
Byzantine Attacks Exploiting Penalties
in Ethereum PoS

Ulysse Pavloff
Université Paris-Saclay, CEA, LIST

Palaiseau, France

Yackolley Amoussou-Guenou
Université Paris-Panthéon-Assas, CRED

Paris, France

Sara Tucci-Piergiovanni
Université Paris-Saclay, CEA, LIST

Palaiseau, France

Abstract—In May 2023, the Ethereum blockchain experienced
its first inactivity leak, a mechanism designed to reinstate
chain finalization amid persistent network disruptions. This
mechanism aims to reduce the voting power of validators who
are unreachable within the network, reallocating this power to
active validators. This paper investigates the implications of the
inactivity leak on safety within the Ethereum blockchain. Our
theoretical analysis reveals scenarios where actions by Byzantine
validators expedite the finalization of two conflicting branches,
and instances where Byzantine validators reach a voting power
exceeding the critical safety threshold of one-third. Additionally,
we revisit the probabilistic bouncing attack, illustrating how the
inactivity leak can result in a probabilistic breach of safety,
potentially allowing Byzantine validators to exceed the one-third
safety threshold. Our findings uncover how penalizing inactive
nodes can compromise blockchain properties, particularly in the
presence of Byzantine validators capable of coordinating actions.

Index Terms—Ethereum, Inactivity Leak, Safety, Liveness,
Blockchain

I. INTRODUCTION

Ethereum has transitioned to its proof-of-stake (PoS) pro-

tocol in September 2022, making a shift from proof-of-work

to the more energy efficient proof-of-stake. The design of the

Ethereum PoS, however, is quite intricate and recent research

focused on its formalization, properties, and thorough analyses

[1], [2]. The distinct feature of the Ethereum PoS proto-

col is the hybridization of classical Byzantine Fault-Tolerant

(BFT) Consensus [3] within the framework of Nakamoto-style

blockchains [4]–[6].

In Nakamoto-style blockchains, each peer maintains a local

tree-like data structure. A deterministic rule, often termed the

fork-choice rule, selects a chain from this structure, allowing

for forks but ultimately reconciling to a single common chain.

In contrast, BFT Consensus blockchains [7], [8] operate

without admitting forks in the blockchain. Through explicit

voting for block proposals, where participants’ votes align

with their stake in the network, these blockchains ensure that

once a block is added to the chain, it remains permanently

incorporated, never revoked due to a fork. In blockchain

terms, such a block is finalized, signifying settlement of all

transactions within it. To establish a finalized chain, BFT

Consensus blockchains use Byzantine-tolerant super-majority

quorums, assuming a tolerance threshold below one-third of

Byzantine voting power.

In terms of properties, BFT Consensus blokchains are

always safe because they do not fork, but can stop growing

during network partitions or erratic network behavior. On the

other hand, Nakamoto-style blockchains can fork during parti-

tions or erratic network behavior but are always live, because

the tree will not stop to grow under these circumstances.

The trade-off between Safety and Liveness during network

partitions is a striking consequence of the CAP theorem [9],

[10].

Instead, Ethereum PoS uniquely features a finalized chain

as the root of a chain that can fork. Chain finalization relies on

Byzantine voting quorums, while a fork-chain rule aids val-

idators in resolving forks. Maintaining both finalized and non-

finalized chains within a single data structure, Ethereum PoS

strives for a delicate balance between safety and chain growth.

Safety within Ethereum asserts the non-forkable nature of

the finalized chain, while Liveness guarantees its continued

growth, akin to BFT Consensus blockchains. However, in

contrast to BFT Consensus blockchains, Ethereum PoS ensures

that block addition – in the forkable part of the chain – remains

unimpeded, even during network disruptions or failures 1.

Nonetheless, finalization procedures, based on Byzantine

quorums, still carry the inherent limitation that if more than

one-third of the voting power resides with honest validators

who are unreachable within the network, the protocol may

fail to achieve finalization. These validators are perceived as

inactive and do not contribute to finalization. To mitigate this

scenario, thereby restarting finalization in case of long periods

of bad network behavior, the inactivity leak, was introduced

[11]. Intuitively, the inactivity leak is a penalty mechanism

that erodes the stake of inactive validators (and with that

their voting power) to redistribute voting power to active

validators. The inactivity leak can be seen as mechanism to

restore Liveness during network partitions, which then poses

a theoretical risk on Safety by the CAP theorem. Indeed, the

initial introduction of the inactivity leak briefly mentions the

prospect of conflicting finalized blocks, meaning a loss of

Safety, however, it falls short in elucidating the exact events

that could lead to these issues and their severity. This is

particularly crucial in the context of potential interference

by Byzantine validators, a variable that necessitates closer

examination.

We address this question and give the first formal descrip-

1This attribute, essentially non-blocking Liveness, is denoted as Availability
in [2].

53

2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

2158-3927/24/$31.00 ©2024 IEEE
DOI 10.1109/DSN58291.2024.00020

tion of the inactivity leak and its impact on the protocol

by considering different configurations in terms of initial

Byzantine voting power and outcome in terms of Safety loss.

We are interested for Safety loss in two distinctive outcomes:

(1) the finalization of two conflicting chains, and (2) the

break of the Safety threshold, meaning the Byzantine stake

proportion of more than one-third.

Our theoretical analysis aims to pinpoint the significant role

the inactivity leak mechanism plays in the Ethereum protocol.

We first assess conflicting finalization when all validators are

honest. By leveraging the CAP theorem, we emulate a network

partition to establish the time it takes for the network to restore

Liveness while breaking Safety because of network regions

finalizing independently on different chains.

We then analyze, considering different Byzantine initial vot-

ing power proportions, the time it takes to break Safety under

the same network condition and where Byzantine validators

can coordinate and are not affected by network partition.

We present attacks in which Byzantine validators can either

accelerate the time that it takes to break Safety by finalizing

conflicting chains or break the Safety threshold acquiring

more than one-third of voting power. We also revisit a known

attack called the Probabilistic Bouncing attack in light of the

inactivity leak. The attack was initially identified as a means

to delay finalization even during periods of good network

conditions. We demonstrate that this attack can be exploited

to break the Safety threshold in a probabilistic manner during

network synchronous periods, i.e., without partition.

Let us note that the conditions required for these attacks

to happen and persist, to the point of actually threatening

Safety, make them unlikely in real-world settings, primar-

ily due to the time scales involved. Nonetheless, Byzantine

validators can arguably cause other validators to lose stake

before compromising Safety. Indeed our work focuses on

mechanisms penalizing inactive validators, akin to those found

in other PoS blockchains such as Polkadot [12] or Tezos [13].

In this respect, we consider our analysis a crucial endeavor

in exploring penalties mechanisms within Byzantine Fault

Tolerance (BFT) analysis, aiming to provide valuable insights

for future research.

The paper is organised as follows: we first present a de-

scription of the system model and blockchain properties (sec-

tion II), prerequisites for understanding the following section

detailing Ethereum’s protocol (section III). Subsequently, we

delve into the formalization of the inactivity leak (section IV)

and go through the aforementioned scenarios(section V) for

our analysis. Then comes the related work (section VI) before

reaching our conclusions.

II. SYSTEM MODEL & BLOCKCHAIN PROPERTIES

We consider a system composed of a finite set Π of

processes called validators. There are a total of n validators.

Each validator owns a stake. The stake refers to the amount

of cryptocurrency (ETH) owned by each validator, serving

as a metric of their influence in the consensus protocol (cf.

section III). Validators possess a unique public/private key pair

used for cryptographic signing, and can be identified by their

public key. We assume that digital signatures cannot be forged.

Validators have synchronized clocks2. Time is measured by

periods of 12 seconds called slots, a period of 32 slots is

called an epoch which serves as the largest time unit in the

protocol. Throughout the remainder of this paper, we employ

the term “proportion” concerning a validator set to denote the

ratio of their combined stake to the total value staked. Initially

capped at 32 ETH, the stake of individual validators has the

potential to decrease.

Network: Validators communicate by message passing.

We assume the existence of an underlying broadcast primitive,

which is a best effort broadcast. This means that when a correct

validator broadcasts a value, all the correct validators eventu-

ally deliver it. Messages are generated with a digital signature,

providing a mechanism for cryptographic identification and

validation in the protocol.

We assume a partially synchronous model [14], where

the system transitions from an asynchronous state to a syn-

chronous state after an a-priori unknown Global Stabilization

Time (GST). Before GST there is an asynchronous period in

which there is no bound on the message transfer delay Δ.

After GST there is a known finite bound on Δ. Note that

all messages sent before GST are received at most at time

GST + Δ. Note that even if we have synchronized clocks,

having an asynchronous network before GST still makes the

system partially synchronous.

For a significant portion of our analysis, we assume a

network configuration wherein, during asynchronous periods,

honest validators are separated into two distinct partitions.

Communication between these partitions is restricted, reflect-

ing a scenario where two regions are temporarily isolated

yet maintain internal communication. This setup emulates

the scenario where two regions of the world are temporarily

unreachable from each other, while maintaining unaffected

communication within each region.

Fault Model: Validators fall into two categories: honest
and Byzantine. Honest validators, also called correct valida-

tors, adhere to the protocol, while Byzantine validators may

arbitrarily deviate from the protocol3. Following the literature

[15], we allow for a strong adversary that can coordinate

Byzantine validators, even across network partitions4, thereby

remaining unaffected by such partitions. But contrary to Castro

and Liskov [15], the adversary does not manipulate message

delay between honest validators. We denote by β0 the initial

proportion of Byzantine validators’ stake, with β0 < 1/3.

2Clocks can be offset by at most τ , this way, the offset can be captured as
part of the network delay.

3Since in this paper we are only interested in the consensus part of the
protocol, we only characterize validator’s behavior. For clients submitting
transactions, as in any blockchain, we assume they can be Byzantine without
impact on our analysis.

4In our analysis, only the first three attacks leverage this power of the
adversary because they occur during the asynchronous period, in which
partition can occur. Meanwhile, the probabilistic bouncing attack happens
in the synchronous period, so this power of the adversary is not necessary for
the attack.

54

The Ethereum Proof-of-Stake (PoS) protocol aspires to

achieve Byzantine Fault Tolerance (BFT), ensuring the preser-

vation of Safety and Liveness properties for any initial Byzan-

tine stake proportion (β0) strictly below 1/3.

Ethereum PoS Properties: Validators keep a local data

structure in form of a tree containing all the blocks perceived,

then a consensus protocol helps to choose a unique chain in

the tree. Ethereum has a particular trait that consists in having

a finalized chain as prefix of a chain vulnerable to forks. A

metaphor for this is that the finalized chain is the trunk that

supports possibly various branches, and as time passes, the

trunk grows and branches are trimmed5.

Intuitively, the Safety property of Ethereum states that the

finalized chain is not forkable, while the Liveness property

states that the finalized chain always grows. The nuance with

respect to classical consensus protocol is the existence of

an Availability property on the entire chain that guarantees

a constant growth of the chain despite failures and network

partitions. We report here a simplified version of the formal

Ethereum PoS properties defined in [2] for enhanced clarity

and self-contained reference, as follows:

Definition 1 (Candidate chain): The candidate chain is the

chain designated as the one to build upon according to the

fork choice rule.

The candidate chain can be seen as the entire chain, from the

genesis to the last block perceived by a validator. The blocks

in the candidate chain can be finalized or not.

Definition 2 (Finalized block): A block is finalized for a

validator if and only if the block cannot be revoked, i.e., it

permanently belongs to the validator’s candidate chain.

It stems from the definition that all the predecessors of a

finalized block are also finalized.

Definition 3 (Finalized chain): The finalized chain is the

chain constituted of all the finalized blocks.

The finalized chain is always a prefix of any candidate chain.

Safety, Availability, and Liveness are expressed as follows:

Property 1 (Safety): A blockchain achieves safety if for any

two correct validators with a finalized chain, then one chain

is necessarily the prefix of the other.

Property 2 (Availability): A blockchain is available if the

following two conditions hold: (1) any correct validator is able

to append a block to its candidate chain in bounded time,

regardless of the failures of other validators and the network

partitions; (2) the candidate chains of all correct validators are

eventually growing.

Property 3 (Liveness): A blockchain is live if the finalized

chain is eventually growing.

Accordingly to the aforementioned definitions, this paper

considers forks within the finalized chain as a loss of Safety.

As explained in the subsequent section, forks occurring within

the candidate chain suffix, which has not yet been finalized,

are resolved by the fork choice rule of the protocol. This

rule determines the chain upon which validators vote and

build. However, this rule has not been explicitly designed to

5In the the paper, we use the terms “chain” and “branch” interchangeably.

handle forks impacting the finalized chain. The protocol is not

intended to fork the finalized chain, as the finalization process

depends on a super-majority vote, ensuring Safety when the

Byzantine stake is less than one third, i.e., β0 < 1/3. We

look at two types of Safety loss: (1) the finalization of two

conflicting chains, and (2) the break of the Safety threshold,

meaning the Byzantine stake proportion of more than one-

third.

III. ETHEREUM PROTOCOL

In this work we study a specific mechanism of the Ethereum

protocol, the inactivity leak. To help our explanation and anal-

ysis of the inactivity leak, we first introduce some6 necessary

understanding of the protocol.

A. Structure

In Ethereum PoS, time is measured in slots and epochs.

A slot lasts 12 seconds. Slots are assigned with consecutive

numbers; the first slot is slot 0. Slots are encapsulated in

epochs. An epoch is composed of 32 slots, thus lasting 6

minutes and 24 seconds. The first epoch (epoch 0) contains

from slot 0 to slot 31; then epoch 1 contains slot 32 to 63, and

so on. These slots and epochs allow associating the validators’

roles to the corresponding time frame. An essential feature of

epochs is the checkpoint. A checkpoint is a pair block-epoch

(b, e) where b is the block of the first slot of epoch e.

An epoch can be seen as a round of a BFT Consensus

in which all validators vote to reach consensus about which

checkpoint to finalize.

Slot 0

Epoch e

Slot 1 Slot 2 Slot 30 Slot 31

Fig. 1. Ethereum protocol Structure

B. Consensus

Validators have two main roles: proposer and attester. The

proposer’s role consists in proposing a block during a specific

slot; this role is pseudo-randomly given to 32 validators by

epoch (one for each slot). The attester’s role consists in

producing an attestation sharing the validator’s view of the

chain; this role is given once by epoch to each validator.

The attestation contains two votes, a block vote and a

checkpoint vote. The block vote is used in the fork choice
rule which determines the chain to vote and build upon for

validators. As its name suggests, the checkpoint vote points

to checkpoints constituting the chain. It is used to justify and

finalize blocks to grow the finalized chain. Justification is the

step prior to finalization. If validators controlling more than

two-thirds of the stake make the same checkpoint vote, then

6We omit here a lot of details for the sake of space and simplicity.
An interested reader must refer to [1], [2], [16], [17] for more thorough
explanation of the protocol.

55

the checkpoint target is said justified. Finalization occurs when

there are two consecutive justified checkpoints (one in epoch

e and the following one in epoch e+ 1).

Let us note that if justification occurs only every other

epoch, finalization is not possible.

C. Incentives

The Ethereum PoS protocol provides validators with re-

wards and penalties to incentivize timely responses reaching

consensus. There are three different types of penalties: slash-

ing, attestation penalties, and inactivity penalties. (i) Slashing
penalties. Validators face slashing if they provably violate

specific protocol rules, resulting in a partial loss of their

stake and expulsion from the validator set. (ii) Attestation
penalties. To incentivize timely and correct attestations (votes),

the protocol rewards validators for adhering to the protocol

and penalizes those who do not. If an attestation is missing

or belatedly incorporated into the chain, its validator gets

penalized. (iii) Inactivity penalties. Each epoch a validator is

deemed inactive, its inactivity score increments. However, if

the protocol is not in an inactivity leak, all inactivity scores are

reduced. When finalization occurs regularly, a validator that is

deemed inactive only gets attestation penalties. This changes

when there is no finalization for four consecutive epochs: the

inactivity leak begins. During the inactivity leak, that starts

when there is no finalization for four consecutive epochs,

all validators will get inactivity penalties directly linked to

their stake and inactivity score. The inactivity score varies

with the validator’s activity. In addition to penalties, rewards

are attributed for timely/correct attestation but not during the

inactivity leak. Our analysis of the impact of the inactivity

leak on the protocol takes into consideration the slashing and

inactivity penalties across 5 different scenarios (cf. section V).

Having provided a comprehensive overview of the Ethereum

PoS consensus mechanism, we are now well-positioned to

delve into the specifics of the inactivity leak.

IV. INACTIVITY LEAK

The Ethereum PoS blockchain strives for the continuous

growth of the finalized chain. In consequence, the protocol

incentivize validators to finalize blocks actively. In the absence

of finalization, validators incur penalties.

The inactivity leak, introduced in [11], serves as a mecha-

nism to regain finality. Specifically, if a chain has not under-

gone finalization for four consecutive epochs, the inactivity

leak is initiated. During the inactivity leak, the stakes of

inactive validators are drained until active validators amount

for two-thirds of the stake. A validator is labeled as inactive

for a particular epoch if it fails to send an attestation or sends

one with a wrong target checkpoint.

During the inactivity leak, there are no more rewards given

to attesters7, and additional penalties are imposed on inactive

validators.

7Actually, the only rewards to remain are for the block producers and the
sync committees.

A. Inactivity Score

The inactivity score is a dynamic variable that adjusts

based on a validator’s activity. The inactivity score of a

validator is determined based on the attestations contained in

the chain. It is important to note that if there are multiple

branches, a validator’s inactivity score depends on the selected

branch. Within an epoch, being active on one branch implies8

inactivity on another (for honest validators).

More precisely, the inactivity score is updated every epoch:

if validator i is active, then its inactivity score is reduced by

1; otherwise, 4 is added to it. When the inactivity leak is not

in place, every epoch the inactivity scores are decreased by

16, which often nullifies low inactivity scores.

During an inactivity leak, at epoch t, the inactivity score,

Ii(t), of validator i is:{
Ii(t) = Ii(t− 1) + 4, if i is inactive at epoch t

Ii(t) = max(Ii(t− 1)− 1, 0), otherwise.
(1)

Each attester has thus an inactivity score that fluctuates de-

pending on its (in)activity. In the protocol, the inactivity score

is always superior to zero. A validator’s inactivity for epoch t
is determined by whether it sent an attestation for this epoch

or if the sent attestation contains a correct checkpoint vote.

Here “correct” implies that the target of the checkpoint vote

belongs to the chain considering it.

B. Inactivity penalties

Validators that are deemed inactive incur penalties. Let si(t)
represent the stake of validator i at epoch t, and let Ii(t) denote

its inactivity score. The penalty at each epoch t is Ii(t− 1) ·
si(t−1)/226. Therefore, the evolution of the stake is expressed

by:

si(t) = si(t− 1)− Ii(t− 1) · si(t− 1)

226
. (2)

C. Stake’s functions during an inactivity leak

In this work, we model the stake function s (see Equation 2)

as a continuous and differentiable function, yielding the fol-

lowing differential equation:

s′(t) = −I(t) · s(t)/226. (3)

We then explore three distinct validator’s behaviors during

inactivity leak, each influencing their inactivity score, and

consequently, their stake.

(a) Active validators: they are always active.

(b) Semi-active validators: they are active every two epochs.

(c) Inactive validators: they are always inactive.

Note that, in case of a fork, this categorization depends on

the specific branch under consideration as different branches

may yield different evaluation of each validator’s behavior.

Validators with these three behaviors experience a different

evolution in their inactivity score: (a) Active validators have a

constant inactivity score I(t) = 0; (b) Semi-active validators’

inactivity score increases by 3 every two epochs (+4−1), their

8This is true as long as the chain differ for at least one epoch.

56

inactivity score on average at t is I(t) = 3t/2; (c) Inactive

validators’ inactivity score increases by 4 every epochs I(t) =
4t. Thanks to Equation 3 we can determine the evolution of

the stake of each type of validators during an inactivity leak:

(a) Active validator’s stake: s(t) = s0 = 32.
(b) Semi-active validator’s stake: s(t) = s0e

−3t2/228

.
(c) Inactive validator’s stake: s(t) = s0e

−t2/225

.

This categorization is orthogonal to the Byzantine-Honest

categorization. For instance, an honest validator can appear

inactive in one branch due to poor connectivity or an asyn-

chronous period (due to network partition or congestion). On

the other hand, a Byzantine validator intentionally chooses

one of these behaviors (e.g., being semi-active) to execute the

attacks.

Fig. 2. This figure shows 3 different stake’s trajectories in the event of an
inactivity leak: the stake of a validator active every epoch, the stake of a
validator active every other epoch (semi-active) and an inactive validator. The
inactive validators get ejected at epoch t = 4685. The semi-active validators
get ejected at t = 7652. For reference, 5000 epochs is about 3 weeks.

We illustrate in Figure 2 the evolution of the validators’

stake depending on their behaviors. We also account for the

ejection of validators with a stake lower or equal than 16.75.

Using these newly defined stake functions, we explore five

different scenarios in section V.

The first scenario, with only honest validators, serves as a

baseline to assess the impact of Byzantine validators. Even in

this seemingly straightforward setting, Safety is compromised.

In the second scenario, Byzantine validators come into play

and aim at expediting finalization on conflicting branches.

They do so by performing slashable actions. Thus, they will

get ejected from the set of validators once communication is

restored among honest validators and evidence of their slash-

able offense is included in a block. We outline their impact

based on their initial stake proportion. With an initial stake

proportion of β0 = 0.2, the finalization on conflicting chains

occurs after 3107 epochs. With β0 = 0.33, the conflicting

finalization occurs only after 503 epochs.

TABLE I
ANALYSED SCENARIOS ASSOCIATED WITH THEIR OUTCOMES. INITIALLY

THE PROPORTION OF BYZANTINE’S STAKE IS SMALLER THAN 1/3 AND IS

ZERO FOR THE FIRST SCENARIO.

Scenario Outcomes

V-A All honest 2 finalized branches
V-B1 Slashable Byzantine 2 finalized branches
V-B2 Non slashable Byzantine 2 finalized branches
V-B3 Non slashable Byzantine β > 1/3
V-C Probabilistic Bouncing attack β > 1/3 probably

In the third and forth scenarios Byzantine validators show

non-slashable behaviors. Indeed, Byzantine validators are

semi-active, which means they are active on both chains but

in a non-slashable manner. However, in the third scenario they

aim at finalizing on conflicting branches as soon as possible

– conflicting finalization in 556 epochs, for an initial stake

proportion of β0 = 0.33 – while in the fourth scenario they

aim for their stake proportion to go over the 1/3 threshold.

The last scenario delves into the effect of the probabilistic

bouncing attack regarding the Byzantine stake proportion

taking the inactivity leak into account. In this attack Byzantine

validators initially aim at delaying finality by being alterna-

tively active (bounce) on both chains of a fork. This confuses

honest validators that also bounce from one chain to the other.

We detail how to find the distribution of honest validators’

stake in this setting considering the inactivity penalties. We

also cover how the Byzantine validators’ stake proportion can

go over 1/3 if their initial proportion is close enough to 1/3.

The scenarios unfold within the context of a partially

synchronous network while offering a meticulous examination

of the property of Safety and the evolution of the proportion of

Byzantine validators. The variations in initial conditions and

outcomes of each scenario are summarized in Table I.

V. ANALYSIS

In this section we study the robustness of the Safety property

within the context of the inactivity leak. By construction,

in case of a prolonged partition, two different chains can

potentially be finalized, leading to conflicting finalized blocks.

We delineate scenarios that can produce such predicament.

Considering the presence of Byzantine validators, we study

how the proportion of Byzantine validators’ stake evolves

during an inactivity leak. Furthermore, we are interested in

scenarios where the inactivity leak mechanism becomes the

backbone of an attack strategy, potentially causing the propor-

tion of Byzantine stakes to exceed the 1/3 security threshold

(cf. subsubsection V-B3 and subsection V-C).

A. GST upper bound for Safety

In this first subsection, we look for an upper bound on GST
before which no finalization on conflicting chains can happen

in case of a partition. We study the case of an inactivity leak

with these conditions: (i) Only honest validators, no Byzantine

validators, and (ii) the network is asynchronous (before GST).

57

In case of catastrophic events, during an instance of a

particularly disrupted network, an arbitrary large set of honest

validators might be unreachable before GST. During this asyn-

chronous period, the subset of validators still communicating

with each other will continue to try to finalize new blocks.

We assume that, within each partition, the message delay

is bounded as in the synchronous period; however, commu-

nication between partitions is not restored before the GST.

As mentioned in the system model, Byzantine validators can

communicate between partitions without restriction but cannot

manipulate the message delay between honest validators. The

active validators must represent more than two-third of the

stake to be able to finalize. After 4 epochs without finalization,

the inactivity leak starts.

All the validators deemed inactive will get their stake

reduced progressively. This will continue until the active

validator’s constitute at least two thirds of the stake and finalize

anew.

a) Two finalized chains: A noteworthy scenario arises

during asynchronous periods that can lead to a network

partition and the creation of two distinct finalized chains.

If this partition persists for an extended period, both chains

independently drain the stakes of validators they consider

inactive until they finalize again. Although the protocol permits

this behavior by design, it results in the finalization of two

conflicting chains, thereby compromising the Safety property.

This outcome is in line with Ethereum PoS prioritizing

Liveness of Safety. But to the best of our knowledge, this

corner case has not been discussed in details.

We can theoretically assess the time required to finalize both

branches of the fork. Suppose honest validators remain on

their respective branches due to the partition. In this case, by

understanding the distribution of these validators across the

partitions, we can compute the time it takes for the proportion

of active validators’ stake to return to 2/3 of the stake on each

branch, permitting new finalization.

Let nH and nB denote the initial number of honest validators

and Byzantine validators at the beginning of the inactivity leak

(nH + nB = n). Additionally, nH1 and nH2 represents the

number of honest validators active on branch 1 and on branch

2, respectively (nH1
+ nH2

= nH).

We denote by p0 = nH1/nH the initial proportion of honest

validators remaining active on branch 1, and 1−p0 = nH2
/nH

represents the proportion of honest validators active on branch

2 (hence inactive on branch 1). In this first scenario, with only

honest validators and no Byzantine validators, p0 represents

the proportion of all validators active on branch 1. Indeed,

since nH/n = 1 we have that nH1
/nH × nH/n = p0.

We have assessed how validators’ stakes vary based on their

level of activity, we can in consequence express the ratio of

active validators on branch 1 at time t:

nH1
sH1

(t)

nH1
sH1

(t) + nH2
sH2

(t)
, (4)

with sH1
and sH2

being the stake of honest active and inactive

validators, respectively. We know the function of their stake

according to time, and by dividing in the numerator and the

denominator by the total number of validators (n = nH), we

can rewrite Equation 4 as:

p0
p0 + (1− p0)e−t2/225 . (5)

The initial stake value s0 is factored out of the equation. This

function is critical as the moment it reaches 2/3 or more,

finalization can occur9 on the branch.

To establish the upper bound on GST under which two

conflicting branches finalize, we must find when finalization

occurs on each branch, for each initial proportion of active

validators p0 and inactive validators 1 − p0. We simulate the

evolution of the ratio of active validators (Equation 5) during

an inactivity leak with different values of p0 in Figure 3. The

simulation starts with both active and inactive validators at 32

ETH. At epoch 0, the inactivity leak begins.

For p0 = 0.5 or less, the ratio jumps to 1 at t = 4685,

this is due to the fact that validators with a stake below 16.75

ETH are ejected from the set of validators. Conversely for

p0 = 0.6, the proportion of active validators do not jump

drastically as 2/3 of active validators is regained before the

ejection of inactive validators, permitting the active validator

to finalize, hence ending the inactivity leak. Interestingly, with

p = 0.6 we can see that the ratio still increases several epochs

after the proportion of 2/3 of active validators’ stake is reached.

This is because the penalties for inactive validators take some

time to return to zero.

Fig. 3. Evolution of the ratio of active validators depending on the proportion
p0 of active validators on the branch. This follows the ratio given in Equation 5
before regaining 2/3 of active validators or the expulsion of inactive validators
at epoch t = 4685.

As expected and shown by Figure 3, a chain with more

active validators will regain finality quicker. To ascertain how

9With a proportion of two-thirds of validators’ stake active justification then
finalization can occur in 2 epochs.

58

quick, we seek when the ratio is equal to 2/3. Taking into

account the expulsion10 of inactive validators at t = 4685, we

can find the value t at which the 2/3 threshold is reached:

t = min
(√

225[log(2(1− p0))− log(p0)] , 4685
)
. (6)

This calculation pertains to 0 < p0 < 2/3 (when there is

less that 2/3 of active validators) ensuring that the epoch t can

be computed.

Conflicting finalization occurs once the slowest branch to

finalize has regained finality. Our observation highlights that

the lower the proportion of active validators, the slower the

branch will regain finality. Hence, the fastest way to reach

finality on both chains would be for honest validators to be

evenly proportionate with half validators active on one chain

and the other half on the other chain (p0 = 1 − p0 = 0.5).

In this case, the ratio of active validators amount to 2/3 on

both chain at t = 4685 epochs (about 3 weeks). We can

note here that even with the best configuration to finalize

quickly on conflicting branches, it is impossible to be faster

than 4685 epochs. Thus with only honest validators, whatever

their proportion on each branch, the last chain to finalize will

always finalize at t = 4685.

Finality on both chains is achieved precisely at 4686 epochs

after the beginning of the inactivity leak. Adding an epoch

is necessary after gaining 2/3 of active stake to finalize

the preceding justified checkpoint. This finalization ends the

inactivity leak which has lasted approximately 3 weeks. Any
network partition lasting longer than 4686 epochs will result
in a loss of Safety because of conflicting finalization. This is
an upper bound for Safety on the duration on inactivity leak
with only honest validators.

B. Upper bound decrease due to Byzantine validators

In a trivial setup with only honest validators, Safety does not

hold if the inactivity leak is not resolved quickly. This prompts

us to study the scenario in the presence of Byzantine validators

to evaluate how much they will be able to hasten the con-

flicting finalization. We describe two possible outcomes, the

first one violates Safety but Byzantine validators gets slashed,

the second one violates Safety as well but no validators gets

slashed. A slashing penalty entails an ejection of the validator

set as well as a loss of part of the validator’s stake. Both

scenarios expedite the time t at which Safety is breached, with

different velocity depending on the chosen method.

We study the inactivity leak with these conditions: (i) at

the beginning, less than one third of the stake is held by

Byzantine validators (β0 = nB/n < 1/3), the rest is held

by honest validators (1 − β0 = nH/n); (ii) The network

is asynchronous (before GST); and (iii) Byzantine validators

control the network delay, allowing them to be active on

both branches while preventing honest validators from even

observing the branch on which they are not active. They

10We drew inspiration for this initial work from the insights presented in
[17].

can manipulate message delays of honest nodes to simulate

a partition between honest validators.

The situation is the following:

• Honest validators are divided into branches 1 and 2; a

proportion p0 = nH1
/nH of the honest validators are

active on branch 1 while a proportion 1− p0 = nH2/nH

are active on branch 2. (Meaning that on branch 1, a

proportion nH1
/nH×nH/n = p0(1−β0) are honest and

active and a proportion nH2
/nH × nH/n = (1− p0)(1−

β0) are honest and inactive).

• Byzantine validators are not restricted to either partition,

they are connected to both.

1) With slashing: In the event of a fork during asyn-

chronous times, Byzantine validators can be active on the

two branches (Figure 4). Being active on two branches means

sending correct attestations on both every epoch. Such behav-

ior is considered a slashable offense, incurring penalties, but

only if detected by honest validators. The slashable offense

is punished once a proof of conflicting attestation during

the same epoch has been included in a block. Thus, before

GST, Byzantine validators could operate on both branches

without facing punishment as long as honest validators are

unaware of the conflicting attestations. Byzantine validators

have control over the message delay before GST rending this

behavior possible. They can thereby expedite the finalization

on different branches.

t1 t2 t3 t4t0

Fig. 4. Byzantine validators active on both chains of a fork at the same time
during asynchronous times.

We study here the time needed for finalization to occur on

conflicting branches depending on the proportion of Byzantine

validators. The ratio of active validators at epoch t is:

nH1sH1(t) + nBsB(t)

nH1
sH1

(t) + nBsB(t) + nH2
sH2

(t)
, (7)

with sH1
, sB and sH2

being the stake of honest active,

Byzantine active and honest inactive validators, respectively.

This can be rewritten as:

p0(1− β0) + β0

p0(1− β0) + β0 + (1− p0)(1− β0)e−t2/225 , (8)

where β0 represents the initial proportion of Byzantine val-

idators, and p0 denotes the initial proportion of honest active

validators. In contrast to the analysis with only honest valida-

tors (cf. Equation 5), here, Byzantine validators are present

and active on both chains. Nonetheless, as before, we can

obtain the ratio of active validators on the other branch just

by interchanging p0 and 1−p0. Finality on conflicting branches

occurs when the last of the two branches finalizes. Similarly to

59

the previous example, the branch with the fewer initial honest

active validators (p0) will finalize the latest. This happens t
epochs after the beginning of the inactivity leak, with

t = min

(√
225

[
log(2(1− p0))− log(p0 +

β0

1− β0
)

]
, 4685

)
.

(9)

Finality on conflicting branches is achieved the quickest

when honest validators are evenly split between the branches

of the fork, for p0 = 0.5.

TABLE II
TIME BEFORE FINALIZATION ON CONFLICTING BRANCHES DEPENDING ON

THE INITIAL PROPORTION OF BYZANTINE VALIDATORS β0 FOR p0 = 0.5
WITH SLASHING BEHAVIOUR BASED ON EQUATION 9.

β0 t
0 4685

0.1 4066
0.15 3622
0.2 3107
0.33 502

Table II gives the epoch at which concurrent finalization

occurs for p0 = 0.5. This outline the rapidity at which finality

can be regained depending on the initial proportion β0 of

Byzantine validators’ stake. The table shows that 503 epochs

(approximately 2 days) could suffice to finalize blocks on two

different chains, but hypothetically it could be quicker than

that. In fact, as β0 gets closer to 1/3, the number of epochs

required before concurrent finalization occurs (Equation 9)

approaches 0. The explanation is that if β0 were to start at

exactly 1/3, then with p0 = 0.5 it would mean that on each

branch we would start with p0(1− β0) + β0 = 2/3 of active

validators, hence finalizing immediately. This explains why if

β0 is very close to 1/3, the proportion of active validators

reaches 2/3 rapidly. Hence, Byzantine validators can expedite
the loss of Safety. If their initial proportion is 0.33, they can
make conflicting finalization occur approximately ten times
faster than scenarios involving only honest participants.

One can notice that if Byzantine validators act in a slashable

manner, they will be penalized after the asynchronous period

ends. However, the harm is already done. Once the finalization

on two branches has occurred, the branches are irreconcilable

with the current protocol. Next, we demonstrate that Byzantine

validators can employ more subtle strategies to break Safety

without slashable actions.

2) Without slashing: The Byzantine validators have a way

to hasten the violation of the Safety property without incurring

slashable offense. While not as rapid as being active on

both branches simultaneously, they can be semi-active on

both branches alternatively. Being semi-active on each branch

means they are only active every other epoch. This approach

diminishes their stake on each branch due to inactivity penal-

ties. Nevertheless, at some point they will be able to finalize on

two conflicting branches by being active two epochs in a row

on one branch then on the other (see Figure 5). Byzantine

validators will be able to finalize when the proportion of

their stake plus the proportion of the stake of honest active

validators is above 2/3 on the branch (cf. Equation 10).

t1 t2 t3 t4t0 tn tn+1 tn+2 tn+3. . .

Fig. 5. Byzantine validators active on both branches of a fork alternatively
during asynchronous times.

At that point, Byzantine validators must remain active for

two consecutive epochs on each branch to finalized them both.

If they are only semi-active, they can alternate justifications

for checkpoints on each branch but will not achieve final-

ization. However, by maintaining activity for two consecutive

epochs, first on one branch and then on the other, they ensure

two sequential justifications, leading to the finalization of a

checkpoint.

We gave the different evolution of stakes depending on

the activity of validators (subsection IV-C). Now that Byzan-

tine validators are semi-active, their stake follows the curve

s0e
−3t2/228

. We simplify the ratio as previously and we get

that finalization occurs on the branch when the ratio

p0(1− β0) + β0e
−3t2/228

p0(1− β0) + β0e−3t2/228 + (1− p0)(1− β0)e−t2/225 (10)

goes over 2/3. With β0 and p0 being the initial proportion

of Byzantine validators and the proportion of honest active

validators on the branch, respectively.
In contrast to the previous scenario, obtaining an analytic

solution for t to determine the epoch when the ratio hits

2/3 is not straightforward. Therefore, we apply numerical

methods on Equation 10 with initial parameters p0 = 0.5
and β0 = 0.33, resulting in a calculated t value of 555.65.

Meaning, it will take 556 epochs to finalize, about 2 days and

a half. As previously, the proximity of β0 to 1/3 significantly

influences the speed of finalization, as outlined in Table III and

Figure 6. Figure 6 shows how the proportion of Byzantine

affects the time of conflicting finalization. Let us notice

that although the acceleration is not as pronounced as in

the previous scenario, it remains noteworthy that Byzantine

validators still exert a substantial impact on breaching Safety,

while not committing any slashable offense. Hence, Byzantine
validators can expedite the loss of Safety without committing
any slashable action. If their initial proportion is 0.33, they
can make conflicting finalization occur approximately eight
times faster than scenarios involving only honest participants.

Another consequence of being “semi-active” on both

branches is that Byzantine validators can decide when finaliz-

ing on each branch. Indeed, even when the proportion of their

stake plus the proportion of honest and active validators’ stake

is above 2/3, finalization only occurs when the Byzantine val-

idators stay active two consecutive epochs on the same chain.

60

TABLE III
TIME BEFORE FINALIZATION ON CONFLICTING BRANCHES DEPENDING ON

THE INITIAL PROPORTION OF BYZANTINE VALIDATORS β0 FOR p0 = 0.5
WITHOUT SLASHING BEHAVIOUR BASED ON EQUATION 10.

β0 t
0 4685

0.1 4221
0.15 3819
0.2 3328
0.33 556

Fig. 6. Time before finalization on conflicting branches, depending on the
initial proportion of Byzantine validators β0 and whether they engage in
slashable actions.

Being active for two epochs will justify the two consecutive

epochs, thus finalizing an epoch.

There exists a scenario in which the Byzantine validators

might delay finalization intentionally, aiming to increase their

stake’s proportion beyond the threshold of 1/3 without incur-

ring slashing afterwards.

3) More than one third of Byzantine validators: One may

ask, why would Byzantine validators aim at going over the 1/3

threshold? Indeed, we just shown that Safety can be broken

regardless of β0; is it not the ultimate goal of Byzantine

validators? It is not obvious to determine what behaviour

will harm the blockchain the most. We briefly discuss the

impact Byzantine validators can have when they go over the

1/3 threshold in subsection V-C. We now examine what are

the necessary conditions on β0 and p0 that permit Byzantine

validator’s stake to go over the one-third threshold.

The key ratio that translates into what we are looking for is

the proportion of Byzantine validator’s stake β(t, p0, β0) over

time:

β0e
−3t2/228

p0(1− β0) + (1− p)(1− β0)e−t2/225 + β0e−3t2/228 (11)

As expected at time t = 0, β(0, p0, β0) = β0. Now, let us

investigate when this ratio is above the threshold of 1/3, i.e.:

β(t, p0, β0) ≥ 1/3 (12)

The main difference with the previous scenario is that

Byzantine validators seek to go over the 1/3 threshold, not

to finalize quickly. This means that even after the proportion

of honest active validators’ stake and semi-active Byzantine

validators’ stake represent more than two-third of the stake on

the branch, they do not finalize. Byzantine validators could

finalize by staying active two epochs in a row, yet they do not

do so in order to reach a higher stake proportion.

We construct a set containing the couples (p0, β0) that can

lead to β to go over 1/3 (Equation 12). To do so, we take the

point reached by the ratio when the validators deemed inactive

are ejected. This point gives the highest value reachable11 for

a particular (p0, β0). For an intuition as to why this is the

case, Figure 2 let us visualize that the biggest gap between

semi-active Byzantine stake and honest inactive stake is at

the moment of expulsion of the honest inactive validators. We

have seen that inactive validators are ejected from the chain

after 4685 epochs. We can thus evaluate the maximum ratio

reachable βmax at time t = 4685 when the inactive validators

gets ejected:

βmax(p0, β0) =
β0e

−3×(4685)2/228

p0(1− β0) + β0e−3×(4685)2/228 . (13)

When this ratio is greater than 1/3, Byzantine validators

have reached their goal. We show with Figure 7 that Byzantine

validators can actually go beyond the threshold of 1/3 on

both branches simultaneously. The lower bound β0 before

this becomes possible is for p0 = 0.5 when β0 = 1/(1 +
4e−3×(4685)2/228

) = 0.2421.

When the initial proportion of Byzantine validators is at
least 0.2421, their proportion can eventually increase up to
more than 1/3 of validators on both branches, exceeding the
critical Safety threshold of voting power in each branch.

Having explored scenarios in which protocol vulnerabilities

manifest exclusively before GST, we now focus on potential

threats posed by Byzantine validators after GST. Given the

acknowledged impact of the Probabilistic Bouncing Attack on

Liveness [2], our study extends to take the inactivity leak into

account.

C. Revisiting the Probabilistic Bouncing attack

This subsection revisits the Probabilistic Bouncing attack

[2] showing that Byzantine validators could exceed the Safety

threshold even during the synchronous period. Contrary to the

previous scenarios, this one starts in the asynchronous period

11There exist more values that can lead to go over one-third when
considering a special corner case. If the Byzantine validators strategically
finalize just before the expulsion of honest inactive validators, the decrease in
inactivity penalties might not occur quickly enough to prevent the ejection of
honest inactive validators. In this particular scenario, Byzantine validators
could potentially eject honest inactive participants while incurring fewer
penalties themselves. This subtlety underscores the intricate dynamics at play
during the inactivity leak.

61

Fig. 7. Pairs (p0, β0) such that βmax(p0, β0) ≥ 1/3. This figure gives a
lower bound for which (p0, β0) can result in the proportion of Byzantine
validators exceeding 1/3 on both branches.

but unveils in the synchronous period. This demonstrates that

the inactivity leak poses significant challenges even within

the synchronous period, revealing its broader implication for

blockchain security.

While analyzing the probabilistic bouncing attack [2], the

authors did not take into account the penalties, here, we fill

this gap.

Let us note, that there is no problem with conflicting

finalization as the attack is progressing after GST, in the

synchronous period. In synchronous time, there is not enough

delay for honest validators to miss a finalization on another

branch. There would need to be more than two-third of the

active stakes owned by Byzantine validators to break Safety

in the synchronous period.

We briefly discussed the differences in gravity between

conflicting finalization and having more than 1/3 of the stake

owned by Byzantine validators. We left the actual comparison

and the in-depth analysis of the gravity of going beyond the

infamous threshold as a future work.

We primarily focus on identifying specific scenarios that

would disrupt the network. Thus, we give a detailed expla-

nation of a scenario that could lead to Byzantine validators

breaking the 1/3 threshold even during synchronous period

(after GST).

Let us remind how the attack takes place.

a) Probabilistic Bouncing Attack [2]: The attack can be

summarized as follows: (1) A favorable setup that partitions

honest validators into two different views of the blockchain

occurs. (2) At each epoch, Byzantine validators withhold their

messages from honest validators, releasing them at the oppor-

tune time to make some honest validators change their view.

(3) This attack continues as long as at least one Byzantine

validators is proposer in the jth first slots of the epoch, where

j is a parameter of the protocol. The probability of the attack

to continue for k epochs with a proportion of (1−β0) honest

validators is (1− (1− β0)
j)k.

We start by analyzing the outcome of a fork where a

proportion p0 of the honest validators start on chain A and

1− p0 of the honest validators start on chain B.

We consider how would unfold a Probabilistic Bouncing
Attack taking the inactivity leak into account. A probabilistic

bouncing attack lasting more than 4 epochs will necessarily

cause an inactivity leak. Knowing this, we analyze the stakes

of honest and Byzantine validators in this setting.

For this attack to continue, at each epoch, Byzantine val-

idators cast their vote with a different chain as their candidate

chain. They are active on each chain alternatively. Due to their

inactivity every 2 epochs, they will get ejected of the chain

after a total of 7653 epochs (4 weeks and 6 days). Byzantine

validators are active on each chain to ensure that justification

only happens every two epoch, preventing finalization to occur.

For this attack to continue indefinitely, Byzantine validators

must ensure honest validators are split on the two branches

according to two conditions. A condition (a) that ensures that

the honest validators are not enough to justify a chain on their

own, and (b) that Byzantine validators can justify it afterwards

with their withheld votes. It means that (a) p0 must not

represent more than 2/3 of the stake, and (b) the proportions

p0 of honest validators and β0 of Byzantine validators must

represent more than two-thirds of the total stake. The two

necessary conditions are that (a) p0(1 − β0) < 2/3 and (b)

p0(1−β0)+β0 > 2/3. For the attack to function, we get that:

2− 3β0

3(1− β0)
< p0 <

2

3(1− β0)
. (14)

We can see that the closer β0 is to 0, the closer p0 has to be

from 2/3. This is to be expected as otherwise the Byzantine

validators would be unable to justify the checkpoint with

withheld votes.

An illustration of an ongoing attack with the probability for

honest validators to be on one chain or the other is depicted

in Figure 8. We can see that at each epoch, a proportion p0 is

on one branch, whereas a proportion 1− p0 is on the other.

A

B

B’

C

C’

D

D’

p 0

1−
p
0

1− p0

p0

p
0 1

− p
0

p0

1− p0

1−
p
0 p 0

Fig. 8. This figure represents with a Markov chain the probability of an
honest validator to change branch or not every epoch. During the attack, the
Byzantine validators make sure that a proportion p0 of honest validators are
on one branch such that they can justify this branch later with their withheld
votes (Equation 14).

Calculus: We are interested in the evolution of the

proportion of Byzantine validators’ stake β during the attack.

To look at the proportion, we analyze the evolution of the

62

inactivity score over time for an honest validator randomly

placed at each epoch. Looking at Figure 8, we see that after

two epochs, there is a probability p0(1 − p0) to have been

on branch B for the two epochs, or on branch A for the

two epochs. The probability to have been on both branches

regardless of the order is p20 + (1 − p0)
2. From the point of

view of a chain, the validators will be deemed inactive if they

are active on the other chain. The probability of the inactivity

score evolution after two epochs is the following:⎧⎨
⎩

+8 : p0(1− p0)
+3 : p20 + (1− p0)

2

−2 : p0(1− p0)
(15)

We can notice that the time-dependent probability of the

inactivity score is the convolution of two random walks. The

first random walk moves +4 with probability p0 and -1 with

probability (1− p0). The second is the opposite, it moves +4

with probability (1− p0) and -1 with probability p0.

We place ourselves in the continuous case to be able to

continue our analysis and find the stake of validators with the

inactivity score distribution over time. To do so we use the fact

that a random walk follows a Gaussian distribution when time

is big using the central limit theorem. The expectation of the

two random walks are (5p0−4t) and (1−5p0)t, respectively,

with both having a standard deviation of 25p0(1−p0). We dis-

regard here the fact that the actual inactivity score is bounded

by zero for analytical tractability. Allowing for negative values

in the inactivity score can result in a reward instead of a

penalty, which leads to a scenario conservatively estimating

the loss of stake. The convolution of these two random walks

is the probability of the inactivity score I:

φ(I, t) =
1√
4πDt

exp

(
− (I − V t)2

4Dt

)
. (16)

With D = 25p0(1− p0) and V = 3/2. It now remains to find

the distribution function of the stake s. We rewrite here the

differential equation of the stake depending on I previously

described in Equation 17:

ds

dt
= −I(t)s

226
. (17)

Due to space constraints, we omit the detailed process for

finding the distribution of s. The underlying intuition is that we

can return to a known problem with a derivative being equal

to a Brownian motion. By integrating the Brownian motion,

we find our solution. This lead to the distribution of s for any

given time:

P (s, t) =
226

s
√

4
3πDt3

exp

(
− (226 ln(s/32) + V t2/2)2

4
3Dt3

)
.

(18)

The stake follows a log normal distribution for which the

cumulative function is:

F (s, t) =
1

2
+

1

2
erf

⎡
⎣226 ln(s/32) + V t2/2√

4
3Dt3

⎤
⎦ (19)

Currently, the probability P does not reflect the actual stake

according to time since validators get ejected at 16.75 ETH

and are stuck at 32 ETH. To emulate this mechanism, since

we know the cumulative distribution function we can compute

the new probability law P:

P(x, t) =

⎧⎪⎨
⎪⎩
F (a, t) if x = 0

P (x, t) if a < x < b

1− F (b, t) if x = b

(20)

With a = 16.75 and b = 32. This new probability law takes

into account the fact that if the stake is lower than 16.75 ETH it

becomes 0, and it is capped at 32 ETH. The explicit expression

of P reads:

P(x, t) =δ(x) · F (a, t) + δ(x− b) · (1− F (b, t))

+ [H(x− a)×H(b− x)] · P (x, t),
(21)

where δ is the Dirac distribution, and H the Heaviside

function. Figure 9 shows a visual representation of function

P .

Fig. 9. This is a representation distribution of P at t = 4024 with exaggerated
standard deviation to give a better intuition of the distribution behavior.

The associated cumulative distribution function F of P is :

F(x, t) =
∫ x

0

P(s, t)ds
=F (a, t) +H(x− a)[F (x, t)− F (a, t)]

+H(x− b)[1− F (x, t)].

(22)

With this we can evaluate the ratio of Byzantine validators

and determine with what probability it will go beyond 1/3.

We denote by sB(t) the stake of a Byzantine validators and

sH(t) the stake of an honest validator. We are looking for the

probability such that

β(t) =
β0sB(t)

β0sB(t) + (1− β0)sH(t)
>

1

3
, (23)

depending on the probability of sH that we now know. This

translates in:

F
(

2β0

1− β0
sB(t), t

)
, (24)

63

where sB(t) the stake of a Byzantine validator follows the

stake of a semi-active validator.

We give a representation of Equation 24 for several values

of β0 with p = 0.5 (p0 does not have much impact on the

curve as it just changes the variance slightly) in Figure 10.

The figure gives insight as to how the proximity of β0 to

1/3 can be harmful. The explication of this phenomenon is due

to the mean of the log-normal distribution being equivalent to

sB when t is not too big. Looking at Equation 24 we can see

that if β0 = 1/3 then we are looking at F(sB(t), t) which

explains why its probability is 0.5.

The probability rises abruptly right before the expulsion of

Byzantine validators, however, it is unlikely the probabilistic

bouncing attack would last that long. As an estimation, we can

use the probability mentioned in [2] for an upper bound on

the probability and to reach epoch 7000: (1−(1−β0)
8)7000 is

equal to 1.01×10−121 for β0 = 1/3. This negates all strategies

of Byzantine validators that would need the probabilistic

bouncing attack to last that long.

However, as Figure 10 shows, with β0 nearing 1/3, Byzan-

tine validators realistically have a high probability of quickly

exceeding 1/3 of the stake, especially when considering the

significant factor of the attack occurring on two branches.

Meaning that if a validator is active during an epoch on

one branch, it is inactive on the other. Hence, the probability

can be doubled for each curve. We can comprehend this by

considering the case of β0 = 1/3: after two epochs, the

Byzantine validators have been active on each branch once.

If one branch has more validators that have been active on it

for two epochs, the other branch will have honest validators

incurring, on average, more penalties than the Byzantine

validators. On this latter branch, the Byzantine stake will

represent more than one-third of the total stake.

These results imply that, theoretically, within the syn-
chronous period and with a proportion of Byzantine stake
sufficiently close to 1/3 as well as a favorable initial setup,
the probabilistic bouncing attack can pose a threat to the
blockchain by allowing Byzantine validators to exceed the
safety threshold of 1/3.

VI. RELATED WORK

While mechanisms similar to Ethereum’s inactivity leak –

punishing the lack of validator activity – exist elsewhere (e.g.,

[12], [13]), to the best of our knowledge, there has not been an

analysis of the risk associated with potentially draining honest

stake in a Byzantine-prone environment.

Initial efforts were made to intertwine the study of incen-

tives with considerations of Liveness and Safety properties of

the Ethereum protocol [18]. However, this early exploration

discussed a preliminary version of the protocol [11] and did

not include an analysis of the inactivity leak. The most recent

version of the protocol by its founder [16] does not mention

this mechanism. The inactivity leak still lacks a detailed

examination, our work aims at filling this gap.

An investigation linking attestation penalties with the ac-

tions of Byzantine validators is presented in [19]. This work

Fig. 10. We represent here Equation 24 according to time with various β0.

demonstrates how Byzantine validators can maliciously cause

penalties for honest validators. Although similar in the en-

terprise, we differ since we focus on penalties predominant

during the inactivity leak, i.e., the inactivity penalties and

slashing, since during this period attestation penalties tend to

be less significant.

On another line of research, some works study consensus

protocols through the lens of game-theory (e.g., [20]–[27]),

where all agents are rational, i.e, they behave strategically and

have a maximization objective. This work differs from them on

many aspects, first, we study the Ethereum PoS protocol, and

second, instead of considering rational agents, we analyze the

impact classical agents considered in the distributed computing

literature (correct and Byzantine) have on the Safety properties

of the protocol under these incentive mechanisms.

VII. DISCUSSION & CONCLUSION

This paper presents the first theoretical analysis of the inac-

tivity leak, designed to restore finalization during catastrophic

network failure. We point out situations where Byzantine
actions expedite the loss of Safety, either with conflicting
finalization or by increasing the Byzantine proportion over
the one-third Safety threshold. Interestingly, we showcase the

possibility for Byzantine validators to exceed the one-third

Safety threshold even during synchronous periods.

Our findings underscore the critical role of penalty mecha-

nisms in BFT analysis. By shedding light on potential issues in

the protocol design, we offer insights for future improvement

and give tools to investigate them.

ACKNOWLEDGMENT

We thank the DSN2024 reviewers for their detailed feed-

back and valuable suggestions, which helped improve our

paper.

64

REFERENCES

[1] J. Neu, E. N. Tas, and D. Tse, “Ebb-and-flow protocols: A resolution of
the availability-finality dilemma,” in 42nd IEEE Symposium on Security
and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021. IEEE,
2021, pp. 446–465.

[2] U. Pavloff, Y. Amoussou-Guenou, and S. Tucci Piergiovanni, “Ethereum
proof-of-stake under scrutiny,” in Proceedings of the 38th ACM/SIGAPP
Symposium on Applied Computing, SAC 2023, Tallinn, Estonia, March
27-31, 2023. ACM, 2023, pp. 212–221.

[3] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in
Proceedings of the Third USENIX Symposium on Operating Systems
Design and Implementation (OSDI), New Orleans, Louisiana, USA,
February 22-25, 1999. USENIX Association, 1999, pp. 173–186.

[4] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” in Advances in
Cryptology - CRYPTO 2017 - 37th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings,
Part I, ser. Lecture Notes in Computer Science, vol. 10401. Springer,
2017, pp. 357–388.

[5] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized business review, 2008.

[6] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[7] L. Astefanoaei, P. Chambart, A. D. Pozzo, T. Rieutord, S. Tucci
Piergiovanni, and E. Zalinescu, “Tenderbake - A solution to dynamic
repeated consensus for blockchains,” in 4th International Symposium
on Foundations and Applications of Blockchain 2021, FAB 2021, May
7, 2021, University of California, Davis, California, USA (Virtual
Conference), ser. OASIcs, vol. 92, 2021, pp. 1:1–1:23.

[8] E. Buchman, J. Kwon, and Z. Milosevic, “The latest gossip on BFT
consensus,” CoRR, vol. abs/1807.04938, 2018.

[9] E. A. Brewer, “A certain freedom: thoughts on the CAP theorem,”
in Proceedings of the 29th Annual ACM Symposium on Principles of
Distributed Computing, PODC 2010, Zurich, Switzerland, July 25-28,
2010. ACM, 2010, p. 335.

[10] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services,” Acm Sigact News,
vol. 33, no. 2, pp. 51–59, 2002.

[11] V. Buterin and V. Griffith, “Casper the friendly finality gadget,” CoRR,
vol. abs/1710.09437, 2017.

[12] G. Wood, “Polkadot: Vision for a heterogeneous multi-chain frame-
work,” White paper, vol. 21, no. 2327, p. 4662, 2016.

[13] L. Goodman, “Tezos—a self-amending crypto-ledger white paper,”
URL: https://www. tezos. com/static/papers/white paper.pdf, vol. 4, pp.
1432–1465, 2014.

[14] C. Dwork, N. A. Lynch, and L. J. Stockmeyer, “Consensus in the
presence of partial synchrony,” J. ACM, pp. 288–323, 1988.

[15] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in
Proceedings of the Third USENIX Symposium on Operating Systems
Design and Implementation (OSDI), New Orleans, Louisiana, USA,
February 22-25, 1999. USENIX Association, 1999, pp. 173–186.

[16] V. Buterin, D. Hernandez, T. Kamphefner, K. Pham, Z. Qiao, D. Ryan,
J. Sin, Y. Wang, and Y. X. Zhang, “Combining ghost and casper,” arXiv
preprint arXiv:2003.03052, 2020.

[17] B. Edgington, A technical handbook on Ethereum’s move to proof of
stake and beyond. ETH2 Book, 2023-.

[18] V. Buterin, D. Reijsbergen, S. Leonardos, and G. Piliouras, “Incentives
in ethereum’s hybrid casper protocol,” Int. J. Netw. Manag., vol. 30,
no. 5, 2020.

[19] M. Zhang, R. Li, and S. Duan, “Max attestation matters: Making honest
parties lose their incentives in ethereum pos,” IACR Cryptol. ePrint
Arch., p. 1622, 2023.

[20] Y. Amoussou-Guenou, B. Biais, M. Potop-Butucaru, and S. Tucci
Piergiovanni, “Rational vs byzantine players in consensus-based
blockchains,” in Proceedings of the 19th International Conference on
Autonomous Agents and Multiagent Systems, AAMAS ’20, Auckland,
New Zealand, May 9-13, 2020, 2020, pp. 43–51.

[21] Y. Amoussou-Guenou, B. Biais, M. Potop-Butucaru, and S. Tucci-
Piergiovanni, “Committee-Based Blockchains as Games between Op-
portunistic Players and Adversaries,” The Review of Financial Studies,
vol. 37, no. 2, pp. 409–443, 06 2023.

[22] B. Biais, C. Bisiere, M. Bouvard, and C. Casamatta, “The blockchain
folk theorem,” The Review of Financial Studies, vol. 32, no. 5, pp. 1662–
1715, 2019.

[23] I. Eyal and E. G. Sirer, “Majority is not enough: bitcoin mining is
vulnerable,” Commun. ACM, vol. 61, no. 7, pp. 95–102, 2018.

[24] M. Fooladgar, M. H. Manshaei, M. Jadliwala, and M. A. Rahman, “On
incentive compatible role-based reward distribution in algorand,” in 50th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2020, Valencia, Spain, June 29 - July 2, 2020. IEEE,
2020, pp. 452–463.

[25] J. Y. Halpern and X. Vilaça, “Rational consensus: Extended abstract,” in
Proceedings of the 2016 ACM Symposium on Principles of Distributed
Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016, G. Gi-
akkoupis, Ed. ACM, 2016, pp. 137–146.

[26] M. H. Manshaei, M. Jadliwala, A. Maiti, and M. Fooladgar, “A game-
theoretic analysis of shard-based permissionless blockchains,” IEEE
Access, vol. 6, pp. 78 100–78 112, 2018.

[27] T. Roughgarden, “Transaction fee mechanism design for the ethereum
blockchain: An economic analysis of EIP-1559,” CoRR, vol.
abs/2012.00854, 2020.

65

