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Abstract

Introduction: An accurate and reliable detection of soil physicochemical attributes (SPAs) is a difficult and complicated
issue in soil science. The SPA may be varied spatially and temporally with the complexity of nature. In the past, SPA
detection has been obtained through routine soil chemical and physical laboratory analysis. However, these laboratory
methods do not fulfill the rapid requirements. Accordingly, diffuse reflectance spectroscopy (DRS) can be used to
nondestructively detect and characterize soil attributes with superior solution. In the present article, we report a study
done through spectral curves in the visible (350–700 nm) and near-infrared (700–2500 nm) (VNIR) region of 74 soil
specimens which were agglomerated by farming sectors of Phulambri Tehsil of the Aurangabad region of Maharashtra,
India. The quantitative analysis of VNIR spectrum was done.

Results: The spectra of agglomerated farming soils were acquired by the Analytical Spectral Device (ASD) Field spec 4
spectroradiometer. The soil spectra of the VNIR region were preprocessed to get pure spectra which were the input for
regression modeling. The partial least squares regression (PLSR) model was computed to construct the calibration
models, which were individually validated for the prediction of SPA from the soil spectrum. The computed model was
based on a correlation study between reflected spectra and detected SPA. The detected SPAs were soil organic carbon
(SOC), nitrogen (N), soil organic matter (SOM), pH values, electrical conductivity (EC), phosphorus (P), potassium (K), iron
(Fe), sand, silt, and clay. The accuracy of the PLSR model-validated determinant (R2) values were SOC 0.89, N 0.68, SOM
0.93, pH values 0.82, EC 0.89, P 0.98, K 0.82, Fe 0.94, sand 0.98, silt 0.90, and clay 0.69 with root mean square error of
prediction (RMSEP) 3.51, 4.34, 2.66, 2.12, 4.11, 1.41, 4.22, 1.56, 1.89, 1.97, and 9.91, respectively. According to the
experimental results, the VNIR-DRS was better for detection of SPA and produced more accurate predictions for SPA.

Conclusions: In conclusion, the methods examined here offered rapid and novel detection of SPA from reflectance
spectroscopy. The outcome of the present research will be apt for precision farming and decision-making.
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squares regression (PLSR), Spectral pre-treatment, Nondestructive technique, Soil spectral features
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Introduction
An accurate and advanced detection of soil physicochemi-
cal attribute (SPA) is a tricky issue in soil science which is
requisite for precision farming, environmental monitoring,
decision-making, and planning. However, soils are more
heterogeneous and dynamic in nature than air and water.
In addition, the structure, study and processes of soils are
also complicated and formidable both spatially and tem-
porally. With reference to the past experiences, the cus-
tomary laboratory investigations were made to detect the
soil chemical and physical attributes using hazardous
compounds. However, these laboratory methods are
time-consuming, expensive, and labor-intensive. Conse-
quently, there is a universal need to develop speedy and
less expensive methods to detect the SPA (Anne et al.
2014; Bilgili et al. 2010; Das et al. 2015; Rossel et al. 2006,
2016; Vibhute and Gawali 2013). Accordingly, neoteric re-
search has suggested that the usage of VNIR (350–
2500 nm)-DRS could be an inexpensive prognostication of
SPA that may be used to improve or replace the custom-
ary ways of soil analysis overcoming some of the limita-
tions. The VNIR-DRS is productive, rapid, non-wasting,
non-destructive, and more accurate as compared to cus-
tomary ways. The in situ method provides information
about the SPA without perilous compounds (Awiti et al.
2008; Bilgili et al. 2010; Brown et al. 2006; Demattê et al.
2010; Rossel et al. 2006, 2016; Srivastava et al. 2017; Udel-
hoven et al. 2003; Zornoza et al. 2008). In addition, a sin-
gle spectrum of soils provides information about the
various SPA and the methods are adaptable for on-the-go
at the field (Rossel et al. 2006). Nevertheless, single reflect-
ance spectra of soil may be diminished by the physico-
chemical attributes of the soil and the controlled
laboratory conditions may provide variable physicochemi-
cal attributes of soils which are difficult to determine dir-
ectly (Ben-Dor et al. 1999, 2002; Ben-Dor and Banin
1994).
The digital soil exploration and its physicochemical at-

tributes detection along with appraisal of it is somewhat
formidable task due to availability of various SPA in
soils. The varied effect of various attributes of planet
surface that can affect the reflectance spectra of soils.
The premise of detecting and estimating SPA using
VNIR-DRS analysis under laboratory conditions was ex-
tensively tested by scientists with some limits. Over the
past few decades, many scientists have demonstrated
that reflectance spectra of soil in the VNIR region can
detect and predict the SPA along with its classification
and mapping with hyperspectral datasets (Anne et al.
2014; Ben-Dor et al. 2002; Vibhute et al. 2015). For in-
stance, Rossel et al. (2016) developed a soil spectral li-
brary and predicted some soil properties such as soil
organic and inorganic carbon, pH, sand, silt, clay, cation
exchange capacity (CEC), and iron contents of all land

cover soils. The machine learning approach was used to
predict the soil attributes (Rossel et al. 2016). Spectral
models were developed based on PLSR to estimate the
soil properties at densely covered regions with coastal
vegetations. The predicted soil attributes were SOM, la-
bile carbon, labile nitrogen, silt, and clay with good ac-
curacy (Anne et al. 2014). VNIR and mid-infrared or
combined DRS were compared simultaneously to deter-
mine the combined information generated improved
outcomes of soil properties than each of the individual
regions. The PLSR model was implemented to calculate
calibration models for extraction of soil properties such
as soil pHca, pHw, CEC, lime requirements, organic car-
bon, exchangeable calcium (Ca) and aluminum (Al), ni-
trogen, phosphorous, potassium, sand, clay, silt, and EC.
The results were varied according to the reflectance re-
gions of spectroscopy for the predictions of individual
attributes (Rossel et al. 2006). The raw reflectance spec-
tra of soils may give the unacceptable results due to er-
rors found in data while recording the spectra by the
devices. Consequently, spectral data of soil can transfer
with derivatives and smoothing methods to reconstruct
the raw data. The study has been carried out by (Bilgili
et al. 2010) using the first-order derivative transform-
ation (FDT) and Savitzky–Golay (SG) methods along
with PLSR and multivariate adaptive regression splines
(MARS) models for obtaining soil properties.
The methodology is well established in soil science to

predict the soil properties with various methods using
VNIR-DRS regions for various soil groups. However, the
spatial and temporal variability of soils in addition to
methods used to detect and predict the soil properties
have several limitations to some extent. Moreover, the
literature reveals the less attention in the farming sectors
for rapid detection of spatial information of SPA which
allows management and planning to use fertilizers to the
crop growth while increasing the farming productivity
with decreasing risks of farming droughts.
Under this constraint, efforts have been made to detect

and predict the SPA from the farming soils. The goal of
this study is to develop statistical models which predict
soil attributes belong to the nutrients and soil textures
which are imperative to crop growth from the farming
sectors. The main objectives of the study were (1) to study
the VNIR-DRS regions to detect and predict the SPA from
farming sites, (2) to reconstruct the raw spectra by
pre-treatment methods (Savitzky–Golay and derivatives),
and (3) to develop PLSR-based statistical models from
VNIR-DRS regions which predict soil attributes belong to
the nutrients and soil textures. As per literature, very few
studies have been done for SPA from farming sites for the
region. The present manuscript is arranged in four sec-
tions. The first section introduces the challenges of the re-
lated study with advancement of VNIR-DRS hyper

Vibhute et al. Ecological Processes  (2018) 7:26 Page 2 of 12



spectral remote sensing datasets with background study.
The second section highlights the geographic location of
the studied site, soil sampling and chemical analysis strat-
egy, spectral measurements by the ASD instrument, spec-
tral pre-treatment with its renovation, statistical modeling,
chemometrics analysis using PLSR model, and its preci-
sion evaluation. Experimental results were explained in
the third section with detailed discussion. Conclusion and
future scope have been given in the fourth section.

Materials and Methods
The study site
The study site (Fig. 1) was selected which covers near
about 72 km2 area of Kanhori, Pimpalgaon Walan, Pal,
and Wanegaon rural areas in Phulambri Taluka of
Aurangabad district, Maharashtra, India. The soil speci-
mens were agglomerated from a study region on the ex-
perimental farming sectors of said region geologically to
be located at 19°28′43.27″–20°24′52.19″ N latitude and
75°13′10.75″–75°30′14.87″ E longitude. The study site
has a complex nature with hills (Vibhute et al. 2016). The
site has a semiarid atmosphere at an elevation of 580 m
above the sea level with an average annual temperature as
17 to 33 °C and an annual average precipitation of
710 mm. The surface soil type of the site is black cotton
soil and mostly textured as sandy loam in the studied site.

Soil sampling and chemical analyses
The topsoil (0–20 cm) soil specimens were agglomerated
from 72-km2 farming sectors in airtight containers. The

soil sampling was implemented during the period of 10
February–25 March, 2015, just after the harvest of cot-
ton, wheat, and Jowar crops in between 0800 to 1330 h
with clear climate. The surface crop/plant relics were re-
moved by hands while agglomerating the specimens in
airtight containers. An exhaustive 74 specimens was ag-
glomerated, air-dried, and passed through a 2-mm sieve.
The specimens were uniformly alienated into two por-
tions which were used for determining the reflected
spectra of soils and SPA, respectively. The soil in the site
consisted of mainly deep and medium black cotton with
sandy loam texture (Balpande 2013). A number of 15
soil specimens were used for calibration set and the rest
of the 59 specimens were used for a validation set from
the random 74 specimens.
The components of SPA for our study were SOC, N,

SOM, pH values, EC, P, K, Fe, sand, silt, and clay. The
chemical analyses of soil attributes were performed at the
“MIT Soil and Water Testing Laboratory”, Aurangabad,
Maharashtra, India. The SPAs were analyzed by standard
laboratory methods. Soil particle size (soil textures) distri-
butions were determined by the Bouyoucos hydrometer
method (Bouyoucos 1927). The potassium dichromate
method was used for the analysis of SOM content. Soil
pH was determined in water with 1:2 (soil:water ratio)
using a glass electrode pH meter (Eckert and Sims 1995)
and EC in soil using a conductivity meter (Jackson 1973).
The K concentrations of the soil extracts were calculated
by a flame photometer (Jackson 1973). The SOC and N
were determined by the Thermo Quest EA 1112 elemental

Fig. 1 The geographical location of the study site
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analyzer. P was analyzed by calorimetrically (molybdenum
blue) method.

Spectral measurements using the ASD
The reflected spectra of each soil specimen were mea-
sured using the ASD Field Spec 4 spectroradiometer
(Fig. 2a) (https://www.asdi.com/) at VNIR wavelengths
ranging from 0.35 to 2.5 μm, yielding a total of 2151
data values per spectrum. The measuring was instantly
after the specimen agglomeration from farming sectors.
The instrument has high spectral resolution with 3 nm
for 350–1000 nm and 10 nm for 1000–2500 nm along
with sampling intervals 1.4 and 2 nm for each range.
Specimens were placed at the bottom of a 4-cm diameter
Petri dish using a high-intensity source probe. This instru-
ment uses a 75-W tungsten quartz halogen filament lamp
as a light source for illuminating the specimens. The lamp
was set as 60° of zenith angle at a distance of 45 cm above
the soil specimen. The reflected light was collected in
1-nm bandwidths between 0.35 and 2.5 μm with 8°
field-of-view (FOV) fiber-optic cable of spectroradiometer
that was kept off-nadir at a distance of 15 cm above the

soil specimen. The instrument was optimized and cali-
brated using white spectralon for obtaining absolute
reflectance for controlled laboratory readings before speci-
mens were recorded (Hatchell 1999). The average of 10
spectra was recorded at each specimen to minimize noise
produced by the instrument for obtaining the final
spectra. The RS3 (version 6.3) inbuilt software was used to
record the reflected spectra.

Spectral pre-treatment and renovation
The fringe spectra 350–399 nm and 2451–2500 nm were
omitted prior to performing statistical analysis as these
were found to be background or low-signal-to-noise pro-
duced by the instrument, leaving 2051 waveband predic-
tors between 400 and 2450 nm (Fig. 3a) (Hatchell 1999;
Rossel et al. 2006). The reflectance spectra were trans-
ferred from .asd file to ASCII and exported in batches
by View Spec Pro (6.0.11) designed by ASD Inc.
The spectral data were renovated by FDT (Savitzky

and Golay 1964) with SG smoothing in Unscrambler X
10.5 software CAMO, Norway. The mathematical for-
mation of SG smoothing method is formulized by Eq. 1.

Fig. 2 a The ASD Field spec 4 spectroradiometer with optical setup and b acquired raw spectra of all 74 specimens of soils

Fig. 3 a Fringe removed spectra and b FDT with SG smoothing of all soil specimens of the study
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Ai; SG ¼

Xj¼m

j¼−m

C j � Ai þ j

N
ð1Þ

where Ai, SG is the smoothed and Ai is the original re-
flectance value, Cj is the filter coefficients, j is the run-
ning index of the original data in the original data table
and N is the number of convoluting integers (Savitzky
and Golay 1964).
The mathematical treatments of the SG transformation

were 2, 1, 2, and 5, which refer to the order of polynomial,
order of derivative, first smoothing point, and second
smoothing point, respectively. The FDT and SG smooth-
ing was used to process all the spectral data to smooth the
spectra and to eliminate the particle size effects and noise
produced by illumination variations (Bilgili et al. 2010;
Tsai and Philpot 1998). It is found to be an optimal spec-
tral pre-treatment in alike studies (Awiti et al. 2008; Bilgili
et al. 2010; Srivastava et al. 2017). The SPAs were detected
by the first derivative transferred spectra which generally
augment the absorption features. Finally, combination of
FDT with SG smoothing method was used in predicting
the soil attributes.

Statistical modeling
A number of 74 specimens was randomly separated into
two subsets viz. calibration (15) and validation (testing)
(59) datasets. The predictions of SPA were based on
cross-validation of all specimens used in the calibration
and afterward to test the precision of predictions with val-
idation datasets. The correlation studies were performed
between SPA and their respective predictor variables
(spectral reflectance) using the statistical analysis. The
calibration between reflectance of soil and its SPA were
carried out in Unscrambler X 10.5 software CAMO,
Norway, via PLSR-based chemometric analysis approach.

Chemometric analyses
The renovated spectra by pre-treatment methods were used
to implement PLSR-based models with leave-one-out
cross-validation and were used to calibrate the spectral data
with the reference (laboratory) data of soil.

Partial least squares regression (PLSR)-based modeling
PLSR is a widely acceptable modeling method in chemo-
metrics and is normally used in quantitative reflectance
spectroscopy data analyses. The PLSR is a linear mul-
tiple regression method which merges and generalizes
the features from multiple regression and principal
component regression. The two matrices X and Y are
relatively used using a linear multivariate model. It is
also used to construct the predictive model using highly
correlated spectral variables while reducing the

unwanted spectral bands. The PLSR decomposes the X
and Y variables with finding new latent variables and se-
lects successive orthogonal factors that maximizes the
covariance between predictor (X-soil reflectance) and re-
sponse variables (Y-measured SPA by laboratory data).
In the fitting of the PLSR model, the selection of the
number of the latent variables is critical to prevent the
data that explain most of the variation in both predictors
and responses. Consequently, proper fitting of the data
is very important which were obtained by cross-valid-
ation (Bilgili et al. 2010; Rossel et al. 2006; Qiao et al.
2017). The basic idea behind the PLSR model is to look
for components T that allow us to decompose the block
of predictors (Eq. 2),

X ¼ T � PT þ Residuals Eð Þ ð2Þ
and predict the response variables (Eq. 3),

Y ¼ T � C þ Error fð Þ ð3Þ
where X and Y are the mean-centered matrices that con-
tain the predictor and response variables, respectively. P
and C are the factor loadings, and E and f are the matri-
ces of residuals and errors, respectively (Rossel et al.
2006; Lin et al. 2016).

Prediction accuracy assessment of models
The prediction accuracy of the models was used for each
soil attributes based on PLSR method and was tested
using coefficient of determination (R2) values, RMSEP,
and ratio of performance to deviation (RPD) by Eqs. 4,
5, and 6, respectively. The best model was chosen based
on higher values of R2 and lower values of RMSEP. The
lower the RMSEP and the higher the R2 indicate a more
accurate and stable model.

R2 ¼ 1−

Xn

i¼1

Ymeas−Ypred
� �2

Xn

i¼1

Y i−Ymeanð Þ2
ð4Þ

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

Ypred−Ymeas
� �2

s
ð5Þ

RPD ¼ SDval:=RMSEP ð6Þ
where Ymeas is the measured value (SPA), Ypred is the
predicted theoretical value, Ymean is the mean of mea-
sured values, n is the number of measured/predicted
values with i = 1, 2, 3,…,n, SDval. is standard deviation
of measured values in the validation set, and RMSEP is
the root mean square error of prediction of validation
dataset (Bilgili et al. 2010; Srivastava et al. 2017;
Zornoza et al. 2008).
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Results and discussion
Raw spectra and pre-treatment
The fringe removed spectra of 74 specimens as dis-
cussed in the earlier “Spectral pre-treatment and renova-
tion” section are exposed in Fig. 3a and b. Figure 2b
shows the raw spectra derived by the ASD instrument
(Fig. 2a) with the wavelength 350–2500 nm of 74 soil
specimens which are having unwanted noise in fringe
spectra. Consequently, firstly fringe spectra were elimi-
nated (Fig. 3a and b) from the processing to avoid the
said noises which are generally present in the wavelength
350–399 nm and 2451–2500 nm. The fringe removed
hyper spectral data has also much more spectral chan-
nels which is very complicated for computation.

Chemical composition (laboratory analysis) and correlation
of soil attributes
The statistics of the SPA of the processed soil specimens
studied under laboratory conditions are given in Table 1.
Table 1 shows that the SOC was ranged between 0.123

and 0.161 g kg−1 with more soil specimens having fewer

values than 0.13 g kg−1. The soil pH values ranged from
7.14 to 8.42 which mean more soil specimens were having
less than 7.95 pH values, which indicated that the soil
from the studied region was good for farming practices.
The total average nitrogen was below than 226 mg kg−1,
whereas SOM concentration was average 50.46 g kg−1.
The EC values vary from 0.25 to 0.46 d Sm−1 where values
were less than 0.36 d Sm−1. The average values of P, K,
and Fe were 37.41, 1937.06, and 1.85 mg kg−1, respect-
ively. The textural classes of soils were also calculated in
the terms as sand, silt, and clay with average values
230.37, 236.11, and 77.63 g kg−1, respectively. The silt con-
centrations were higher values than sand and clay tex-
tures. The textural class silt was varied from 97 to
876 g kg−1 and sand was varied between 89 and
765 g kg−1 along with clay varied between 109 and
398 g kg−1. The correlation matrix of measured soil attri-
butes is given in Table 2.
The soil attributes such as SOC, N, SOM, pH, EC, P, K,

Fe, sand, silt, and clay were correlated to each other with
both positive and negative sides. The SOC is strongly cor-
related with N, SOM, pH, and EC, and negatively corre-
lated to P and Fe. The SOM is positively correlated to pH
values, EC, Fe, silt, and clay, and negatively correlated to P,
K, and sand. The pH is negatively correlated to EC values,
K, and sand, whereas Fe is moderately correlated to sand
and silt while negatively correlated to clay. The P is
positively correlated to Fe, sand, and clay whereas K is
positively correlated to Fe, silt, and clay. Sand is negatively
correlated to silt and clay.

Spectral reflectance characteristics of soil and its relationship
with attributes in soil
The soil reflectance curve is affected by the physico-
chemical attributes of soil. The major physical attributes
of the soil which affect the spectral reflectance curve are
soil moisture, soil structure, soil texture, soil color, soil
surface conditions, etc. along with soil chemical

Table 1 Statistical summary of the SPA analyzed using
conventional laboratory methods

Soil attributes Min Max Mean Std. deviation

SOC (g kg−1) 0.12 0.16 0.13 0.72

N (mg kg−1) 212.23 250.88 226.66 14.98

SOM (g kg−1) 9.12 134.87 50.46 39.09

pH values 7.14 8.42 7.95 0.35

EC (d Sm−1) 0.25 0.46 0.36 0.07

P (mg kg−1) 21.27 81.29 37.41 15.26

K (mg kg−1) 773.12 3308.94 1937.06 800.12

Fe (mg kg−1) 0.926 2.994 1.85 0.89

Sand (g kg−1) 89 765 360 230.37

Silt (g kg−1) 97 876 388.06 236.11

Clay (g kg−1) 109 398 193 77.63

Table 2 Correlation matrix of measured soil attributes

SOC N SOM pH EC P K Fe Sand Silt Clay

SOC 1 0.95 − 0.99 0.85 0.86 − 0.90 0.90 − 0.87 0.88 0.90 0.96

N 0.95 1 − 0.97 0.87 0.88 0.88 − 0.89 0.85 − 0.76 0.93 − 0.87

SOM − 0.99 − 0.97 1 − 0.86 0.89 − 0.87 − 0.67 0.89 − 0.65 0.94 0.96

pH 0.85 0.87 − 0.86 1 − 0.90 0.84 − 0.77 0.86 − 0.53 0.97 0.95

EC 0.86 0.88 0.89 − 0.90 1 0.87 0.45 0.94 − 0.76 − 0.76 0.81

P − 0.90 0.88 − 0.87 0.84 0.87 1 − 0.65 0.76 0.89 − 0.85 0.84

K 0.90 − 0.89 − 0.67 − 0.77 0.45 − 0.65 1 0.98 − 0.91 0.76 0.89

Fe − 0.87 0.85 0.89 0.86 0.94 0.76 0.98 1 0.92 0.78 − 0.67

Sand 0.88 − 0.76 − 0.65 − 0.53 − 0.76 0.89 − 0.91 0.92 1 − 0.98 − 0.56

Silt 0.90 0.93 0.94 0.97 − 0.76 − 0.85 0.76 0.78 − 0.98 1 0.99

Clay 0.96 − 0.87 0.96 0.95 0.81 0.84 0.89 − 0.67 − 0.56 0.99 1
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attributes SOM, Fe, carbonates, soil minerals, and salin-
ity of soil. The spectral reflectance of soils is decreased
by the soil attributes particularly with increase of organic
matter, soil water contents, and soil clay contents with
Fe contents (Bowers and Hanks 1965; Mitran et al.
2015). Figure 3a and b illustrates the fringe bands re-
moved raw spectra derived by the ASD instrument
(Fig. 2a) which was used to carry the present study along
with the FDT with the SG smoothing method. The soil
reflectance with the fringe removed spectra (Fig. 3a and
b) clearly shows that the reflectance curve of spectra
was smoothed and reflected very well and noise-free.
The visible region (400–700 nm) of the spectrum has
lower reflectance (Islam et al. 2003; Shepherd and Walsh
2002) as compared to the near-infrared (1000–2450 nm)
region which reflects high for soil. The three notable ab-
sorption peaks were identified at 1417-, 1914-, and
2209-nm bands by reflectance spectra as well as
FDT-SG methods along with clay concentrations at

Table 3 The statistical summary of the spectral models for the
soil attributes using PLSR on raw datasets (before pre-treatment)

Soil attributes Calibration set Validation set

R2 RMSE R2 RMSEP SD RPD

SOC (g Kg−1) 0.72 5.55 0.72 5.64 22.53 3.99

N (mg Kg −1) 0.54 3.75 0.48 4.03 10.36 2.57

SOM(g Kg−1) 0.71 5.69 0.68 5.89 14.76 2.50

pH Values 0.68 2.87 0.67 2.96 11.02 3.72

EC (d Sm−1) 0.80 2.07 0.77 2.27 7.95 3.50

P (mg Kg −1) 0.92 3.07 0.90 3.38 5.37 1.58

K (mg Kg −1) 0.69 5.35 0.65 5.62 8.77 1.56

Fe (mg Kg −1) 0.59 4.38 0.58 4.49 5.24 1.16

Sand (g Kg−1) 0.80 8.95 0.80 9.31 8.39 0.90

Silt (g Kg−1) 0.87 2.20 0.85 2.42 3.08 1.27

Clay (g Kg-1) 0.51 9.28 0.49 9.58 10.69 1.11

Fig. 4 Scatter plots of measured values and VNIR prediction values of SOC, SOM, pH values, EC, P, and K derived from PLSR modeling on raw
datasets (before pre-treatment)
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2200–2329 nm (Ben-Dor and Banin 1994; Islam et al.
2003). The absorption peaks at 1400 and 1900 nm are
related to water (moisture and hydroxyl ions) and clay
lattice OH features at 1400 and 2200 nm (Bilgili et al.
2010; Srivastava et al. 2017). The water absorption peaks
were usually enhanced in the FDT with SG smoothing
method (Fig. 3a and b). The correlation matrix (Table 2)
showed that SOC, N, SOM, pH values, and EC values
have significant correlation with the reflectance at 417,
436, 441, 444, 447, 480, 517, 549, 572, 617, 747, 760,
832, 847, and 980 nm. Accordingly, the results show that
there are both positive and negative correlations be-
tween soil attributes and their reflectance spectra at vari-
ous wavelengths. The highest correlation for the soil N
material (R2 = 0.95) was found at 980 nm. Some of the
other high correlations were also observed for pH values
(R2 = 0.87), EC values (R2 = 0.89), and SOM (R2 = 0.89).
The reference of Wei et al. (2017) reported the positive
correlations with reflectance spectra of N contents at

visible wavebands. The visible waveband at 417 nm was
determined as the significant wavelength along with
1000 nm (Qiao et al. 2017). The more sensitive wave-
lengths for N, SOC, and SOM were found at 403, 470,
687, and 846 nm for N; at 400, 409, 441, and 907 nm for
SOC; and at 400, 441, 832, and 907 nm for SOM (Gmur
et al. 2012).

Prediction of attributes in soil based on PLSR modeling
The random cross-validation method along with kernel
PLS of PLSR was used on both raw datasets (Table 3,
Figs. 4 and 5) and FDT with the SG smoothing datasets
(Table 4, Figs. 6 and 7) to test the prediction accuracy
for soil attributes. The soil attributes such as SOC
(R2 = 0.72 and RMSE = 5.55), SOM (R2 = 0.71 and
RMSE = 5.69), pH values (R2 = 0.68 and RMSE = 2.87),
EC (R2 = 0.80 and RMSE = 2.07), P (R2 = 0.92 and RMSE
= 3.07), K (R2 = 0.69 and RMSE = 5.35), sand (R2 = 0.80
and RMSE = 8.95), and silt (R2 = 0.87 and RMSE = 2.20)

Fig. 5 Scatter plots of measured values and VNIR prediction values of Fe, sand, silt, clay, and N derived from PLSR modeling on raw datasets
(before pre-treatment)
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were well calibrated before its pre-treatments. Table 3
describes the statistics resulted from PLSR modeling with
its calibration (R2 values and RMSE) and validation
(R2 values, RMSEP, SD, and RPD) before the use of FDT
with the SG smoothing methods. Figures 4 and 5 depict
the scatter plot of measured values and VNIR prediction
values of all soil attributes derived from PLSR models be-
fore its pre-treatment.
Higher regression coefficients (R2) were obtained for

all the PLSR models developed for predicting the soil
attributes in the calibration sets. The prediction results
of raw datasets (before the pre-treatment explained in
the “Spectral pre-treatment and renovation” section)
obtained satisfactory values for SOC (R2 = 0.72 and
RMSEP = 5.64), SOM (R2 = 0.68 and RMSEP = 5.89), pH
values (R2 = 0.67 and RMSEP = 2.96), EC (R2 = 0.77 and
RMSEP = 2.27), P (R2 = 0.90 and RMSEP = 3.38), K
(R2 = 0.65 and RMSEP = 5.62), sand (R2 = 0.80 and
RMSEP = 9.31), and silt (R2 = 0.85 and RMSE = 2.42).

Table 4 Statistics summary of the spectral models for the soil
attributes using PLSR on FDT with the SG smoothing datasets
(after pre-treatment)

Soil
attributes

Calibration set Validation set

R2 RMSE R2 RMSEP SD RPD

SOC (g kg−1) 0.90 3.28 0.89 3.51 7.72 2.19

N (mg kg−1) 0.72 3.95 0.68 4.34 9.25 2.13

SOM(g kg−1) 0.94 2.47 0.93 2.66 6.15 2.31

pH values 0.86 1.90 0.82 2.12 4.31 2.03

EC (d Sm−1) 0.90 3.65 0.89 4.11 5.47 1.33

P (mg kg−1) 0.98 1.39 0.98 1.41 2.56 1.81

K (mg kg−1) 0.84 4.05 0.82 4.22 6.25 1.48

Fe (mg kg−1) 0.95 1.48 0.94 1.56 3.34 2.14

Sand (g kg−1) 0.98 1.79 0.98 1.89 3.37 1.78

Silt (g kg−1) 0.93 1.62 0.90 1.97 3.43 1.74

Clay (g kg−1) 0.70 9.48 0.69 9.91 13.18 1.32

Fig. 6 Scatter plots of measured values and VNIR prediction values of SOC, SOM, pH values, EC, P, and K derived from PLSR modeling on FDT
with the SG smoothing datasets (after pre-treatment)
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The soil attributes such as N, Fe, and clay were moder-
ately calibrated and validated (Table 3) as compared to
other soil attributes. Table 4 summarizes PLSR
cross-validation statistics for the soil attributes after the
use of pre-treatment methods (FDT with the SG
smoothing). The PLSR method was evaluated using
cross-validation R2 and RMSEP with RPD (Table 4) for
various soil attributes. Figures 6 and 7 demonstrate the
scatter plot of measured values and VNIR prediction
values of all soil attributes derived from PLSR models after
its pre-treatment by FDT-SG methods.
The evaluation of the accuracy for prediction perfor-

mances of the PLSR models for various soil attributes
was estimated based on R2, RMSEP, and RPD values
achieved in the independent validation set, both of raw
datasets and transferred datasets by SG-FDT method
(Tables 3 and 4). The value of R2 demonstrates the

percentage of the variation in the dependent variable that is
accounted for the independent variables. The RMSEP value
estimates the variation of predicted values around mea-
sured values, and as this approaches to zero, prediction per-
formance of the equation improves (Srivastava et al. 2017).
The prediction of accuracy has been improved by the

RPD factor as compared to using the mean composition
for all samples (Srivastava et al. 2017). Chang et al. (2001)
have predicted the quality of soil attributes using
VNIR-DRS is based on RPD values. The RPD factor has
categorized into three ranges of RPD values as > 2.0, 1.4–
2.0, and < 1.4 which indicate the excellent, acceptable, and
poor predictions, respectively. They recommended that
the predictions between the ranges 1.4 and 2.0 could be
gained by various calibration approaches. On the other
hand, the properties of the ranges < 1.4 may not be reli-
ably predicted using DRS (Chang et al. 2001). As per the

Fig. 7 Scatter plots of measured values and VNIR prediction values of Fe, sand, silt, clay, and N derived from PLSR modeling on FDT with the SG
smoothing datasets (after pre-treatment)

Vibhute et al. Ecological Processes  (2018) 7:26 Page 10 of 12



result, the developed calibration models of soil attributes
were performed better for RPD values for all soil attributes
excluding Fe, sand, silt, and clay on the raw datasets and
EC with clay on the FDT-SG datasets as indicated in
Tables 3 and 4. The high RPD values of SOC, N, SOM,
pH, and EC were 3.99, 2.57, 2.50, 3.72, and 3.50, respect-
ively, for the raw datasets, whereas high RPD values of
SOC, N, SOM, pH, and Fe were 2.19, 2.13, 2.31, 2.03, and
2.14, respectively, for FDT-SG datasets. The acceptable
RPD values were 1.58 and 1.56 for P and K, respectively,
on raw datasets, whereas 1.81, 1.48, 1.78, and 1.74 for P,
K, sand, and silt, respectively, on processed datasets.
Poor predictions were obtained for Fe, sand, silt, and
clay with RPD values between 0.90 and 1.27 on raw
datasets and EC (1.33) and clay (1.32) with RPD values
on transferred datasets. The calibration and prediction
accuracy (R2 values) of all soil attributes were increased
significantly after the pre-treatment by FDT-SG method
as the results detailed in the Table 4. The prediction re-
sults may vary based on different statistical processing
methods and derivatives of spectra (Reeves et al. 2002).
The best predictive models were obtained for SOC (R2 =
0.89 and RMSEP = 3.51), SOM (R2 = 0.93 and RMSEP =
2.66), pH values (R2 = 0.82 and RMSEP = 2.12), EC values
(R2 = 0.89 and RMSEP = 4.11), P (R2 = 0.98 and RMSEP =
1.41), K (R2 = 0.82 and RMSEP = 4.22), Fe (R2 = 0.94
and RMSEP = 1.56), sand (R2 = 0.98 and RMSEP = 1.89),
and silt (R2 = 0.90 and RMSEP = 1.97). The moderate pre-
dictions were obtained for N and clay only with R2 = 0.68
and RMSEP = 4.34 and R2 = 0.69 and RMSEP = 9.91, re-
spectively. The results found in this study are superior to
the previous study by Bilgili et al. (2010) for SOM, K, pH
values, EC values, sand, and silt with R2 = 0.93, 0.82, 0.82,
0.89, 0.98, and 0.90, respectively. The R2 values of the
present study for SOC (0.89), N (0.68), sand (0.98), silt
(0.90), clay (0.69), P (0.98), K (0.82), and EC (0.89) are
slightly better than those of the reference (Rossel et al.
2006) which were revealed for the simultaneous assess-
ment of various soil properties using visible, near-infrared,
mid-infrared, or combined diffuse spectroscopy. The clas-
sification of the soil condition was estimated using infra-
red spectroscopy and resulted coefficient of determination
(R2) of pH values (0.72), sand (0.75) and silt (0.77) which
were smaller than the values reported in Awiti et al.
(2008) as compared to the values reported here.

Conclusions
The soil attributes were detected through the
VNIR-DRS with soil specimens accumulated from
farming sectors. It is concluded that the soil attri-
butes can be detected successfully by the VNIR hyper
spectral (DRS) datasets at wavelength 400–2450 nm
with superior outcome. Our outcome demonstrated
that the potential use of VNIR spectroscopy for

detecting the soil attributes can be used in an effect-
ive manner which may be useful in precision farming
practices along with farming planning and manage-
ment. According to the current study, spectral
pre-treatment is essential to correlate the soil attri-
butes in a better way. It may be concluded that the
pre-treatment by SG-FDT method produced positive
response on the robustness of PLSR models. Major
soil nutrients were well predicted using hyper spectral
VNIR spectroscopy. Our results revealed the import-
ance of VNIR spectroscopy for the measurement of
soil properties than the conventional laboratory ap-
proaches which are costly, time-consuming, and tedi-
ous. The PLSR-based model was developed for
detecting the soil nutrients with better accuracy for
all attributes with less RMSEP values as mentioned in
Tables 3 and 4. The sensitive bands were detected for
SOC at wavelengths 436, 444, 447, 549, and 616 nm;
for N at wavelengths 480, 980, and 1702 nm; and for
SOM at wavelengths 417, 441, 832, and 907 nm. The
bands at 517, 657, 747, 1477, and 1492 nm showed
good correlations with soil pH values, whereas bands
at 572, 847, 992, 1202, 1537, 1622, and 1767 nm for
EC values. The K sensitive bands were correlated at
wavelengths 535, 1542, 1862, and 1947 nm. In con-
clusion, the pre-treatment is imperative for developing
PLSR models to extract the soil attributes from the
VNIR spectrum. The detected soil attributes were an-
alyzed by spectroscopy using the PLSR model which
may be useful in precision farming and management.
In the future scope, more soil samples will be
considered for developing better predictive models.
The detected soil attributes will be quantitatively
mapped through satellite or airborne hyper spectral
imagery for the large area.
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