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Abstract. We consider the problem of a searcher that looks, for exam-
ple, for a lost flashlight in a dusty environment. The search agent finds
the flashlight as soon as it crosses the ray emanating from the flashlight,
and in order to pick it up, the searcher has to move to the origin of the
light beam.
First, we give a search strategy for a special case of the ray search—the
window shopper problem—, where the ray we are looking for is perpen-
dicular to a known ray. Our strategy achieves a competitive factor of
≈1.059, which is optimal. Then, we consider the search for a ray with
an arbitrary position in the plane. We present an online strategy that
achieves a factor of ≈22.513, and give a lower bound of ≈17.079.

Keywords: Online motion planning, competitive ratio, searching, ray
search

1 Introduction

Searching for a goal in an unknown environment is a basic task in robot motion
planning and well-studied in many settings. For example, Gal. [9] and indepen-
dently Baeza-Yates et al. [2] considered the task of finding a point on an infinite
line using a searcher that starts in the origin and neither knows the distance nor
the direction towards the goal. They introduced the so called doubling strategy:
The agent moves alternately to the left and to the right, doubling its search
depth in every iteration step. Searching on the line was generalized to searching
on m concurrent rays starting from the searcher’s origin, see [9, 2, 1].
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Many variants of the problem were discussed since then, for example m-
ray searching with restricted goal distance (Hipke et al. [11], Langetepe [20],
López-Ortiz and Schuierer [26, 21]), m-ray searching with additional turn costs
(Demaine et al. [5]), parallel m-ray searching (Kao et al. [16], Hammar et al. [10],
López-Ortiz and Schuierer [22]), randomized searching (Schuierer [27], Kao et
al. [17]), searching in polygons (Schuierer [25], Klein [18]), or searching with
error-prone agents (Kamphans and Langetepe [15, 14]). Furthermore, some of
the problems were again rediscovered by Jaillet et al. [13].

The quality of a strategy that deals with incomplete information—an online
strategy—is usually measured by the cost of the online solution compared to the
optimal solution. More precisely, let |S| denote the cost of an online strategy,
S, and |SOpt| the cost of the optimal solution, then we call S C-competitive, if
there exists a constant A such that |S| ≤ C · |SOpt|+ A holds for every input to
S. In our case, the costs incurred by a search strategy is given by the length of
the path covered by the searcher, and the optimal solution is the length of the
shortest path from the searcher’s origin to the goal. The competitive framework
was introduced by Sleator and Tarjan [28] and used for many settings; see, for
example, the survey by Fiat and Woeginger [7]. For a general overview of online
motion planning problems and its analysis see the surveys [3, 23, 24, 12]. Another
measure is the search ratio, see Koutsoupias et al. [19] and Fleischer et al. [8].

In this paper, we consider the search for the origin t of a ray R in the plane,
see Figure 1. The searcher has no vision, but recognizes the ray and the ray’s
origin as soon as the searcher hits the ray. Similar problems were discussed by
Alpern and Gal [1]. The position of the ray is not known in advance and we
move along a search path Π starting at a given point s. Finally Π will hit the
ray R at point p and the origin t is detected. The cost of the strategy is given by
the length of the path from s to p (i.e., |Πp

s |), plus the distance |pt| from p to t.
The performance of the path Π for the ray R ist given by the competitive ratio
|Πp

s |+|pt|
|st| ; that is, we compare the length of the path to the shortest path form s

to t. We would like to find a search path Π that guarantees a competitive ratio
not greater than C for all possible rays R in the plane. In turn, C should be as
small as possible.

First, in Section 2 we consider a simplified version of this problem: The origin
s of the ray, R, we are looking for is located on another ray, R′, perpendicular to
R. The searcher’s start point a and R are located on the same side of R′. More-
over, R′ is known. We call this problem the window shopper problem, because
we can imagine R′ as a shopping window. A buyer walks along the windows—
perhaps looking for a present—and walks towards the window as soon as the
item is spoted. We present a search strategy for this problem that achieves an
optimal competitive factor of 1.059 . . ..

Furthermore in Section 3, we consider the general case as shown in Figure 1
and present a search strategy that achieves a factor of 22.513 . . . In Section 4
we give a lower bound of 17.079 . . . Surprisingly, the lower bound construction
is also applicable to a search problem discussed by Alpern and Gal [1], leaving
a gap between 17.38 . . . and 17.079 . . .
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Fig. 1. Searching for the origin t of a ray R.

2 The Window Shopper Problem

(1, 0)s = (0, 0)

X

Y

R

Π
(1, yR) = t
yR ≥ 0

R′

p

Fig. 2. A strategy for the window shopper problem.

In this section, we consider the problem of finding a gift s along a shopping
window. The agent starts somewhere and looks toward the window. We assume
that the item t gets into sight if the ray R, from t to the seachers position p, is
perpendicular to the window. Then the searcher moves toward t.

This problem can be modelled as follows. W.l.o.g. we assume that the line
of sight (i.e., the ray, R, we are looking for), is parallel to the X-axis, starts
in (1, yR) for yR ≥ 0, and emanates toward the left side of the perpendicular
ray R′ (the window) which starts in (1, 0). The searcher starts in the origin
s = (0, 0); see Figure 2. The goal (i.e., the ray’s origin t) is discovered as soon
as the searcher reaches its height, yR. After the searcher has discovered to goal,
it moves directly to the goal. Note that the shortest distance from s to R′ can
be fixed to 1 because scaling has no influence on the competitive ratio.

We would like to find a search path, Π , so that for any goal, t, the ratio
|Πp

s |+|pt|
|st| ≤ C holds, where C is the smallest achievable ratio for all search paths.
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Theorem 1. There is a strategy Π with an optimal competitive factor of 1.059 . . .
for searching the origin of a ray, R, that emanates from a known ray R′ perpen-
dicular to R.

Proof. We solve two tasks.

1. We will design a search path Π that consists of the following three parts (or
conditions), see Figure 3(i).

Π1: A straight line segment from (0, 0) to some point (a, b) where the com-
petitive ratio strictly increases from C = 1 to Cmax for goals from (1, 0)
to (1, b).

Π2: A strictly monotone curve f from (a, b) to some point (1, D) on R′ where
the competitive ratio is exactly Cmax for all goals from (1, b) to (1, D).

Π3: A ray starting form (1;D) to (1,∞) where the competitive ratio strictly
decreases from Cmax to 1 for goals from (1, D) to (1,∞).

Furthermore, we prove that the full path Π is convex. The competitive ratio
of Π is Cmax.

2. We will show that such a path is optimal and the best achievable ratio
is Cmax.

We start with the second task. Let us assume that we have designed a search
path Π with the given properties and let us assume that there is an optimal
search path K with K 6= Π , see Figure 3(ii).

The path K might hit the ray B from (1, b) to (−∞, b) at a point p1 to the left

of (a, b). Then the ratio
|Kp1

s |+|p1(1,b)|
|s(1,b)| is bigger than Cmax = |s(a,b)|+|(a,b)(1,b)|

|s(1,b)| .

On the other hand K might move to the right of (a, b) and hits Π2 at a point
p2 between B and the ray D from (1, D) to (−∞, D). In this case the length
of Kp2

s has to be bigger than Πp2

s because Π is fully convex. Thus, the ratio
|Kp2

s |+|p2(1,p2y )|
|s(1,p2y )| is bigger than Cmax =

|Πp2
s |+|p2(1,p2y )|
|s(1,p2y )| , where p2y

denotes the

Y -coordinate of p2. This also holds if K hits R′ first and p2 equals (1, D); see
the dotted path in Figure 3(ii).

This means that K has to follow Π from s up to some point beyond B and
might leave Π2 then. In this case K has at least the ratio Cmax and Π is optimal,
too.

It remains to show that we can design a path with the given properties. The
motivation for the construction comes from the following intuition. In the very
beginning the ratio starts from 1 and has to increase for a while, this is true
for any strategy. Additionally, any reasonable strategy should be monotone in x
and y. Moving backwards or away from the window will allow shortcuts with a
smaller ratio. Therefore it is reasonable that we will get closer and closer to the
window R′ and the factor should decrease to 1. So, finally, we can hit R′ because
at the end the ratio will not be the worst case. Furthermore, in many application
strategies are designed by the fact that they achieves exactly the same factor for
a set of goals. Altogether, we would like to design a strategy Π by the properties
formulated above, and as we already know such a strategy is optimal.
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Fig. 3. An arbitrary search path K is not better than Π .

With the first two conditions for Π1 and Π2 we fix a and b. We consider the
line segment from the origin (0, 0) to (a, b) with a, b > 0 to be parametrized by
(ta, tb) for t ∈ [0, 1]. The competitive factor is given by

C(t) =
t
√

a2 + b2 + 1 − ta√
1 + t2b2

, t ∈ [0, 1] .

We want C(t) to be a monotone and increasing function. From C′(t) ≥ 0∀t ∈
[0, 1] we conclude

C′(t) =
(
√

a2 + b2 − a)(1 + t2b2) − (t(
√

a2 + b2 − a) + 1)tb2

√
1 + t2b2(1 + t2b2)

≥ 0 ∀t ∈ [0.1]

⇔
√

a2 + b2 − a ≥ tb2 ∀t ∈ [0.1]

⇔
√

a2 + b2 − a ≥ b2

⇔ a2 + b2 ≥ b4 + 2ab2 + a2

⇔ 1 − 2a ≥ b2 .

Hence, a ≤ 1−b2

2 follows. From now on we set a := 1−b2

2 . For t = 1 and a := 1−b2

2
we obtain a competitive factor of

√
a2 + b2 + 1 − a√

1 + b2
=

√

(1−b2

2 )2 + b2 + 1 − 1−b2

2√
1 + b2

=

√

1−2b2+b4+4b2

4 + 1
2 + b2

2√
1 + b2

=

√

(1+b2

2 )2 + 1
2 (1 + b2)

√
1 + b2

=
√

1 + b2 =: C . (1)
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We can consider the line segment Π1 also as a function of x ∈ [0, a]. Now,
C is the worst case competitive factor for x ∈ [0, a] and goals t between [1, 0]
and [1, b].

For Π2 we construct a curve f(x) for x ∈ [a, 1] that runs from [a, b] to some
point [1, D] and achieves the ratio C =

√
1 + b2 for all goals t between [1, b]

and [1, D]. This means that the length of the path of the searcher (i.e., the line
segment up to (a, b), the part of the curve f up to the height yR, and the final
line segment to the goal (1, yR)) equals C times the Euclidean distance from
the origin (0, 0) to the goal (1, yR). Thus, f can be defined by the differential
equation

√

a2 + b2 + 1 − x +

∫ x

a

√

1 + f ′(t)2 dt = C ·
√

1 + f(x)2. (2)

We would like to rearrange Equation (2) in order to apply standard methods for
solving differential equations. Derivating Equation (2) and squaring twice gives

√

1 + f ′(x)2 − 1 =
C

2
· 1
√

1 + f(x)2
· 2f(x)f ′(x)

⇔ 1 + f ′(x)2 − 2
√

1 + f ′(x)2 + 1 = C2 f(x)2f ′(x)2

1 + f(x)2

⇔ f ′(x)2
[

1 − C2 f(x)2

1 + f(x)2

]

+ 2 = 2
√

1 + f ′(x)2

⇔ f ′(x)4
[

1 − C2 f(x)2

1 + f(x)2

]2

+ 4f ′(x)2
[

1 − C2 f(x)2

1 + f(x)2

]

= 4f ′(x)2 .

The curve f was assumed to be strictly monotone, which means f ′(x) 6= 0.
Therefore we have

⇔ f ′(x)2
[

1 − C2 f(x)2

1 + f(x)2

]2

= 4C2 f(x)2

1 + f(x)2

⇔ f ′(x)2 =

[

1 + f(x)2

1 + (1 − C2)f(x)2

]2

4C2 f(x)2

1 + f(x)2

⇔ f ′(x)2 = 4C2 (1 + f(x)2)f(x)2

(1 + (1 − C2)f(x)2)2

⇔ f ′(x) = 2C

√

1 + f(x)2f(x)

1 + (1 − C2)f(x)2
. (3)

Note that the point (a, b) = (1−b2

2 , b) lies on f and C equals
√

1 + b2. Alto-
gether, we have to solve the differential equation

y′ = 1 · 2
√

1 + b2

√

1 + y2y

1 − b2y2
= 1 · g(y) (4)

for y = f(x) with starting point (1−b2

2 , b).
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Equation (4) is a first order differential equation y′ = h(x)g(y) with separated
variables and point (k, l) on y. A general solution is given by

∫ y

l

dt

g(t)
=

∫ x

k

h(z)dz ;

see Walter [29]. Thus, we have to solve

∫ y

b

1 − b2t2

2
√

1 + b2
√

1 + t2t
dt =

∫ x

(1−b2)/2

1 · dz = x − (1 − b2)/2

By simple analysis, we obtain

x = −
b2
√

1 + y2 + arctanh

(

1√
1+y2

)

− arctanh
(

1√
1+b2

)

−
√

1 + b2

2
√

1 + b2

which is the solution for the inverse function x = f−1(y). By simple analysis we
get

x′ =
1

g(y)
= − (b2y2 − 1)

2
√

1 + y2y
√

(1 + b2)
≥ 0 for y ∈ [0, 1/b]

and

x′′ = − (b2y2 + 2y2 + 1)

2(1 + y2)
3/2√

1 + b2y2
≤ 0 for y ≥ 0, .

Scince x = f−1(y) is concave in the given interval, y = f(x) is convex. Addi-
tionally, f−1 attains a maximum for y = 1

b .
Altogether we have a situation for the inverse function x = f−1(y) for y ∈

[

0, 1
b

]

as shown in Figure 4(i).
Now, we have to find a value for b so that f−1(1

b ) equals 1, so that f−1

behaves as depicted in Figure 4(ii). That is, we have to find a solution for

1 = −
b2
√

1 + 1
b2 + arctanh

(

1
q

1+ 1

b2

)

− arctanh
(

1√
1+b2

)

−
√

1 + b2

2
√

1 + b2
. (5)

This fixes b and, in turn, D to 1
b . Note that in this case y = f(x) has the

desired properties for x ∈ [a, 1] =
[

1−b2

2 , 1
]

.

We have already seen that y = f(x) is convex for x ∈ [a, 1]. Additionally, the
line segment from (0, 0) to (a, b) is convex. To show that the conjunction of both
elements is also convex, we have to show that the tangent to f at (a, b) equals
a prologation of the line segment; see Figure 4. In other words we have to show

f−1′(b) = a
b = 1−b2

2b . This is equivalent to 1
g(b) = 1−b2

2b which is obviously true.

Solving Equation (5) numerically, we get b = 0.34 . . . This gives D = 1
b =

2.859 . . ., a = 1−b2

2 = 0.43 . . . and a worst-case ratio C =
√

1 + b2 = 1.05948 . . .
The corresponding curve f−1 is shown in Figure 4(ii).
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(0, 0)
(b, 0)

(

0, 1−b2

2

)

(

b, 1−b2

2

)

(

1
b , 0
)

Fig. 4. The inverse situation of the window shopper problem. The curve f−1 should
hit the line X = 1.

Altogether, we combine Π1, the line segment, Π2, the constructed curve f ,
and the ray from (1, D) to (1,∞), Π3, and obtain a convex curve with the given
properties and an optimal competitive factor of C =

√
1 + b2 = 1.05948 . . . ut

3 Searching for a Ray in the Plane

In this section, we consider the general problem of searching for the origin of
a ray in the plane. We assume that the distance to the goal is at least 1 and
use the competitive ratio as a quality measure for or search. In our case, the
competitive ratio is given by the length of the searcher’s path compared to the
Euclidean distance from the start point to the ray’s origin. For a fixed scenario
(i.e., a start point, s, and a given ray, R, emanating from point t), the cost of
the search for the ray is given by the ratio

CΠ :=
|Π | + |pt|

|st| , (6)

where Π denotes the searcher’s path from s to R, and p the point where the
searcher finds the ray R; see Figure 5.
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Fig. 5. Searching for a ray R.

3.1 A Competitive Search Strategy

Now, we are interested in a path for the searcher that achieves a good ratio. To
find an upper bound for the costs of a search strategy, we see the search as a
two-person game: First, a searcher chooses a search path. Then, based on the
seachers decisions, a hider chooses its hiding point t, and the ray, R, emanating
from t such that the ratio CΠ is maximized. The intention of the searcher is to
minimize the maximum that can be achieved by the hider.

s

p t

s

p′

α

T

R′

Fig. 6. (i) A spiral and a ray, (ii) the tangent angle α.

It seems to be a good strategy to search for a ray by walking a logarithmic
spiral that starts in s; see Figure 6(i). A logarithmic spiral is given (in polar
coordinates) by

r(θ) = aebθ, a > 0, b > 0,−∞ < θ < ∞ .

An important property of a logarithmic spiral is that every ray, R′, emanating
from the spiral’s origin s intersects the spiral with the same tangent angle, α [4];
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see Figure 6(ii). For a given spiral, α fulfills

b = cotα .

The Worst Case Position for the Ray Given a logarithmic spiral, a hider
may now choose a position for the target ray that maximizes the ratio CΠ

depending on the spiral parameters a and b. W.l.o.g. we assume that the searcher
follows a counterclockwise spiral.

It is easy to see that the worst case is achieved if the searcher slightly misses
the target ray, R, and has to walk another full loop until it meets R again:

Lemma 1. Given a point, t, and a logarithmic spiral, the ray that emanates
from t and maximizes the ratio CΠ is a tangent to the spiral.

Proof. Consider the set of rays emanating from the point t, and their first in-
tersection with the spiral; see Figure 7. The ray R4 achieves the highest ratio
among all rays that emanate from t: We can increase the ratio CΠ of any other
ray by rotating it counterclockwise around t until the ray is almost a tangent
to the spiral.4 Note that p′ in Figure 7 is not actually an intersection, but the
searcher moving on the spiral slightly misses the ray R4 in p′, but detects the
ray in p4. However, p′ is arbitrarily close to the spiral; thus, we consider p′ to be
a point on the spiral. We call p′ tangent point. ut

t

s

p1
p2

p3

p4

p′

R1

R2

R3

R4

Fig. 7. Different positions of rays.

Position of the starting point of the ray Now, the hider is still free to
choose the position of the ray’s origin, t, to maximize the search costs CΠ(t).

4 Of course there are two possible tangents; we choose the tangent whose intersection
with the spiral is farther away from the ray’s origin t.
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Fig. 8. The tangent T to the spiral in point p′.

We fix a tangent, T , and examine different positions of the ray’s origin on T . Let
p′ be the tangent point for T on the spiral as defined in Lemma 1; see Figure 8.

If we place t in a position between p and p′ on T , the resulting ray is no
tangent to the spiral. Thus, we consider possible positions for t only on the
opposite side.

To find the worst case position for t (i.e., the position that maximizes CΠ(t)),
we can place t in p′ and move it along T away from p observing CΠ(t); see
Figure 8. Let t⊥ be the point on T such that st⊥ is perpendicular to T . It is
easy to see that CΠ(t) increases if we move t from p′ towards t⊥ because we
simultaneously increase the numerator and decrease the denominator of CΠ(t);
see Equation 6. If we move t farther than t⊥, we increase both the numerator
and the denominator of CΠ(t), so this case requires a more careful analysis. In
the following, we give a value for CΠ(t⊥). Then, we examine whether there is a
point t right to t⊥ that yields a higher value for CΠ(t).

Cπ(t) depends on the given spiral (i.e., the parameters a and b) and on the
ray. By Lemma 1 the ray that maximizes CΠ(t) is a tangent to the spiral, so the
tangent point, p′, is given by |sp′| = aebθp′ for some θp′ .

For convenience, we assume that our searcher starts in the origin and p′ is a
point on the X-axis, see Figure 9(i). Thus, the searcher makes a number of full
turns on the spiral from s to p′ and we have

θp′ = k · 2π for some k ∈ �+ . (7)

Now, we want to compute the distance |pp′|. The point p can be computed
using the angle β := ∠psp′; see Figure 9(i). It turns out that β depends only on
the spiral parameter b!
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Fig. 9. (i) The angle β, (ii) Tangent T .

Lemma 2. The angle β(b) := ∠psp′ is given by the solution to

sinα

sin(α − β(b))
= eb(2π+β) .

Proof. A line running through (r0, θ0) and perpendicular to the line θ = θ0 is
given in polar coordinates by r(θ) = r0

cos(θ−θ0)
. In our case, t⊥ is perpendicular

to our tangent T . Further, |st⊥| = |sp′| sin α = aebθp′ sinα and 2π − θt⊥ = π
2 − α

holds; see Figure 9(ii). Thus, our tangent T is given by

r(θ) =
aebθp′ sinα

sin(α − θ)
.

The point p is on the tangent as well as on the spiral; thus, we have

r(θp) =
aebθp′ sin α

sin(α − θp)
= aebθp .

From s to p, the seacher moves on the spiral first to p′, then a full turn, and last
the arc given by β(b), so we have θp = θp′ + 2π + β(b) = (k + 1) 2π + β(b). This
yields

ebθp′ sin α

sin(α − β(b))
= eb(θp′+2π+β(b)) ⇐⇒ sin α

sin(α − β(b))
= eb(2π+β(b)) .
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Remark that β(b) is independent from θp′ ; that is, the angle β is the same for
every point p on the given spiral! ut

Now, we can compute |pp′| using β(b), which allows us to prove the following
theorem:

Theorem 2. Given a spiral and a tangent, T , to the spiral, the ratio CΠ(t⊥)
depends only on the spiral parameter b and is given by

Ct⊥(b) =
eb(2π+β(b))

sin α · cosα
+

eb(2π+β(b)) · sin(β(b))

sin2 α
+ b .

Its minimum value is 22.49084026 . . . for b = 0.11371 . . ..

Proof. Consider the triangle 4spp′; see Figure 9(ii). Because p is a point on the
spiral we have |sp| = aebθp for some θp. As in the proof of Lemma 2, we have
θp = θp′ + 2π + β(b). Further, we have ∠sp′p = π −α. Applying the law of sines
yields

|sp|
sin(π − α)

=
|sp|
sin α

=
|pp′|

sin β(b)

⇐⇒ |pp′| =
aebθp sin β(b)

sin α
=

aeb(θp′+2π+β(b)) sin β(b)

sin α
.

Because the triangle 4sp′t is right angled we have |p′t⊥| = |sp′| cosα =
aebθp′ cosα; thus, the distance |pt⊥| = |pp′| + |p′t⊥| is given as

|pt⊥| =
aeb(θp′+2π+β(b)) sin β(b)

sin α
+ aebθp′ cosα .

The length of the arc Π on the spiral from s to p is given by |Π | =
√

1+b2

b r(θp) =√
1+b2

b aebθp [4]. With b = cotα, we have

√
1 + b2

b
=

√
1 + cot2 α

cotα
=

√

1

cot2 α

(

1 + cot2 α
)

=

√

sin2 α · cos2 α

cos2 α
=

1

cosα
,

Now, using |st⊥| = |sp′| sin α = aebθp′ sin α, we can compute the ratio Ct⊥(b):

Ct⊥(b) =
|Π | + |pt⊥|

|st⊥|

=
1

cos α aeb(θp′+2π+β(b)) + 1
sin α aeb(θp′+2π+β(b)) sinβ(b) + aebθp′ cosα

aebθp′ sinα

=
1

cos α eb(2π+β(b)) + 1
sin α eb(2π+β(b)) sin β(b) + cosα

sin α

=

(

1

sin α · cosα
+

sin β(b)

sin2 α

)

eb(2π+β(b)) + cotα .

We observe that Ct⊥(b) is independent of θp′ ; that is, the value of CΠ(t⊥) is
the same for every given tangent T . Now, the searcher is allowed to minimize
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the search costs by choosing an appropriate value for b. Evaluating Ct⊥(b) nu-
merically yields a minimum value of 22.49084026 . . . for b = 0.11371 . . .. ut

Remark that every tangent to a given spiral yields the same value for CΠ(t⊥)!
So far, we have found the best achievable ratio CΠ for the case that the hider
chooses t⊥. Further, we found a value for b that yields the optimal spiral for all
tangents in this case.

In the following, we examine whether there is a point t right to t⊥ that
achieves a ratio that is worse than the ratio of t⊥. As mentioned above, we move
the point t along the tangent T . Let angle γ denote the angle ∠tst⊥.

s

γ

p′

t⊥

t

Fig. 10. The triangle st⊥t

Theorem 3. The best achievable value for Cπ is 22.51306056 . . . and is achieved
by the point t which is specified by γ = 0.4443328023 . . . and b = 0.1137 . . ..

Proof. Since the 4st⊥t is right angled, we have sin γ = |tt⊥|
|st| and |st| = |st⊥|

cos γ .

CΠ(t) depends on γ and b:

Ct(b, γ) =
|Π | + |pt⊥| + |t⊥t|

|st| =
|Π | + |pt⊥|

|st⊥|
cos γ +

|t⊥t|
|st|

= Ct⊥(b) cos γ + sin γ

As 0 < γ < π
2 holds, we have Ct⊥(b) < Ct(b, γ). Now, the hider can maximize

Ct(b, γ) using γ and the searcher can minimize Ct(b, γ) by choosing an appropri-
ate b. Since γ is independent from b, the searcher can use the results from Theo-
rem 2 to minimize the ratio. Numerical analysis shows that γ = 0.4443328023 . . .
yields the minimum CΠ(t) = 22.51306056 . . . for CΠ(t⊥) = 22.49084026 . . .. This
completes our proof. ut

We can see that t lies in fact very close to t⊥.

4 A Lower Bound for Searching a Ray

To get a lower bound on the competitive ratio for our problem, we discuss the
following subproblem: We require that the ray, R, we are looking for is part of
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s

t

R

Fig. 11. A ray, R, that emanates from t and is part of a ray that emanates from s.

a rays that emanates from the searcher’s start point, s (i.e., the start point, s,
lies on the the extension of R to a straight line)

If we consider the full bundle of lines passing through s, the given problem is
equivalent to the problem of searching for a point in the plane as presented by
Alpern and Gal [1]. We assume that the searcher detects the goal if it is swept
by the radius vector of its trajectory; that is, the searchers knows the position
of the goal as soon as it hits the ray emanating from the goal. Alpern and Gal
[1] showed that among all monotone and periodic strategies, a logarithmic spiral
represented by polar coordinates (θ, ebθ) gives the best search strategy in this
setting. A strategy S represented by its radius vector X(θ) is called periodic and
monotone if θ is always increasing and X also satisfies X(θ + 2π) ≥ X(θ).

The factor of the best achievable monotone and periodic strategy is given by

minb e2πb
√

1 + 1
b2 = 17.289 . . . and achieves its minimum for b = 0.15540 . . .,

see Alpern and Gal [1]. Note, that the searcher does not have to reach the ray’s
origin in this setting.

Unfortunately, it was not shown that a periodic and monotone strategy is
the best strategy for this problem. Alpern and Gal state that it seems to be
a complicated task to show that the spiral optimizes the competitive factor.
Thus, the given factor cannot be adapted to be a lower bound to our problem.
Therefore, we consider a discrete bundle of n rays that emanate from the start
and which are separated by an angle α = 2π

n , see Figure 12. We are searching
for a goal on one of the n rays.5 Again, the goal is detected if it is swept by the
radius vector of the trajectory. Note that if n goes to infinity we are back to the
original problem. But we can neither assume that we have to visit the rays in
a periodic order nor that the depth of the visits increases in every step. Thus,
we represent a search strategy, S, as follows: In the kth step, the searcher hits
a ray—say ray i—at distance xk from the origin, moves a distance βkxk − xk

5 Note that the searcher is not confined to walk on the rays, but can move arbitrarily
in the plane; in contrast to the m-ray search problem.
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along the ray i, and leaves the ray at distance βkxk with βk ≥ 1. Then, it moves

to the next ray within distance
√

(βkxk)2 − 2βkxkxk+1 cos γ + x2
k+1, see Figure

12. Note that any search strategy for our problem can be described in this way.

α

xk+2 βk+1xk+1

xk+1

xk

βkxk

Fig. 12. A bundle of n rays and the representation of a strategy.

Let us assume that the ray i is visited the next time at index Jk. The worst
case occurs if the searcher slightly misses the goal while visiting ray i up to
distance xk. Instead, it finds the goal at step xJk

on ray i arbitrarily close to
βkxk. Either we have xJk

> βkxk; that is, the searcher discovers the goal in
distance xJk

on ray i and moves xJk
− βkxk to the goal, or we have xJk

< βkxk.
In the latter case, the searcher moves βkxk − xJk

from xJk
and finds the goal

by accident. In both cases, the searcher moves |xJk
− βkxk| in the last step.

Altogether, the competitive factor, C(S), is bigger than

|xJk
− βkxk| +

∑Jk−1
i=1 βixi − xi +

√

(βixi)2 − 2βixixi+1 cos γ + x2
i+1

βkxk
.

By simple trigonometry, the shortest distance from βixi to a neighboring ray
is given by βixi sin 2π

n . Fortunately, this distance is smaller than the distance
√

(βixi)2 − 2βixixi+1 cos γ + x2
i+1 to any other ray. Thus, we have

C(S) >

∑Jk−1
i=1 βixi

βkxk
sin

2π

n
.

Altogether, we have to find a lower bound for
PJk−1

i=1
fi

fk
, where Jk denotes the

index of the next visit of the ray of xk and fi = βixi denotes the search depth
in step i. Fortunately, this problem is the same problem is in the competitive
analysis for the usual m-ray problem where the searcher can move only along
the rays. It was shown by Gal [9] and Baeza-Yates et al. [2] that for this problem
there is an optimal strategy that visits the rays with increasing depth and in a
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periodic order; that is, Jk = k + n and i = k. The best achievable strategy is
given by fi = (n/(n − 1))i. Altogether, this results in a function

(n − 1)

(

n

n − 1

)n

sin
2π

n

for n rays. We can make n arbitrarily big because our construction is valid for
every n. Note that we also have a lower bound for the problem of searching a
point in the plane; this lower bound is close to the factor that is achieved by a
spiral search.

Theorem 4. For the ray search problem there is no strategy that achieves a
better factor than

lim
n→∞

(n − 1)

(

n

n − 1

)n

sin
2π

n
= 17.079 . . .

Additionally, every strategy for searching a point in the plane achieves a competi-
tive factor bigger then 17.079 . . . (the optimal spiral achieves a factor of 17.289 . . .
[9]).

5 Summary

We considered the problem of searching a ray and its origin using the competitive
framework.

If the ray starts on a known ray r′ and is also perpendicular to r′ we will
find the origin within a path length of 1.059 . . . times the shortest path to the
origin. This factor is optimal.

In general, a logarithmic spiral solves the task with a competitive factor of
22.51 . . . whereas a lower bound of 17.079 . . . is given.

The lower bound construction can also be used if it is not necessary to visit
the origin and if the corresponding line of every ray goes through the starting
point. For this subproblem a competitive strategy with factor 17.289 . . . was
already known. We showed that there is no strategy with a factor better than
17.079 . . . in this setting.

Unfortunately, there are still some gaps between the lower and upper bounds
of the factors which remain to be closed.
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21. A. López-Ortiz and S. Schuierer. The ultimate strategy to search on m rays?
Theor. Comput. Sci., 261(2):267–295, 2001.
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