Heineman (Worcester Polytechnic Institute, US)

License @ Creative Commons BY 3.0 Unported license
© George T. Heineman

The principle of modularity is the basis for both object-oriented (OOD) and component-based
design (CBD) but there is a tension between extensibility and reuse. OOD often leads to rich
frame-works that enable new classes to be designed as extensions to existing classes but there
is little reuse of individual classes out-side of the framework. CBD often leads to third party
assembly through well-designed interfaces but it is often impossible to extend components.
The Model View Controller (MVC) paradigm bridges these two domains because it can be
described as both a Design Pattern (in the OOD realm) and an Architectural Pattern (in
the CBD realm). While MVC supports rich extensibility in both models and views, it is
striking that it seems to naturally lead to controllers that cannot be reused or extended. We
combine the MVC paradigm with feature-oriented programming (FOP) to bring reusability
back to controllers. We demonstrate the effectiveness of our approach using a product- line
example of a solitaire game engine.

3.6 On coercion synthesis for regular expressions
Fritz Henglein (University of Copenhagen, DK)

License) Creative Commons BY 3.0 Unported license
© Fritz Henglein

Regular expressions (REs) are usually interpreted as languages. This is, however, an
inadequate theoretical basis for programming applications where parsing, extracting and
transforming data, not just membership testing, is required.

REs can be interpreted more intensionally as types, each representing a set of parse
trees, such that establishing language containment corresponds to finding some coercion: a
function transforming parse trees according to one RE to parse trees in the other RE without
changing the underlying string. Coercions can be found by constructive interpretation of
axiomatizations of regular expression containment.

This puts the particular axiomatization at center stage: We are not only interested in
determining whether or not some coercion exists (whether or not a particular RE contain-
ment holds), but actually synthesizing its actual code; furthermore, since the synthesized
coercions are actually executed, finding (in particular: not ruling out in the axiomatization)
coercions with good computational properties — e.g. streaming execution on a bit-serialized
representation of syntax trees and always running in worst-case linear time — is important.

The basic questions are then: How can one efficiently synthesize coercions, which them-
selves need to be efficient, by proof search in an axiomatization of regular expression
containment? More basically, what is a good axiomatization for doing this? And why is
regular expression containment an interesting synthesis case study for synthesis? We present
preliminary results and some thoughts on these questions.

35

14232

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

36

14232 — Design and Synthesis from Components

3.7 Application-layer Connector Synthesis
Paola Inverardi (University of L’Aquila, IT)

License) Creative Commons BY 3.0 Unported license
© Paola Inverardi
Joint work of Inverardi, Paola; Massimo, Tivoli; Romina, Spalazzese; Marco, Autili
Main reference P. Inverardi, M. Tivoli, “Automatic synthesis of modular connectors via composition of protocol
mediation patterns,” in Proc. of the 2013 Int’l Conf. on Software Engineering (ICSE’13), pp. 3-12,
IEEE/ACM, 2013.
URL http://dl.acm.org/citation.cfm?id=2486790

The heterogeneity characterizing the systems populating the Ubiquitous Computing envir-
onment prevents their seamless interoperability. Heterogeneous protocols may be willing
to cooperate in order to reach some common goal even though they meet dynamically and
do not have a priori knowledge of each other. Despite numerous efforts have been done in
the literature, the automated and run-time interoperability is still an open challenge for
such environment. We consider interoperability as the ability for two Networked Systems
(NSs) to communicate and correctly coordinate to achieve their goal(s). In this tutorial,
I report the main outcomes of our past and recent research on automatically achieving
protocol interoperability via connector synthesis. We consider application-layer connectors by
referring to two conceptually distinct notions of connector: coordinator and mediator. The
former is used when the NSs to be connected are already able to communicate but they need
to be specifically coordinated in order to reach their goal(s). The latter goes a step forward
representing a solution for both achieving correct coordination and enabling communication
between highly heterogeneous NSs. In the past, most of the works in the literature described
efforts to the automatic synthesis of coordinators while, in recent years the focus moved
also to the automatic synthesis of mediators. Within the Connect project, by considering
our past experience on automatic coordinator synthesis as a baseline, we propose a formal
theory of mediators and a related method for automatically eliciting a way for the protocols
to interoperate. The solution we propose is the automated synthesis of emerging mediating
connectors (i.e., mediators for short).

3.8 Towards Understanding Superlinear Speedup by Distillation
Neil D. Jones (University of Copenhagen, DK)

License) Creative Commons BY 3.0 Unported license
© Neil D. Jones
Joint work of Jones, Neil D.; Hamilton, Geoff W.

Distillation is a transformation method that can yield superlinear program speedups — a
feat beyond earlier fully automatic program transformations such as partial evaluation or
supercompilation. Bisimulation is a key to correctness of distillation, i.e., that it preserves
semantics.

Relation to Dagstuhl 14232: an optimiser synthesises an efficient program from a less
efficient one. A first question: In what sense can equivalent programs with asymptotically
different runtimes be bisimilar?

The talk describes current work on such questions, partly theoretical and partly computer
experiments, on some “old chestnut” programs well-known from program transformation
literature (naive reverse, factorial sum, Fibonacci, and palindrome detection).

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dl.acm.org/citation.cfm?id=2486790
http://dl.acm.org/citation.cfm?id=2486790
http://dl.acm.org/citation.cfm?id=2486790
http://dl.acm.org/citation.cfm?id=2486790
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Jakob Rehof and Moshe Y. Vardi

Using complexity-theoretic tools, we see that a sizable class of first-order exponential-time
programs can be converted into second-order polynomial-time equivalents. The effect is
to trade time for space, in effect replacing CONS or a Turing machine tape by first-order
functions as arguments in a CONS-free program. Finally, a conjecture: that distillation can
automatically realise many such superlinear speedups.

3.9 Synthesis of Reactive Systems Components with Data
Bengt Jonsson (Uppsala University, SE)

License) Creative Commons BY 3.0 Unported license
© Bengt Jonsson

We consider automated synthesis of reactive components. Synthesis of reactive components
is emerging to solve many tasks in software development, in embedded systems, for device
drivers, for protocol converters, in service composition, etc. For the synthesis of finite-state
components from finite-state specifications, there is currently an elaborate body of theory,

which typically performs synthesis by constructing a winning strategy in a two-player game.

In this presentation, we consider to extend synthesis of reactive components to take into
accoun also data from potentially unbounded domains . Data from potentially unbounded

domains are a natural ingredient in the specification and synthesis of many classes of systems.

For example, a protocol mediator must transfer messages and data items correctly between
the mediated components, a device driver must deliver the right data in the expected order.

We present techniques for synthesizing reactive components, and show how they can be
used to automatically synthesize “missing” glue components in systems of communicating
components: Given specification of a collection components, and a specification of the overall
system, we can synthesize a most general glue component to satisfy the specification. We also
show how the problem of finding a suitable system specification can be automated to a large

degree. The techniques are natural when involved component specifications are deterministic.

For the nondeterministic case, the synthesis problem is undecidable, and we consider how to
restrict the solution space to obtain a decidable synthesis problem.

3.10 Application of Combinatory Logic Synthesizer in Robotics
Moritz Martens (TU Dortmund, DE)

License) Creative Commons BY 3.0 Unported license
© Moritz Martens
Joint work of Martens, Moritz; Diidder, Boris; Rehof, Jakob

We present an application of Combinatory Logic Synthesizer, a type based synthesis tool, to
the synthesis of workflows. The approach is illustrated by means of synthesis of workflows to
control LegoNXT robots.

37

14232

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

38

14232 — Design and Synthesis from Components

3.11 Towards Synthesis of Uniform Strategy against Temporal
Epistemic Logic

Hongyang Qu (University of Sheffield, GB)

License @@ Creative Commons BY 3.0 Unported license
© Hongyang Qu
Joint work of Busard, Simon; Pecheur, Charles; Qu, Hongyang; Raimondi, Franco
Main reference S. Busard, C. Pecheur, H. Qu, F. Raimondi, “Reasoning about Strategies under Partial
Observability and Fairness Constraints,” in Proc. of the 1st Int’l Workshop on Strategic Reasoning
(SR’13), EPTCS, Vol. 112, pp. 71-79, 2013.
URL http://dx.doi.org/10.4204/EPTCS.112.12

In this talk, I will first give an introduction of Interpreted Systems (IS) and epistemic logic.
The former provides a formal semantics for modelling multi- agent systems, and the latter
specifies knowledge based properties, which are often combined with temporal logics, such
CTL, LTL and ATL. The second part of the talk will focus on difficulties in searching for
a uniform strategy for temporal epistemic logic formulas. T will present two semantics for
uniform strategy, each of which requires different solutions.

References

1 Alessio Lomuscio, Franco Raimondi, Model checking knowledge, strategies, and games in
multi-agent systems, in: 5th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2006), ACM, 2006, pp. 161-168.

3.12 Beyond Two-player Zero-sum Games: Motivations and Highlights
of Recent Results

Jean-Frangois Raskin (Université Libre de Bruzelles, BE)

License) Creative Commons BY 3.0 Unported license
© Jean-Francois Raskin

Two-player zero-sum games played on graphs is the classical setting for studying the reactive
synthesis problem. In this talk, I will report on recent work directions that consider richer
settings. To illustrate those new research directions, I will present informally with the help
of examples the results contained in three recent publications whose abstract are reproduced
below:

1. Krishnendu Chatterjee, Laurent Doyen, Emmanuel Filiot, Jean-Francois Raskin. Dooms-
day Equilibria for Omega-Regular Games. VMCAI 2014, LNCS, Vol. 8318, pp. 78-97.
http://dx.doi.org/10.1007/978-3-642-54013-4_5

Two-player games on graphs provide the theoretical framework for many important
problems such as reactive synthesis. While the traditional study of two-player zero-sum
games has been extended to multi-player games with several notions of equilibria, they
are decidable only for perfect-information games, whereas several applications require
imperfect-information games. In this paper we propose a new notion of equilibria, called
doomsday equilibria, which is a strategy profile such that all players satisfy their own
objective, and if any coalition of players deviates and violates even one of the players
objective, then the objective of every player is violated. We present algorithms and
complexity results for deciding the existence of doomsday equilibria for various classes

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4204/EPTCS.112.12
http://dx.doi.org/10.4204/EPTCS.112.12
http://dx.doi.org/10.4204/EPTCS.112.12
http://dx.doi.org/10.4204/EPTCS.112.12
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-54013-4_5

Jakob Rehof and Moshe Y. Vardi

of omega-regular objectives, both for imperfect-information games, and for perfect-
information games.We provide optimal complexity bounds for imperfect-information
games, and in most cases for perfect-information games.

2. Veronique Bruyere, Emmanuel Filiot, Mickael Randour, Jean-Francois Raskin. Meet Your
Ezxpectations With Guarantees: Beyond Worst-Case Synthesis in Quantitative Games.
STACS 2014, LIPIcs, Vol. 25, pp. 199-213. http://dx.doi.org/10.4230/LIPIcs.STACS.
2014.199

Classical analysis of two-player quantitative games involves an adversary (modeling the
environment of the system) which is purely antagonistic and asks for strict guarantees
while Markov decision processes model systems facing a purely randomized environment:
the aim is then to optimize the expected payoff, with no guarantee on individual outcomes.
We introduce the beyond worst-case synthesis problem, which is to construct strategies
that guarantee some quantitative requirement in the worst-case while providing an higher
expected value against a particular stochastic model of the environment given as input.
We consider both the mean-payoff value problem and the shortest path problem. In both
cases, we show how to decide the existence of finite-memory strategies satisfying the
problem and how to synthesize one if one exists. We establish algorithms and we study
complexity bounds and memory requirements.

3. Romain Brenguier, Jean-Francois Raskin, Mathieu Sassolas. The Complexity of Admiss-
ibility in Omega-Regular Games. CoRR abs/1304.1682(2013) — to appear in LICS’14.
http://arxiv.org/abs/1304.1682v3

Iterated admissibility is a well-known and important concept in classical game theory,
e.g. to determine rational behaviors in multi-player matrix games. As recently shown
by Berwanger, this concept can be soundly extended to infinite games played on graphs
with omega-regular objectives. In this paper, we study the algorithmic properties of this
concept for such games. We settle the exact complexity of natural decision problems
on the set of strategies that survive iterated elimination of dominated strategies. As
a byproduct of our construction, we obtain automata which recognize all the possible
outcomes of such strategies.

3.13 Combinatory Logic Synthesis
Jakob Rehof (TU Dortmund, DE)

License) Creative Commons BY 3.0 Unported license
© Jakob Rehof
Joint work of Diidder, Boris; Martens, Moritz; Urzyczyn, Pawel

Combinatory logic synthesis has been proposed recently as a type-theoretic research pro-
gramme in automatic synthesis of compositions from collections of components. Composition
synthesis is based on the idea that the inhabitation (provability) relation in combinatory
logic can be used as a logical foundation for synthesizing expressions satisfying a goal type
(specification) relative to a given collection of components exposed as a combinatory type
environment.

It is shown that, under the semantics of relativized inhabitation, already simple types are
a Turing-complete logic programming language for computing (synthesizing) compositions,
where collections of combinatory types are programs and types are rules in such programs. In
order to enhance the ability to express semantic specifications we introduce intersection types

39

14232

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.199
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.199
http://arxiv.org/abs/1304.1682v3
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

40

14232 — Design and Synthesis from Components

into composition synthesis, and we survey recent results on expressive power, algorithmics,
and complexity. It is shown that modal types lead to a natural foundation for introducing
meta- programming combinators, resulting in a highly flexible framework for composition
synthesis. Based on a prototype implementation of the framework (CL)S, Combinatory Logic
Synthesizer, we illustrate with practical examples as time permits.

3.14 In search for a strategy to search for a strategy
Sven Schewe (University of Liverpool, GB)

License @ Creative Commons BY 3.0 Unported license
© Sven Schewe
Joint work of John Fearnley, Doron Peled, Schewe, Sven
Main reference J. Fearnley, D. Peled, S. Schewe, “Synthesis of Succinct Systems,” in Proc. of the 10th Int’l Symp.
on Automated Technology for Verification and Analysis (ATVA’12), LNCS, Vol. 7561, pp. 208-222,
Springer, 2012.
URL http://dx.doi.org/10.1007/978-3-642-33386-6_ 18

In synthesis, we seek a strategy to control a system to satisfy its objectives. But how do we
search? Much research has been done to establish that the problem is hard, and just how
hard it is. While this has been used to argue against synthesis, synthesis algorithms exists,
but currently those with two arms and two legs have the upper hand. I would like to wonder
with you if arms and legs are really necessary for synthesis, or if we can search for a search
strategy.

References

1 B. Finkbeiner and S. Schewe. Uniform distributed synthesis. In Proc. of IEEE LICS 2005,
pages 321-330. IEEE Computer Society Press.

2 B. Finkbeiner and S. Schewe. Bounded synthesis. International Journal on Software Tools
for Technology Transfer, 15(5-6):519-539, 2013.

3 J. Fearnley, D. Peled, and S. Schewe. Synthesis of Succinct Systems. Proc. of ATVA 2012,
pages 42-56.

3.15 Workflow Synthesis — Concepts and Experience
Bernhard Steffen (TU Dortmund, DE)

License @ Creative Commons BY 3.0 Unported license
© Bernhard Steffen
Joint work of Steffen, Bernhard; Tiziana Margaria, Johannes Neubauer, Stefan Naujokat
Main reference T. Margaria, D. Meyer, C. Kubczak, M. Isberner, B. Steffen, “Synthesizing Semantic Web Service
Compositions with jMosel and Golog,” in 8th Int’l Semantic Web Conf. (ISWC’09), LNCS,
Vol. 5823, pp. 392-407, Springer, 2009.
URL http://dx.doi.org/10.1007/978-3-642-04930-9_ 25

The marriage of component-based design and software synthesis is promising, in particular in
special scenarios like workflow-design where where components can often nicely be regarded
as abstract functions. In this very much service-oriented setting linear time synthesis of
chains of interactive activities and automatic processing steps leads to a completely new
way of organization and management, which allows one to much better adapt to changing
situations simply via appropriate 'replanning’. Based on an adequate ontology-based domain
modelling this can be done in a very situation and process-aware fashion which may in
particular also take legal procedural constraints into account.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-33386-6_18
http://dx.doi.org/10.1007/978-3-642-33386-6_18
http://dx.doi.org/10.1007/978-3-642-33386-6_18
http://dx.doi.org/10.1007/978-3-642-33386-6_18
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-04930-9_25
http://dx.doi.org/10.1007/978-3-642-04930-9_25
http://dx.doi.org/10.1007/978-3-642-04930-9_25
http://dx.doi.org/10.1007/978-3-642-04930-9_25

Jakob Rehof and Moshe Y. Vardi

Another interesting application domain are scientific workflows, where chains of analysis
steps need to be arranged in a tailored fashion.

In both cases, linear time synthesis leads to a ’development’ style characterized by
constraint-driven search of adequate solutions: rather than programming, the user needs to
define abstract requirements, and select the best fitting proposed solutions, perhaps after
some steps where he refined his requirements to better tailor the search. Combined with an
easy pattern-based interface for entering constraints this development style has proven to
be very effective for scientist without programming knowledge and in scenarios where the
available libraries processing components are continuously evolving.

3.16 What are “good” strategies in infinite games?
Wolfgang Thomas (RWTH Aachen, DE)

License) Creative Commons BY 3.0 Unported license
© Wolfgang Thomas

Research on infinite (two-person) games shifted over the past decades from the study of
existence problems (in set theory: determinacy) via algorithmic questions (in computer
science: construction of automata realizing winning strategies) to a more refined perspective:
How to construct strategies that are “good” in terms of (1) efficiency, or (2) appropriate
format. We first review results and open problems on item (1), regarding minimization
of memory size of controllers, and regarding optimization of behavior (explained in the
example of reducing waiting times in “request-response games”). Then we discuss item
(2): representations of strategies that are alternatives to transition systems (automata with
output), namely strategy machines (which are based on Turing machines, Gelderie 2012-2014),
Boolean programs (Madhusudan 2011, Briitsch 2014), and logic formulas (Rabinovich, Ths.
2007). This research can be understood as approaches to the problem stated already at the
end of the classic paper of Biichi-Landweber (1969): to obtain a comprehensive view of the
space of all winning strategies of a given game.

3.17 Automated Synthesis of Service Choreographies
Massimo Tivoli (University of L’Aquila, IT)

License @@ Creative Commons BY 3.0 Unported license
© Massimo Tivoli
Joint work of Tivoli, Massimo; Autili, Marco; Inverardi, Paola
Main reference M. Autili, D. Di Ruscio, A. Di Salle, P. Inverardi, M. Tivoli, “A Model-Based Synthesis Process for
Choreography Realizability Enforcement,” in Proc. of the 16th Int’l Conf. on Fundamental
Approaches to Software Engineering (FASE’13), LNCS, Vol. 7793, pp. 37-52, Springer, 2013.
URL http://dx.doi.org/10.1007/978-3-642-37057-1__4

Modern service-oriented systems are often built by reusing, and composing together, existing
services distributed over the Internet. Service choreography is a possible form of service
composition aiming at specifying the interactions between the participant services from a
global perspective. In this talk, I overview a method for the distributed enforcement of
service choreographies via automated synthesis of coordination delegates. When interposed
among the participant services, coordination delegates intercept the service interaction and
mediate it in order to realize the specified choreography. This method is implemented as

41

14232

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-37057-1_4
http://dx.doi.org/10.1007/978-3-642-37057-1_4
http://dx.doi.org/10.1007/978-3-642-37057-1_4
http://dx.doi.org/10.1007/978-3-642-37057-1_4

42

14232 — Design and Synthesis from Components

part of a model-based tool chain released to support the development of choreography-based
systems within the EU CHOReOS project.

3.18 Component-Based System Design with Interfaces
Stavros Tripakis (University of California — Berkeley, US)

License @ Creative Commons BY 3.0 Unported license
© Stavros Tripakis
Joint work of Tripakis, Stavros; Lublinerman, Roberto
Main reference S. Tripakis, R. Lublinerman, “Modular Code Generation from Synchronous Models: Abstraction
and Compositionality,” pre-print.
URL http://www.dagstuhl.de/mat/Files/14/14232/14232.TripakisStavros.Paper.pdf

Model-based design (MBD) is a design methodology that relies on three key elements:
modeling (how to capture the system that we want), analysis (how to be sure that this is the
system that we want before actually building it), and synthesis (how to build a “low-level”
implementation of the system from a “high-level” model/specification). This talk discusses
some of our work on MBD with a focus on compositionality. Compositional methods, which
allow to assemble smaller components into larger systems both efficiently and correctly, are
not simply a desirable feature in system design: they are a must for building large and
complex systems. A key ingredient for compositionality is that of an “interface”. An interface
abstracts a component, exposing relevant information while hiding internal details. We give
an overview of the many uses of interfaces in MBD, from modular code generation from
hierarchical models, to incremental design with interface theories, to Ptolemy simulation and
FMI co-simulation, to multiview modeling.

References

1 R. Lublinerman, and S. Tripakis. Modularity vs. Reusability: Code Generation from Syn-
chronous Block Diagrams. Design, Automation, and Test in Europe (DATE’08).

2 R. Lublinerman, and S. Tripakis. Modular Code Generation from Triggered and Timed
Block Diagrams. 14th IEEE Real-Time and Embedded Technology and Applications Sym-
posium (RTAS’08).

3 R. Lublinerman, C. Szegedy, and S. Tripakis. Modular Code Generation from Synchronous
Block Diagrams — Modularity vs. Code Size. 36th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’09).

4 S. Tripakis, B. Lickly, T. A. Henzinger, and E. A. Lee. A Theory of Synchronous Relational
Interfaces. ACM Transactions on Programming Languages and Systems (TOPLAS), 33, 4,
2011.

5 S. Tripakis, C. Stergiou, C. Shaver, and E. A. Lee. A modular formal semantics for Ptolemy.
Mathematical Structures in Computer Science, 23, 2013.

6 S. Tripakis, C. Stergiou, M. Broy, and E. A. Lee. Error-Completion in Interface Theories.
International SPIN Symposium on Model Checking of Software — SPIN 2013.

7 D. Broman, C. Brooks, L. Greenberg, E. A. Lee, S. Tripakis, M. Wetter, and M. Masin.
Determinate Composition of FMUs for Co-Simulation. Proceedings of the 13th ACM &
IEEE International Conference on Embedded Software (EMSOFT’13).

8 J. Reineke, and S. Tripakis. Basic Problems in Multi-View Modeling. Tools and Algorithms
for the Construction and Analysis of Systems — TACAS 2014.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/mat/Files/14/14232/14232.TripakisStavros.Paper.pdf
http://www.dagstuhl.de/mat/Files/14/14232/14232.TripakisStavros.Paper.pdf
http://www.dagstuhl.de/mat/Files/14/14232/14232.TripakisStavros.Paper.pdf

Jakob Rehof and Moshe Y. Vardi

3.19 Inhabitation problems
PawelUrzyczyn (University of Warsaw, PL)

License) Creative Commons BY 3.0 Unported license
© PawelUrzyczyn

This talk is about a specific version of synthesis: the synthesis of a proof for a given
formula. Under the Curry-Howard Isomprphism, formulas correspond to types and their
proofs correspond to terms (programs) of appropriate types. Therefore the provability
problem is usually equivalent to an inhabitation problem (is a given type non-empty?) in a
corresponding lambda-calculus.

The talk covers the following issues:

introduction to the Curry-Howard Isomprphism;

Ben-Yelles inhabitation algorithm for simple types and its complexity;

extensions to arbitrary propositional connectives; and first order quantifiers;

the automata-theoretic and the game-theoretic paradigm of proof search.

3.20 Compositional Temporal Synthesis
Moshe Y. Vardi (Rice University, US)

License () Creative Commons BY 3.0 Unported license
© Moshe Y. Vardi

Synthesis is the automated construction of a system from its specification. In standard
temporal-synthesis algorithms, it is assumed the system is constructed from scratch. This,
of course, rarely happens in real life. In real life, almost every non-trivial system, either in
hardware or in software, relies heavily on using libraries of reusable components. Furthermore,
other contexts, such as web-service orchestration and choreography, can also be modeled as
synthesis of a system from a library of components.

In this talk we describe and study the problem of compositional temporal synthesis,
in which we synthesize systems from libraries of reusable components. We define two
notions of composition: data-flow composition, which we show is undecidable, and control-
flow composition, which we showis decidable. We then explore a variation of control-flow
compositional synthesis, in which we construct reliable systems from libraries of unreliable
components.

Joint work with Yoad Lustig and Sumit Nain.

3.21 Compositional Controller Synthesis for Stochastic Games
Clemens Wiltsche (University of Ozxford, GB)

License) Creative Commons BY 3.0 Unported license
© Clemens Wiltsche
Joint work of Basset, Nicolas; Kwiatkowska, Marta; Wiltsche, Clemens

Design of autonomous systems is facilitated by automatic synthesis of correct-by- construction
controllers from formal models and specifications. We focus on stochastic games, which can
model the interaction with an adverse environment, as well as probabilistic behaviour arising
from uncertainties. We propose a synchronising parallel composition for stochastic games that

43

14232

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

44

14232 — Design and Synthesis from Components

enables a compositional approach to controller synthesis. We leverage rules for compositional
assume-guarantee verification of probabilistic automata to synthesise controllers for games
with multi-objective quantitative winning conditions. By composing winning strategies
synthesised for the individual components, we can thus obtain a winning strategy for the
composed game, achieving better scalability and efficiency at a cost of restricting the class of
controllers.

3.22 Programming with Millions of Examples
Eran Yahav (Technion — Haifa, IL)

License) Creative Commons BY 3.0 Unported license
© Eran Yahav

We present a framework for data-driven synthesis, aiming to leverage the collective pro-
gramming knowledge captured in millions of open-source projects. Our framework analyzes
code snippets and extracts partial temporal specifications. Technically, partial temporal
specifications are represented as symbolic automata where transitions may be labeled by
variables, and a variable can be substituted by a letter, a word, or a regular language. Using
symbolic automata, we consolidate separate examples to create a database of snippets that
can be used for semantic code-search and component synthesis. We have implemented our
approach and applied it to analyze and consolidate millions of code snippets.

3.23 A combinatorial view of module composition for 0O
programming languages

Ugo de Liguoro (University of Turin, IT)

License) Creative Commons BY 3.0 Unported license
© Ugo de’Liguoro
Joint work of de’Liguoro, Ugo; Tzu-Chun Chen
Main reference U. de’Liguoro, T. Chen, “Semantic Types for Classes and Mixins,” pre-print.
URL http://www.di.unito.it /~deligu/papers/UdLTC14.pdf

Taking a lambda calculus with records as the basic model, we discuss the choice of a set of
combinators representing various possibilities in composing software modules, designed as
components to build class hierarchies (e.g. traits or mixins). We also consider a suitable
extension of intersection type discipline to be thought of as a specification language for
module properties, aiming at extending Rehof’s method of program synthesis by inhabitation
to the case of class based programming languages.

References

1 Ugo de’Liguoro. Characterizing convergent terms in object calculi via intersection types
Proc. of TLCA’01, LNCS 2044, pp. 315-328, 2001.

2 Ugo de’Liguoro, Tzu-Chun Chen. Semantic Types for Classes and Mixins Proc. of ITRS’14,
EPTCS, to appear.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.di.unito.it/~deligu/papers/UdLTC14.pdf
http://www.di.unito.it/~deligu/papers/UdLTC14.pdf

Jakob Rehof and Moshe Y. Vardi

4 Joint Discussions

Dror Fried

License) Creative Commons BY 3.0 Unported license
© Dror Fried

4.1 Component Orientation and Complexity (Tuesday 6/3/2014)

The major problem that is addressed in this discussion is in fact the core of this seminar:
there are different teams, with different models of computation. There is a need to find a
common ground of formalism in order to enable models comparison.

A short talk initiated by Prof. Farhad Arbab has presented an idea of the differences
between direct and indirect methods of constructions, as well as the role of the components
as facilitating the transition between these two models. Then, the components are combined
by a protocol that expresses relationship such as: synchrony/asynchrony, exclusion, grouping,
etc.

Other ideas that were brought up during this discussion:

The users eventually care about the behaviour, not about the construction of the system.

However, sometimes it is hard to tell what the user is really interested in.

The cost, including the hidden cost of the components, plays a major role in the actual

implementation.

Eventually every software changes. We want to minimize these changes in a rapidly

changing environment. How do we response to changes? Do we need to this response to

be in the overall specification or in every component locally?

How do components in uence the computational complexity? In theory component are

harder to analyse because they hide information and one has to take all possibles into

account. However, practice might show otherwise. Perhaps we should consider only the
interaction protocol in terms of complexity, and not be concerned with the insides of the

components. For example, as we usually use an existing code as a component (from a

library) rather than writing one from scratch, we shouldn’t be concerned with the analysis

of that specific piece of code.

4.2 Challenges (Wednesday 6/4/2014)

The challenges that we should seek, and which of these challenges we focus on, is the topic
of this discussion. Some of these challenges are relevant to many fields in computer science,
in which scientists are not appreciated as expanding humanity knowledge, but rather as
deliverers of tools that work.
Perhaps it is better to seek a “political challenge”. Something big that will draw a lot of
attention. For example, the Automatic Theorem Prover. People will get fascinated, and
we will get a lot of appreciation and attention. Most grand-challenges are engineering,
not scientific. We should look for an engineering grand-challenge.
However, such projects can easily go down the drain. Projects that aim too high are often
not trusted, thus not approved. Perhaps we should instead be realistic. Realize that we
don’t have high esteem as mathematicians have, and we are only gray-collar workers who
provide actual tools, instead of expanding the knowledge of humanity.
Another approach is to show people what we have done so far, instead of showing what
we plan to do. Society has kept us so far because we deliver goods, and so far we have
met society’s requests.
We should do things gradually. Like SMT. It took 50 years for people to notice, and
now it is big. At first, SMT was just obsession of a few people, but it advanced well,

45

14232

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

46

14232 — Design and Synthesis from Components

and now it works. Perhaps this is an example that there is a strategic research as well.
Specifically, we should start with small programs, take one step at a time. On the other
hand, the criteria of success is dynamic, so it is hard to strategically aim in advance for a
specific goal.

4.3 Benchmarks (Thursday 6/5/2014)

We have discussed the possibility of creating benchmarks that will serve as a common ground
for to compare different methods. The main problem with this approach is that currently
each has his own formalism in his own world. There is not one (or two) specific formats
on which we can agree. This seminar is a first step, but we still need to find a way to
communicate in the same language. However, one attempt that we can already try is to
integrate works in Combinatory Logic with the SyGus format, and to participate in the
SyGus competition. However, perhaps it will be beneficial to start with a real world problem,
something concrete. Then just try to solve that problem by using various tools. We can get
inspiration from the Theorem Proving community that does the same thing.

4.4 Conclusion (Thursday 6/5/2014)

In the last discussion we have expressed various ideas that were brought during the seminar:
In comparison to 5-7 years ago, the Computer Science area uses more components.
Therefore we are now more aware that these component problems exist. On the semantic
level, it seems that there is a convergence of what these components do. Everybody has
a clear notion what they mean by component: philosophically we agree. The differences
are “only” technical.

Still, technicality matters as component are abstract and one need something practical to
work with: benchmarks, scenarios. For example — formalize what client-server architecture
means. We should then ask questions such as: how does the logical for design aspects
the complexity of the synthesis problem? How does experimental knowledge for software
engineers affect the synthesis problem?

From a previous experience: a low-level formalism of a declarative program may lead to a
chaos (for example: by defining state as boolean logic). The reason is that the higher the
formalism is, the more global mistakes there are. These global mistakes are sometimes
easier to fix than local ones. Sometimes it’s easier to nail the big bugs than the small.
We need to put thought on how to test our tools. We need to test the specification as
well. However performing many tests should not be our main objective. What about the
option of synthesizing tests with the problem? Is this something that can be considered?
Let’s be realistic: Formal unified specification is hard. Languages are not user friendly.
However, we should start think what people like to write their specification with (counter
example: LTL). The industry developed their own languages- there are many, and each
for a local use.

Sometimes we mix architecture with structure. Architecture is far more than that. The
attempt to formalize architecture will result in formalizing the structure, not more.
It is also related to architecture patterns. You cannot formalize that. Then perhaps
architecture pattern can be a part of the synthesis. Think of the architecture as an extra
constraint for the synthesis. However, this is not a composition, but rather a construct of
the architecture process. For example: we don’t necessarily have a client-server application
but we need some of it as constraints.

Jakob Rehof and Moshe Y.

Participants

= Farhad Arbab

CWI — Amsterdam, NL

= Christel Baier

TU Dresden, DE

= Ugo de’Liguoro

University of Turin, IT

= Mariangiola Dezani
University of Turin, IT

= Laurent Doyen

ENS — Cachan, FR

= Boris Diidder

TU Dortmund, DE

- Bernd Finkbeiner
Universitat des Saarlandes, DE
= Dror Fried

Rice University, US

= George T. Heineman
Worcester Polytechnic Inst., US
= Fritz Henglein

University of Copenhagen, DK

Vardi

= Paola Inverardi

University of L’Aquila, IT

= Neil D. Jones

University of Copenhagen, DK

= Bengt Jonsson
Uppsala University, SE

= Axel Legay
INRIA Bretagne Atlantique —
Rennes, FR

= Moritz Martens
TU Dortmund, DE

= Hongyang Qu
University of Sheffield, GB

= Jean-Francois Raskin
Université Libre de Bruxelles, BE

- Jakob Rehof
TU Dortmund, DE

= Sven Schewe
University of Liverpool, GB

47

- Joseph Sifakis
VERIMAG - Gieres, FR

= Bernhard Steffen
TU Dortmund, DE

= Wolfgang Thomas
RWTH Aachen, DE

= Massimo Tivoli
University of L’Aquila, IT
= Stavros Tripakis
University of California —
Berkeley, US

= PawelUrzyczyn
University of Warsaw, PL

= Moshe Y. Vardi
Rice University, US

= Clemens Wiltsche
University of Oxford, GB

= Eran Yahav
Technion — Haifa, IL

14232

	Executive Summary Jakob Rehof and Moshe Y. Vardi
	Table of Contents
	Overview of Talks
	Coordinated Composition of Components Farhad Arbab
	Synthesis for Communication-centred Programming Mariangiola Dezani
	ArchiType: Automatic Synthesis of Component & Connector-Software Architectures with Bounded Combinatory Logic Boris Duedder
	Petri Games: Synthesis of Distributed Systems with Causal Memory Bernd Finkbeiner
	Towards Improving Extensibility and Reuse of Modules Within a Product Line George T. Heineman
	On coercion synthesis for regular expressions Fritz Henglein
	Application-layer Connector Synthesis Paola Inverardi
	 Towards Understanding Superlinear Speedup by Distillation Neil D. Jones
	Synthesis of Reactive Systems Components with Data Bengt Jonsson
	Application of Combinatory Logic Synthesizer in Robotics Moritz Martens
	Towards Synthesis of Uniform Strategy against Temporal Epistemic Logic Hongyang Qu
	Beyond Two-player Zero-sum Games: Motivations and Highlights of Recent Results Jean-François Raskin
	Combinatory Logic Synthesis Jakob Rehof
	In search for a strategy to search for a strategy Sven Schewe
	Workflow Synthesis – Concepts and Experience Bernhard Steffen
	What are ``good'' strategies in infinite games? Wolfgang Thomas
	Automated Synthesis of Service Choreographies Massimo Tivoli
	Component-Based System Design with Interfaces Stavros Tripakis
	Inhabitation problems PawełUrzyczyn
	Compositional Temporal Synthesis Moshe Y. Vardi
	Compositional Controller Synthesis for Stochastic Games Clemens Wiltsche
	Programming with Millions of Examples Eran Yahav
	A combinatorial view of module composition for OO programming languages Ugo de'Liguoro

	Joint Discussions
	Component Orientation and Complexity (Tuesday 6/3/2014)
	Challenges (Wednesday 6/4/2014)
	Benchmarks (Thursday 6/5/2014)
	Conclusion (Thursday 6/5/2014)

	Participants

