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Discrete modeling methods for biological regulatory networks have shown their
worth in a variety of applications, in particular for systems where precise quan-
titative data is lacking. Utilizing a high level of abstraction, we can associate
each network component, e. g. genes, proteins or receptors, with a finite number
of activity levels representing e. g. strength of gene activity, intervals of sub-
stance concentrations or presence or absence of a signal. States of the network
are then given by vectors of component activity. Information on interactions
between components and the rules governing network dynamics in state space
are captured in a discrete function f . There are different methods to derive the
system’s behavior from the function f . A deterministic representation of the dy-
namics is obtained by defining the successor of a given state as its image under
f , which is called synchronous update. When we assume distinct time delays to
be associated with different component update processes, we require that a state
and its successor differ by one component value only. By considering all possible
successors in agreement with f , we obtain a non-deterministic representation of
the dynamics. Both approaches have been applied successfully, the synchronous
method having advantages regarding complexity of analysis, the asynchronous
update allowing for a more realistic representation of trajectories of the system
(see e. g. [1], [2] and references therein).

One major difficulty for analyzing the dynamics of a discrete system is that
the state space is exponentially larger than the number of network components.
A well-known idea to approach this problem is to identify smaller building blocks
of the system the study of which in isolation still renders information on the dy-
namics of the whole network. Clearly, the difficulty is that further components
and interactions influence such a network building block once it is again em-
bedded in the network. Conditions to identify suitable subnetworks that retain
their behavior in the context of the complex network are needed to derive useful
information on the network dynamics. Such dynamically essential subnetworks
obviously play a crucial role for yielding certain dynamical properties. Relating
their structural properties to their dynamical effects and associating them with
definite biological functions then is a further step in the analysis and classifica-
tion of the original network.
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Methods to identify suitable subnetworks and results that allow us to derive
dynamical properties of the network from the analysis of these subnetworks can
be obtained by extending ideas developed for Boolean functions presented in [3]
and [4]. The results hold for multi-valued discrete functions, considering both
synchronous as well as asynchronous dynamics. We identify subsets of state space
where some network components do not change their value on all trajectories in
that part of state space by exploiting the properties of symbolic steady states.
These are fixed points of an adapted function fθ that coincides with f on state
space, but also allows the consideration of symbolic values representing sets of
component values for the network components. Thus a symbolic value is used
when we do not have an exact value for a component but rather constraints
concerning its value. The function fθ allows us to propagate these constraints
along trajectories, thus including all possible behaviors of the system that can
arise from initial conditions in agreement with the constraints.

The fixed points of fθ, i. e., the symbolic steady states, hold information
about dynamically essential subnetworks. The regular components, i. e., those
with a specified activity level, of a symbolic steady state act as a boundary
between dynamically active subnetworks similar to the notion of frozen core in-
troduced in the context of random Boolean networks (see [1]). We obtain a fine
structural representation of the active subnetworks by considering the local in-
teraction graph ([5,6]) associated with the symbolic steady state. Composition of
attractors of the isolated subnetworks with respect to the symbolic steady state
then yields attractors of the original network. With this fundamental property
in mind, we are able to proof more general statements concerning the relation
between structure and dynamics of the network, in particular inferring number
and size of attractors from the existence of positive and negative circuits in the
network.

Of course, not all networks lend themselves well for analysis using symbolic
steady states. Criteria and methods for finding symbolic steady states can be
formulated when looking at the SCC (strongly connected components) graph
derived from the network structure. In [4] we considered the class of so-called
networks with input layer, such as often used for modeling signal transduction
processes, and obtained a complete description of the network dynamics from
easily computable symbolic steady states. The results transfer to the multi-
valued case.

Currently, main emphasis lies on applying the methods to established bio-
logical network models. This does not only allow for testing the suitability of
the approach but also for a comparison of dynamically essential subnetworks
derived from symbolic steady states with network modules of known biological
importance.
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