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Abstract.

In this paper we study the restriction, to the class of bargaining
problems with coalition structure, of several values which have
been proposed on the class of non-transferable utility games with
coalition structure. We prove that all of them coincide with the
solution independently studied in Chae and Heidhues (2004) and
Vidal-Puga (2005a). Several axiomatic characterizations and
two noncooperative mechanisms are proposed.
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1 Introduction

In many economic and political situations, agents do not act individually
but are partitioned into unions, groups, or coalitions. Examples include
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political parties in a Parliament, wage bargaining between firms and labor
unions, tariff bargaining between countries, bargaining between the member
states of a federated country, etc.

Assuming that cooperation is carried out, one may wonder how the ben-
efit is shared between the coalitions and between the members inside each
coalition. Game Theory has addressed this issue. Several solutions have
been proposed for several kind of games. Most of these solutions have the
Harsanyi paradox (Harsanyi, 1977), which says that an individual can be
worse off bargaining as a member of a coalition than bargaining alone. This
paradox makes some solutions inadequate for some situations. Nevertheless,
in other situations this is not so relevant. For instance, when coalitions are
fixed and agents can not leave it. A good example could be a group of
countries (considered as coalitions of local governments) bargaining about
the reduction of greenhouse gas emissions.

In this paper, we focus on bargaining problems where agents are parti-
tioned into coalitions. Recently, several papers have studied this issue. Chae
and Moulin (2004) take an axiomatic approach whereas Vidal-Puga (2005b)
takes a non-cooperative approach. In both cases, they find rules without
the Harsanyi paradox.

Chae and Heidhues (2004) and Vidal-Puga (2005a) describe two values in
bargaining problems with coalition structure. Chae and Heidhues follow an
axiomatic approach whereas Vidal-Puga (2005a) follows a non-cooperative
approach. Both values generalize the Nash solution and have the Harsanyi
paradox. Our paper is closely related to these papers.

We also study games with transferable utility (TU games), and games
with non-transferable utility (NTU games). It is well-known that bargaining
problems and TU games can be expressed asNTU games. We mention some
solutions for TU games and NTU games with coalition structure, which are
relevant for our paper.

In TU games with coalition structure, Owen (1977) proposes a value,
which is an extension of the Shapley value (Shapley, 1953). Casas-Méndez,
García-Jurado, van den Nouweland, and Vázquez-Brage (2003) extend the
τ − value (Tijs, 1981) to TU games with coalition structure.

In NTU games with coalition structure there are several values. Winter
(1991) introduces the game coalition structure value which coincides with
the Owen value in TU games with coalition structure and with the Harsanyi
value (Harsanyi, 1963) in NTU games. Bergantiños and Vidal-Puga (2005)
introduce two values: the consistent coalitional value and the random order
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coalitional value. Both values coincide with the Owen value in TU games
with coalition structure and with the consistent value (Maschler and Owen,
1989, 1992) in NTU games. Following the classical λ− transfer procedure
we can extend values from TU games to NTU games. In particular, in
differential games Krasa, Tememi and Yannelis (2003) extend the Owen
value. Let λTC and τ −λTC be the NTU values obtained when we extend
the Owen value and the coalitional τ − value (Casas-Méndez et al., 2003),
respectively.

We prove that, in bargaining problems with coalition structure, the val-
ues proposed in Chae and Heidhues (2004) and Vidal-Puga (2005a) coincide.
We call this value δ. Moreover, the five NTU coalitional values mentioned
above also coincide with δ in bargaining problems with coalition structure.
This is the reason why we call δ a focal point solution.

Moreover, we present three new axiomatic characterizations of δ. The
first one uses the properties of Independence of Affine Transformations
(IAT ), Independence of Irrelevant Alternatives (IIA), and Unanimity Coali-
tional Game. This result is inspired in the characterization of the game
coalition structure value (Winter, 1991).

The second one uses IAT, IIA, Pareto Efficiency, Symmetry inside Coali-
tions, and Coalitional Symmetry. This result is inspired in the characteri-
zation of the Owen value (Owen, 1977).

The third one uses IAT, IIA, Pareto Efficiency, Symmetry inside Coali-
tions, and Symmetry between Exchangeable Coalitions. This result is also
inspired in the characterization of the Owen value (Owen, 1977).

Hart and Mas-Colell (1996) propose a bargaining mechanism in NTU
games. The set of limit subgame perfect equilibrium payoffs is contained
in the consistent value. This mechanism has several rounds and in each
round a proposer is randomly chosen among the active players. We modify
this mechanism in two ways following the same idea: Each possible round
is played in two levels, one of them among players inside a coalition and the
other among coalitions. We prove that in bargaining problems there exists
a unique subgame perfect equilibrium payoff that approaches δ.

The paper is organized as follows. In Section 2, we introduce the no-
tation and some previous results. In Section 3, we present the axiomatic
characterizations of δ. In Section 4, we prove that the five NTU coalitional
values coincide with δ in bargaining problems. In Section 5, we study the
non-cooperative approach. Finally, we present the proofs.
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2 Preliminaries

Let A be a finite set. We denote by |A| the number of elements of A. Let us
take x, y ∈ RA. We say y ≤ x when yi ≤ xi for each i ∈ A and y < x when
yi < xi for each i ∈ A. We denote by xy the vector (xiyi)i∈A and by x+ y
the vector (xi + yi)i∈A. Given T ( A, xT is the restriction of x to RT . We
denote by RA

+ the set
©
x ∈ RA : xi ≥ 0 for every i ∈ A

ª
and by RA

++ the set©
x ∈ RA : xi > 0 for every i ∈ A

ª
. Given γ ∈ RA

++,
1
γ is the vector

³
1
γi

´
i∈A
.

For every S ⊆ RA and γ, β ∈ RA, we define γS + β = {γx+ β : x ∈ S}.
Given θ ∈ R and x ∈ RA, we define θx as the vector (θxi)i∈A.

We consider N = {1, ..., n} the set of players.
A coalition structure C over N is a partition of the player set, i.e.,

C = {C1, ..., Cp} ( 2N where ∪Cq∈CCq = N and Cq∩Cr = ∅ whenever q 6= r.

Each Cq ∈ C is called a coalition. We denote by c ∈ RN the vector whose
ith coordinate is given by ci = |Cq| if i ∈ Cq.

A transferable utility (TU) game is a pair (N, v) where v is a charac-
teristic function that assigns to each subset T ⊆ N a number v (T ) ∈ R,
with v (φ) = 0, which represents the total utility players in T can get by
themselves when cooperate. A TU game with coalition structure is a triple
(N, v, C) where (N, v) is a TU game and C is a coalition structure over N .

The Owen value (Owen, 1977) is a function Ow which assigns to each
TU game with coalition structure (N, v, C) a vector Ow (N, v, C) ∈ RN . The
Owen value generalizes the Shapley value (Sh) (Shapley, 1953), i.e. when
C = {N} or C = {{1} , . . . , {n}} , Ow (N, v, C) = Sh (N, v).

A bargaining problem over N is a pair (S, d) where d ∈ S ( RN , there
exists x ∈ S such that x > d, and

A1. S is closed, convex, comprehensive (if x ∈ S and y ≤ x then y ∈
S), and bounded above (i.e. for all x ∈ S the set {y ∈ S : y ≥ x} is
compact).

A2. The boundary of S, ∂S, is smooth (on each point of the boundary there
exists a unique outward vector) and nonlevel (the outward vector on
each point of the boundary has all its coordinates positive).
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We denote by Λ the bargaining problem (∆, d) with

∆ =

(
x ∈ RN :

nX
i=1

xi ≤ 1
)

and di = 0 for every i ∈ N . We call (∆, d) the unanimity bargaining
problem.

The Nash solution of a bargaining problem (Nash, 1950) is the unique
point N (S, d) ∈ ∂S satisfyingY

i∈N
(Ni (S, d)− di) = max

x∈S, x≥d

Y
i∈N

(xi − di) . (1)

A bargaining problem with coalition structure is a triple (S, d, C) where
(S, d) is a bargaining problem and C is a coalition structure. By B (N) we
represent the class of all bargaining problems with coalition structure where
N is the set of agents.

A solution of a bargaining problem with coalition structure is a map
which assigns to every (S, d, C) ∈ B (N) an element of S.

In this context, Chae and Heidhues (2004) characterize the solution de-
fined by the unique point δ (S, d, C) ∈ ∂S satisfyingY

i∈N
(δi (S, d, C)− di)

1
ci = max

x∈S, x≥d

Y
i∈N

(xi − di)
1
ci . (2)

This solution is the weighted Nash solution (Kalai, 1977), Nw, with wi =
1
pci

for any i ∈ N , defined on B (N).
A non-transferable utility (NTU) game is a pair (N,V ) where V is a

correspondence which assigns to each coalition T ⊆ N a subset V (T ) ( RT .
This set represents all the possible payoffs that members of T can obtain
for themselves when play cooperatively. For each T ( N , we assume that
V (T ) satisfies A1 and that V (N) satisfies A1 and A2. A payoff configuration©
xT
ª
T⊆N is a family of vectors such that xT ∈ RT for every T ⊆ N .

NTU games generalize both TU games and bargaining problems. Any
TU game (N, v) can be expressed as an NTU game (N,V ) with

V (T ) =

(
x ∈ RT :

X
i∈T

xi ≤ v(T )

)
for all T ⊆ N.
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We say that (N,V ) is a hyperplane game if for all T ⊆ N there exists
λT ∈ RT

++ satisfying

V (T ) =

(
x ∈ RT :

X
i∈T

λTi xi ≤ v(T )

)
(3)

for some v : 2N → R. Notice that each TU game is a hyperplane game (just
take λTi = 1 for each T ⊆ N and i ∈ T ).

Any bargaining problem (S, d) can be expressed as an NTU game (N,V )
with

V (T ) =
©
x ∈ RT : x ≤ dT

ª
for all T ( N (4)

and V (N) = S.

An NTU game with coalition structure is a triple (N,V, C) where (N,V )
is an NTU game and C is a coalition structure over N . By NT U (N) we
denote the class of all NTU games with coalition structure where N is the
set of agents.

A value Γ is a correspondence which assigns to each NTU game with
coalition structure (N,V, C) a subset Γ (N,V, C) ⊆ V (N).

Notice that a solution on B (N) can be considered as a value which
assigns to each (S, d, C) a singleton.

We say a value Γ generalizes the Owen value if Γ (N, v, C) = {Ow (N, v, C)}
for each TU game with coalition structure (N, v, C).

We say that a value Γ generalizes the Nash solution if Γ (S, d, C) =
{N (S, d)} for every bargaining problem with coalition structure (S, d, C)
when C = {N} or C = {{1} , . . . , {n}}.

We say that a value Γ generalizes the solution δ if Γ (S, d, C) = {δ (S, d, C)}
for every bargaining problem with coalition structure (S, d, C).

3 Characterizations of the solution δ

In this section we present three characterizations of the solution δ defined
in (2). We introduce some definitions.

Definition 1 Let (S, d, C) ∈ B (N).

We formulate some reasonable properties of a solution defined on B (N).
Let ϕ be an arbitrary solution defined on B (N) and let (S, d, C) ∈ B (N).
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• Independence of irrelevant alternatives (IIA). Let us take (S0, d, C) ∈
B (N) such that S0 ( S and ϕ (S, d, C) ∈ S0, then ϕ (S0, d, C) =
ϕ (S, d, C).

• Invariance with respect to affine transformations (IAT). Given γ ∈
RN
++, and β ∈ RN , it holds that ϕ

¡
S̄, d̄, C

¢
= γϕ (S, d, C) + β, where

S̄ = γS + β and d̄ = γd+ β.

• Pareto efficiency (PE). There is no x ∈ S \ {ϕ (S, d, C)} such that
xi ≥ ϕi (S, d, C) for every i ∈ N .

• Unanimity coalitional game (UCG). Given the unanimity bargaining
problem (∆, d), for each coalition structure C, we have

ϕi (∆, d, C) =
1

pci

for every i ∈ N .

• Symmetry inside coalitions (SG). Given Cq ∈ C, let i, j ∈ Cq be two
symmetric agents, then ϕi (S, d, C) = ϕj (S, d, C).

• Symmetry between exchangeable coalitions (SEG). Given any pair of
exchangeable coalitions Cr, Cs, then ϕi (S, d, C) = ϕj (S, d, C) for any
i ∈ Cr and j ∈ Cs.

• Coalitional symmetry (CS). Given the unanimity bargaining problem
(∆, d), for each coalition C, we haveX

i∈Cr
ϕi (∆, d, C) =

X
i∈Cs

ϕi (∆, d, C)

for every Cr, Cs ∈ C.

Independence of irrelevant alternatives, invariance with respect to affine
transformations, and Pareto efficiency are well-known properties.

Aumann (1985) defined the property of unaminity to characterize the
Shapley-NTU value. This property says that the unanimity game4 of a
coalition has a unique value given by the equal split of the available amount.
Hart (1985) also used this property to characterize the Harsanyi value in

4Given T ⊆ N , the unanimity game of the coalition T is the TU game defined as
uT (R) = 1 if T ⊆ R ⊆ N and uT (R) = 0, otherwise.
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the context of NTU games. De Clippel, Peters, and Zank (2004) also use
this property in the characterization of the egalitarian Kalai-Samet solution
(Kalai and Samet, 1985). Winter (1991) used the property unanimity games
in his characterization of the NTU value for NTU games with coalition
structure. The unanimity coalitional game property has the same flavour in
the context of bargaining problems with coalition structure.

The property of symmetry inside coalitions establishes that two symmet-
ric agents of the same coalition obtain the same value. This property differs
from the property of symmetry proposed by Chae and Heidhues (2004).
According to the property of symmetry between exchangeable coalitions,
all members of two exchangeable coalitions receive the same amount. The
property of coalitional symmetry has the same flavour that SG but applied
to coalitions.

Next we provide our characterizations of the solution δ using these prop-
erties.

Theorem 2 1.- The solution δ is the unique solution defined on B (N)
which satisfies IIA, IAT, and UCG.

2.- The solution δ is the unique solution defined on B (N) which satisfies
PE, IIA, IAT, SG, and CS.

3.- The solution δ is the unique solution defined on B (N) which satisfies
PE, IIA, IAT, SG, and SEG.

Proof See the Appendix.

We analyze the independence of the properties in Theorem 2.

1. The properties IIA, IAT, and UCG are independent.
(a) The Nash solution satisfies IIA and IAT, but not UCG.
(b) The weighted Kalai-Smorodinsky solution (Gutiérrez-López, 1993)
with weights given by wi =

1
pci
for each i ∈ N , is defined as

ηi (S, d, C) = di + t̂
ui
pci

(5)

where for each i ∈ N ,

ui = max {t ∈ R : (d1, . . . , di−1, t, di+1, . . . , dn) ∈ S} , and

t̂ = max

½
t ∈ R++ :

µ
d1 + t

u1
pc1

, . . . , dn + t
un
pcn

¶
∈ S

¾
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satisfies IAT and UCG, but not IIA.
(c) The solution ν0 which assigns to any i ∈ N the number

ν0i (S, d, C) = di +
t̂

pci
(6)

where

t̂ = max

½
t ∈ R++ :

µ
d1 +

t

pc1
, . . . , dn +

t

pcn

¶
∈ S

¾
satisfies IIA and UCG, but not IAT.

2. The properties PE, IIA, IAT, SG, and CS are independent.
(a) The solution ν1 which assigns to each bargaining problem with
coalition structure (S, d, C) the vector d satisfies IIA, IAT, SG, and
CS, but not PE.
(b) The weighted Kalai-Smorodinsky solution defined in (5) satisfies
PE, IAT, SG, and CS, but not IIA.
(c) The solution defined in (6) satisfies PE, IIA, SG, and CS, but
not IAT.
(d) Let Nw be the weighted Nash solution where w is a vector of
weights such that wi 6= wj for any i, j ∈ Cq and

P
i∈Cq wi =

1
p , for

each coalition Cq ∈ C. This solution satisfies PE, IIA, IAT, and CS,
but not SG.
(e) The Nash solution satisfies PE, IIA, IAT, and SG, but not CS.

3. The properties PE, IIA, IAT, SG, and SEG are independent.
(a) The solution ν1 defined above satisfies IIA, IAT, SG, and SEG,
but not PE.
(b) The solution ν2 defined as

ν2 (S, d, C) =
½

δ (S, d, C) if |C| > 1
η (S, d, C) if |C| = 1

satisfies PE, IAT, SG, and SEG, but not IIA.
(c) The solution ν3 defined as

ν3i (S, d, C) = di + t̂, for every i ∈ N

where t̂ is given by

t̂ = max {t ∈ R++ : (d1 + t, . . . , dn + t) ∈ S}
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satisfies PE, IIA, SG, and SEG, but not IAT.
(d) Let w be a vector of weights such that there exist i, j ∈ N with
wi 6= wj . The solution ν4 defined as

ν4 (S, d, C) =
½

δ (S, d, C) if |C| > 1
Nw (S, d, C) if |C| = 1

satisfies PE, IAT, IIA, and SEG, but not SG.
(e) The Nash solution satisfies PE, IIA, IAT, and SG, but not SEG.

Finally, we would like to mention that there is no relationship between
the property SEG and the property of representation of an homogenous
coalition (RHG) proposed in Chae and Heidhues (2004) as we illustrate
next. For instance, the following solution ν5 which assigns to any bargaining
problem with coalitional structure (S, d, C) ∈ B (N) the point

ν5 (S, d, C) =
½

δ (S, d, C) if |N | > 3
ν4 (S, d, C) if |N | ≤ 2

satisfies SEG but not RHG. Furthermore, the solution ν0 defined in (6)
satisfies RHG but not SEG.

4 The solution δ is a focal point

In this section we show that the following values, the Game with Coali-
tion Structure (GCS) value (Winter, 1991), the Consistent Coalitional (CC)
value (Bergantiños and Vidal-Puga, 2005), the Random-Order Coalitional
(ROC) value (Bergantiños and Vidal-Puga, 2005), the λ-Transfer Coalitional
(λTC) value, and the τ -λ Transfer Coalitional (τ − λTC) value, generalize
the solution δ. Even though these values are defined in the context of NTU
games with coalitional structure, we recall the formal definitions in the con-
text of bargaining problems with coalition structure. Let (S, d, C) ∈ B (N).

The GCS value, ΦGCS, was presented by Winter (1991) as a general-
ization of the Owen value for TU games with coalition structure and the
Harsanyi value (Harsanyi, 1963) for NTU games. We say that x ∈ RN is an
element of the GCS value for (S, d, C) if there exists a vector λ ∈ RN

++ such
that λ supports S at x and moreover xi =

P
T⊆N :i∈T y

T
i where

¡
yT
¢
T⊆N is

defined inductively as follows:

y∅ = 0,
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and for every ∅ 6= T ⊆ N , given yT
0
defined for all T 0 ( T , then

zTi =
P

T 0(T :i∈T 0 y
T 0
i for every i ∈ N, and

yT =


1
λT

1
cT
max

n
t ∈ R : zT + 1

λT
1
cT
t ≤ dT

o
if T ( N

1
λT

1
cT
max

n
t ∈ R : zT + 1

λT
1
cT
t ∈ S

o
if T = N.

Then, y{i} = di for each i ∈ N . For every T ( N with |T | ≥ 2, zTi = di for
every i ∈ T and yTi = 0 for every i ∈ T . For T = N , we have

zN = d, and yN =
1

λ

1

c
max

½
t ∈ R : d+ 1

λ

1

c
t ∈ S

¾
.

Hence,

x = yN = d+
1

λ

1

c
max

½
t ∈ R : d+ 1

λ

1

c
t ∈ S

¾
, (7)

and we get that x belongs to ΦGCS (S, d, C). We will denote the set of points
which satisfies (7) as ΦGCS (S, d, C).
In case that the bargaining problem with coalition structure is given by
(Hλ, d, C) where λ ∈ RN

++ and

Hλ =

(
x ∈ RN :

X
i∈N

λixi ≤ 1
)
, (8)

ΦGCS (Hλ, d, C) is the unique vector which satisfies (7).

The CC value, ΦCC , and the ROC value, ΦROC , were proposed in
Bergantiños and Vidal-Puga (2005) as a generalization of the Owen value for
TU games with coalition structure and the consistent value (Maschler and
Owen, 1989, 1992) for NTU games. Following Vidal-Puga (2005a) we first
present an expression for any element of the CC value corresponding to any
(S, d, C). Let

©
λT ∈ RT

++ : T ⊆ N
ª
be a family of vectors and let x ∈ ∂S be

such that λN supports S at x. We recursively build a payoff configuration©
xT
ª
T⊆N as

x
{i}
i = di, for every i ∈ N,
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given xT
0
for any T 0 ( T ( N , and i ∈ T ∩Cq = C 0q,

xTi =
1

|CT |
¯̄
C 0q
¯̄
λTi

Ã P
C0r∈CT \C0q

Ã P
j∈C0q

λTj x
T\C0r
j −

P
j∈C0r

λTj x
T\C0q
j

!!

+ 1

|C0q|λTi

Ã P
j∈C0q\{i}

λTi x
T\{j}
i −

P
j∈C0q\{i}

λTj x
T\{i}
j

!
+ 1
|CT ||C0q|λTi

P
j∈T λ

T
j dj

where CT = {Cr ∩ T : Cr ∈ C}, and for T = N and i ∈ N ,

xNi =
1

pciλ
N
i

Ã P
Cr∈C\Cq

Ã P
j∈Cq

λNj x
N\Cr
j −

P
j∈Cr

λNj x
N\Cq
j

!!

+
1

ciλ
N
i

Ã P
j∈Cq\{i}

λNi x
N\{j}
i −

P
j∈Cq\{i}

λNj x
N\{i}
j

!
+

1

pciλ
N
i

P
j∈T λ

N
j xj .

By doing some algebra, we obtain that xT = dT for every T ( N . If xN = x
we say that x is a CC value for (S, d, C) and it holds that

x = d+
1

λN
1

p

1

c

X
j∈N

λNj xj −
X
j∈N

λNj dj

 . (9)

We will denote the set of points which satisfies (9) as ΦCC (S, d, C).
In case that the bargaining problem with coalition structure is given by
(Hλ, d, C) where λ ∈ RN

++ and Hλ is defined as in (8), ΦCC (Hλ, d, C) is the
unique vector which satisfies (9).

Next we present the definition of theROC value. Let
©
λT ∈ RT

++ : T ⊆ N
ª

be a family of vectors and let x ∈ ∂S be such that λN supports S at x. Let
π an order over N . For each i ∈ N , we denote by π (i) the agent i’s position
in the order defined by π and we define the set of predecessors of i under π
as

P π
i = {j ∈ N : π(j) < π(i)}.

Let ΠC be the set of all orders over N compatible with C, that means

π ∈ ΠC ⇐⇒ [for every Cq ∈ C, i, j ∈ Cq and π (i) < π (k) < π (j)⇒ k ∈ Cq] .
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Let us consider π ∈ ΠC . For each T ⊆ N and i ∈ T , the marginal contribu-
tion of player i in the order π is

eTi (π) = max

yi ∈ R :
X

j∈Pπ
i ∩T

λTj e
T
j (π) + λTi yi ≤

X
j∈(Pπ

i ∩T)∪{i}
λTj dj


whenever T ( N or T = N and π(i) < n, and

eTi (π) = max

yi ∈ R :
X

j∈Pπ
i ∩T

λTj e
T
j (π) + λTi yi ≤

X
j∈(Pπ

i ∩T)∪{i}
λTj xj


when T = N and π(i) = n.

We obtain a payoff configuration
¡
xT
¢
T⊆N as

xT =
1

|ΠCT |
X

π∈ΠCT
eT (π), for every T ⊆ N.

In case that xN = x, we say that x is a ROC value for (S, d, C). We denote
by ΦROC (S, d, C) the ROC value of (S, d, C).

Let us take i ∈ N . Notice that eNi (π) = di for all π ∈ ΠC unless π(i) = n.
Whenever π(i) = n,

eNi (π) =
1

λNi

X
j∈N

λNj xj −
X

j∈N\{i}
λNj dj

 .

Counting all possible orders and doing some algebra,

xi =
(pci − 1) di

pci
+

1

λNi pci

X
j∈N

λNj xj −
X

j∈N\{i}
λNj dj


=

pciλ
N
i di +

P
j∈N λNj xj −

P
j∈N λNj dj

λNi pci

= di +

P
j∈N λNj xj −

P
j∈N λNj dj

λNi pci
.

This expression coincides with (9). Then, we prove that ΦCC(S, d, C) =
ΦROC(S, d, C).
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Given a value for TU games, Shapley (1969) proves, via a fixed-point
argument, that one can always find a vector λ of weights, one for each
player, such that when each player’s utility is multiplied by his weight, the
resulting game will have the property that the value for the associated TU
game (as presented in (10) below) is feasible in the NTU game.

Since the Shapley reasoning may be applied to any value, we apply the
λ-transfer procedure to the Owen value and the coalitional τ value (Casas-
Méndez et al, 2003).

The λTC value generalizes the Owen value for TU games with coalition
structure and the Shapley NTU value (Shapley, 1969) for NTU games.

Given a bargaining problem with coalition structure (S, d, C), we say
that x ∈ RN is a λ-Transfer Coalitional (λTC) value if x ∈ ∂S, there exists
λ ∈ RN

++ such that λ supports S at x, and

λx = Ow
³
N, vλ, C

´
where

vλ (T ) =


P
i∈T

λidi if T ( N

max

(P
j∈N

λjxj : x ∈ S

)
if T = N

. (10)

We denote by ΦλTC (S, d, C) the set of λTC values for (S, d, C).
The τ−λTC value generalizes the coalitional τ value for TU games with

coalition structure (Casas-Méndez et al, 2003) and the τ value for NTU
games (Borm et al, 1992).

Given (S, d, C) ∈ B(N), we say that x ∈ RN is a τ -λTC value if x ∈ ∂S,
there exists λ ∈ RN

++ such that λ supports S at x, and

λx = τ(N, vλ, C)

where vλ is the TU game defined in (10). If (S, d, C) is a bargaining problem
with coalition structure, we denote by ΦτλTC(S, d, C) the set of τ − λTC
values for (S, d, C).

Theorem 3 The values ΦGCS , ΦCC , ΦROC , ΦλTC , and ΦτλTC assign to
each bargaining problem with coalition structure, (S, d, C), a unique vector
which coincides with δ (S, d, C).

Proof See the Appendix.
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5 A non-cooperative perspective

In the context of NTU games, Hart and Mas-Colell (1996) design a simple
non-cooperative mechanism of negotiation between n players. Applied to
bargaining problems, this mechanism is as follows: In each round, a player
is randomly chosen to propose a payoff. If all the other players agree, the
mechanism finishes with this payoff. If at least a player disagrees, the mech-
anism is repeated with probability ρ ∈ [0, 1). With probability 1 − ρ, the
proposer leaves the mechanism and thus each player gets his disagreement
payoff.

In Theorem 3 in Hart and Mas-Colell (1996), it is shown that the above
mechanism (when applied to bargaining problems) yields the Nash bargain-
ing solution as ρ approaches 1.

Vidal-Puga (2005a) adapts this mechanism when players are divided in
coalitions. Hart and Mas-Colell’s mechanism is played in two levels, first
between players inside each coalition and second between coalitions. In the
first level, players inside the same coalition decide (following Hart and Mas-
Colell’s mechanism) which proposal to use in the second level.

Formally:

Mechanism I First, a proposer i ∈ C1 is randomly chosen out of coalition
C1 ∈ C, being each player equally likely to be chosen. Player i proposes
a feasible payoff, i.e. a point in S. The members of C1\ {i} are then
asked in some prespecified order. If one of the members of C1\ {i}
rejects the proposal, then with probability ρ the mechanism is repeated
under the same conditions, and with probability 1− ρ the mechanism
finishes in disagreement. If all the members of C1\ {i} accept the
proposal, then the same procedure is repeated with coalition C2, and
so on. If there is no rejection, one of the proposals is chosen at random,
being each proposal equally likely to be chosen. Say the proposal of
coalition Cq is chosen. Then, the members of N\Cq are asked in
some prespecified order. If one of the members of N\Cq rejects the
proposal, then with probability ρ the mechanism is repeated under the
same conditions, and with probability 1− ρ the mechanism finishes in
disagreement. If the mechanism finishes in disagreement, the final
payoff is d.

This structure in two levels appears in many situations where negoti-
ations are carried out by agents who are the delegates of larger coalitions.

15



Delegates begin to negotiate among them not before agreeing their proposals
with their respective coalitions.

However, it may be possible an inverse structure: a coalition is first
chosen to make a proposal, and only then they choose a proposer to make
the offer.

Formally:

Mechanism II First, a coalition Cq out of C is randomly chosen, being each
coalition equally likely to be chosen. Then, a proposer i is randomly
chosen out of Cq, being each player equally likely to be chosen. Player
i proposes a feasible payoff, i.e. a point in S. The members of N\ {i}
are then asked in some prespecified order. If one of the members of
N\ {i} rejects the proposal, then with probability ρ the mechanism is
repeated under the same conditions, and with probability 1 − ρ the
mechanism finishes in disagreement. In the latter case, the final payoff
is d.

This procedure is the adaptation to bargaining problems of the mecha-
nism that appears in Section 4.4. in Vidal-Puga (2002).

Clearly, each player i ∈ N is chosen as proposer with probability µi = 1
pci
.

This mechanism also generalizes Hart and Mas-Colell’s bargaining mech-
anism (applied to bargaining problems) when the coalition structure is triv-
ial. However, it is not equivalent to the mechanism in Vidal-Puga (2005a).
In particular, it does not implement the Owen value when applied to a TU
game with coalition structure. For more details, see Section 4.4 in Vidal-
Puga (2002).

As in Hart and Mas-Colell (1996) and Vidal-Puga (2005a), we work
with stationary strategies. This means that the proposal of an agent is
independent of the previous history. When we say equilibrium, we mean
stationary subgame perfect equilibrium. Notice that an equilibrium is also
optimal against non-stationary strategies.

Theorem 4 If (S, d, C) ∈ B (N), in the two above mechanisms there ex-
ists an equilibrium for each ρ ∈ [0, 1). Moreover, as ρ approaches 1, any
equilibrium payoff converges to δ (S, d, C).

Proof See the Appendix.
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Appendix

Proofs of the results in Section 3.

We first state some logical relations among the properties.

Lemma 5 Any solution ϕ defined on B (N) which satisfies PE, SG, and
CS also satisfies UCG.

Proof Let ϕ be a solution defined on B (N) which satisfies PE, SG, and
CS. Let us consider (Λ, C) ∈ B (N). For every Cr ∈ C, we have that any
two agents i, j ∈ Cr are symmetric. By SG, ϕi (Λ, C) = ϕj (Λ, C) for every
i, j ∈ Cr and Cr ∈ C. Moreover, since the solution ϕ satisfies CS, for every
Cr, Cs ∈ C, it holds

ciϕi (Λ, C) =
X
k∈Cr

ϕk (Λ, C) =
X
k∈Cs

ϕk (Λ, C) = cjϕj (Λ, C)

with i ∈ Cr and j ∈ Cs.

Finally, taking into account that the solution ϕ satisfies PE, we get, for
any i ∈ N ,

1 =
X
j∈N

ϕj (Λ, C) = pciϕi (Λ, C) .

Then, for every i ∈ N ,

ϕi (Λ, C) =
1

pci
.

Lemma 6 Any solution ϕ defined on B (N) which satisfies PE, IAT, SG,
and SEG also satisfies UCG.

Proof Let us consider the bargaining problem with coalition structure
(Hλ, 0, C) where λ = 1

p
1
c and Hλ is defined by (8). If |C| = 1, the bargaining

problem (Hλ, 0) is symmetric. Otherwise, any pair of coalitions Cr, Cs ∈ C
are exchangeable. Since the solution ϕ satisfies PE, SG, and SEG, it holds

ϕi (Hλ, 0, C) = ϕj (Hλ, 0, C) = 1 for every i ∈ Cr, j ∈ Cs and Cr, Cs ∈ C.

Moreover, applying the affine transformation defined by λ ∈ RN
++ and β = 0

to (Hλ, 0, C), we obtain the bargaining problem with coalition structure
(Λ, C). Since the solution ϕ satisfies IAT, we have

ϕi (Λ, C) =
1

pci
for every i ∈ N.
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Proof of Theorem 2 First we will see that the solution δ satisfies these
properties.
The solution δ satisfies IIA, IAT, and PE (Chae and Heidhues, 2004).
Since δ is a weighted Nash solution, it assigns the vector of weights to the
unanimity bargaining problem (Kalai, 1977). Thus, given the structure of
the weights, δ satisfiesUCG. Furthermore, the total amount that a coalition
receives in (∆, d, C) is the same and we prove that δ also satisfies CS.

Next, we see that it also satisfies SG. Let us assume that this does not
happen. Since δ satisfies IAT, we take a bargaining problem with a coalition
structure (S, 0, C) ∈ B (N). Let Cq ∈ C and i, j ∈ Cq such that i and j are
symmetric. Let us assume that δi (S, 0, C) 6= δj (S, 0, C). We define the point
x̄ ∈ RN as

x̄i =
1
2 (δi (S, 0, C) + δj (S, 0, C)) = x̄j and

x̄k = δk (S, 0, C) for every k ∈ N \ {i, j} . (11)

This point x̄ belongs to S because i and j are symmetric and S is a convex
set. Furthermore,

x̄ix̄j − δi (S, 0, C) δj (S, 0, C) =
1

4
(δi (S, 0, C)− δj (S, 0, C))2 > 0. (12)

Moreover, since i, j ∈ Cq, (11), and (12), it holdsY
k∈N

x̄
1
ck
k >

Y
k∈N

δk (S, 0, C)
1
ck .

This is a contradiction with respect to the definition of δ. Then, the solution
δ satisfies SG.

Let us check that it also satisfies SEG. Let (S, 0, C) ∈ B (N). If |C| > 1,
let us take Cr, Cs two exchangeable coalitions. Since δ satisfies SG we have

δi (S, 0, C) = δj (S, 0, C) for every i, j ∈ Cr and
δi (S, 0, C) = δj (S, 0, C) for every i, j ∈ Cs.

Let us define the vector z ∈ RN as

zi = δi (S, 0, C) if i /∈ Cr ∪ Cs

zi = δj (S, 0, C) if i ∈ Cr with j ∈ Cs

zi = δj (S, 0, C) if i ∈ Cs with j ∈ Cr.

Since Cr and Cs are exchangeable, z ∈ S. Then, given i ∈ Cr and j ∈ Cs,Y
k∈Cr

z
1
ck
k

Y
k∈Cs

z
1
ck
k = δj (S, 0, C) δi (S, 0, C) =

Y
k∈Cr

δi (S, 0, C)
1
ck

Y
k∈Cs

δj (S, 0, C)
1
ck
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and Y
k∈N

z
1
ck
k =

Y
k∈N

δk (S, 0, C)
1
ck = max

x∈S,x≥0

Y
k∈N

x
1
ck
k .

Thus, z and δ (S, 0, C) are solutions of the maximization problem (2). Since
this solution is unique, we have z = δ (S, 0, C). In particular, δi (S, 0, C) =
δj (S, 0, C) for every i ∈ Cr and j ∈ Cs.

Next we prove the unicity of the solution in each case.

1.- Let us consider a solution ϕ defined on the class B (N) which satisfies
IIA, IAT, and UCG. Let (S, d, C) ∈ B (N). Because δ satisfies IAT, we
assume d = 0 ∈ RN and δ (S, d, C) = (1, . . . , 1) = e.

There exists a hyperplane which separates S and the set(
x ∈ RN :

Y
i∈N

x
1
ci
i > 1

)
.

Let us assume that λ ∈ RN
++ defines such hyperplane. Since S is a convex set

and e is the solution of the maximization problem (2),
P
i∈N

λixi ≤ 1 for every

x ∈ S. Thus, we consider the bargaining problem with coalition structure
given by (Hλ, 0, C) where Hλ is defined as in (8). The set Hλ is obtained
from ∆ by the affine transformation defined as γ = 1

λ and β = 0. Since δ
and ϕ satisfy IAT and UCG, it holds

ϕ (Hλ, 0, C) = δ (Hλ, 0, C) =
1

p

1

λ

1

c
. (13)

By the definition of the solution δ and because S ⊆ Hλ,

1 = max
x∈S,x≥0

Y
i∈N

x
1
ci
i ≤ max

x∈Hλ,x≥0

Y
i∈N

x
1
ci
i ≤ 1.

Then,
δ (Hλ, 0, C) = δ (S, 0, C) = e ∈ S. (14)

From (13) and (14),
ϕ (Hλ, 0, C) = e ∈ S.

Since S ⊆ Hλ, ϕ (Hλ, 0, C) ∈ S, and ϕ satisfies IIA, we have ϕ (S, 0, C) =
ϕ (Hλ, 0, C). Then, ϕ (S, 0, C) = e = δ (S, 0, C) .
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2.- By Lemma 5, any solution ϕ which satisfies PE, IIA, IAT, SG,
and CS also satisfies IIA, IAT, and UCG. In these conditions, as we have
previously proved, the solution ϕ coincides with δ.

3.- Let us take any solution ϕ which satisfies all these properties. By
Lemma 6, any solution ϕ which satisfies PE, IIA, IAT, SG, and SEG also
satisfies IIA, IAT, and UCG. Using Item 1 of this Theorem, we get that
ϕ coincides with δ.

Proofs of the results in Section 4.

Proof of Theorem 3 Let (S, d, C) ∈ B (N).
Claim 1. {δ (S, d, C)} = ΦGCS (S, d, C).
From the characterization of each point belonging to ΦGCS (S, d, C) pro-

posed in (7), it holds that ΦGCS satisfies IAT. Since δ also satisfies IAT,
we assume d = 0 and δ (S, 0, C) = (1, . . . , 1) = e.

Let us assume that the supporting hyperplane of S at e is defined by
λ ∈ RN

++. As a consequence of (13) and (14), and doing some algebra,

e =
1

λ

1

c
max

½
t ∈ R : 1

λ

1

c
t ∈ S

¾
.

By (7), δ (S, 0, C) = e ∈ ΦGCS (S, 0, C).
Let us take x ∈ ΦGCS (S, 0, C). Let λ ∈ RN

++ be the vector which defines
the supporting hyperplane of S at x. Let us consider (Hλ, 0, C) ∈ B (N)
with Hλ defined as in (8). Then, δ (Hλ, 0, C) ∈ ΦGCS (Hλ, 0, C). Moreover,
x ∈ ΦGCS (Hλ, 0, C) because x ∈ ΦGCS (S, 0, C) ∩Hλ. Since ΦGCS (Hλ, 0, C)
is a singleton, δ(Hλ, 0, C) = x. Moreover, because S ⊆ Hλ, δ(Hλ, 0, C) ∈ S,
and δ satisfies IIA, we have

x = δ(Hλ, 0, C) = δ(S, 0, C) = e,

and the claim is proved.

Claim 2. {δ (S, d, C)} = ΦCC (S, d, C).
It follows from similar reasoning as we did in Claim 1. Notice that ΦCC

satisfies IAT, and assuming that d = 0 and δ(S, 0, C) = e, we obtain that
δ(S, 0, C) satisfies (9).

Claim 3. {δ (S, d, C)} = ΦROC (S, d, C).
We have previously seen that ΦROC (S, d, C) = ΦCC (S, d, C).
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Claim 4. {δ (S, d, C)} = ΦλTC (S, d, C).
For every λ ∈ RN

++ such that the game vλ defined as in (10) is well-
defined, the Owen value for vλ is given by

Owi

³
N, vλ, C

´
= λidi +

vλ (N)−
P

j∈N λjdj

pci
for every i ∈ N.

By Claim 2 and (9)

δi (S, d, C) = di +
1

λi

P
j∈N λj (xj − dj)

pci
for every i ∈ N,

and thus ΦλTC (S, d, C) = ΦCC (S, d, C) = {δ (S, d, C)}.
Claim 5. {δ (S, d, C)} = ΦτλTC (S, d, C) .
It follows from a similar reasoning that Claim 4, because, for every λ ∈

RN
++ such that the game v

λ is well-defined,

τ i

³
N, vλ, C

´
= λidi +

vλ (N)−
P

j∈N λjdj

pci
for every i ∈ N.

The result is proved.

Proofs of the results in Section 5.

The proof for Mechanism I comes from Theorem 12 in Vidal-Puga (2005a),
Claim 2 and an analogous reasoning as in the proof of Proposition 12 below.
Hence, we concentrate on Mechanism II.

In order to prove Theorem 4 for Mechanism II, we need further notation.

Given ρ ∈ [0, 1), let ai (ρ) be the proposal of player i when he is the
proposer. Let

a (ρ) :=
X
i∈N

µiai (ρ) ∈ RN

be the final payoff when all the proposals are due to be accepted. When there
is no ambiguity, we write a and ai instead of a (ρ) and ai (ρ), respectively.

Proposition 7 Given ρ ∈ [0, 1), the proposals in any equilibrium of a bar-
gaining problem with coalition structure (S, d, C) are characterized by

P1 ai (ρ) ∈ ∂S for each i ∈ N and

P2 aij (ρ) = ρaj (ρ) + (1− ρ) dj for each j 6= i.
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Moreover, the proposals are always accepted and ai (ρ) ≥ d for each
i ∈ N .

This Proposition is similar to Proposition 1 in Hart and Mas-Colell
(1996). However, in Hart and Mas-Colell the vector a is the average of
the ai’s. In this case, a is a weighted average with weights given by the µi’s.

Proof Assume we are in equilibrium. Let b ∈ RN be the expected final
payoff. Each player i ∈ N can guarantee himself a payoff of at least di by
proposing always d and accepting only proposals which give him no less than
di. Thus, b ≥ d.

We must prove that conditions P1 and P2 hold. We proceed by two
Claims:

Claim (A): Assume the proposer is i ∈ Cq. Then, all players in N\ {i}
accept ai if aij > ρbj + (1− ρ) dj for each j 6= i. If aij < ρbj + (1− ρ) dj
for some j 6= i, then the proposal is rejected.

Notice that, in the case of rejection, the expected payoff of a player
j 6= i is ρbj + (1− ρ)dj .

We assume without loss of generality that i = 1 and (2, ..., n) is the order
in which the players in N\ {i} are asked.

If the game reaches player n, i.e. there has been no previous rejection,
his optimal strategy involves accepting the proposal if ain is higher than
ρbn + (1− ρ) dn and rejecting it if it is lower than ρbn + (1 − ρ)dn. Player
n−1 anticipates reaction of player n. Hence, if an > ρbn+(1− ρ) dn, an−1 >
ρbn−1 + (1− ρ) dn−1, and the game reaches player n − 1, he accepts the
proposal. If an < ρbn + (1− ρ) dn, then player n− 1 is indifferent between
accepting or rejecting the proposal, since he knows player n is bound to
reject the proposal should the game reach him. In any case, the proposal is
rejected. By going backwards, we prove the result for all players in N\ {i}.

Claim (B): Assume the proposer is player i. Then, his proposal is ac-
cepted.

Assume the proposal of player i is rejected. This means the final payoff
for player i is ρbi + (1− ρ) di.

We define a new proposal ai for player i as follows. Since b ∈ S and d
belongs to the interior of S, by convexity ρb+(1− ρ) d belongs to the interior
of S. Thus, it is possible to find ε > 0 such that ρb + (1− ρ) d + (ε, ..., ε)
belongs to S. Let ai = ρb + (1− ρ) d + (ε, ..., ε). By Claim (A), this offer
is accepted and the final payoff for player i is ρbi + (1− ρ) di + ε. This
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contradiction proves Claim (B).

Since all the proposals are accepted, and each player i has probability

µi to be chosen as proposer, we can assure that b = a.

We show now that P1 and P2 hold.

Suppose P1 does not hold, i.e. there exists a player i such that ai is not
Pareto optimal. Thus, ai belongs to the interior of S; so, there exists ε > 0
such that ai + (ε, ..., ε) ∈ S.

Notice that, since the proposal ai of player i is accepted (Claim (B)), by
Claim (A) we know that aij ≥ ρaj + (1 − ρ)dj for each j 6= i. So, if player
i changes his proposal to ai + (ε, ..., ε), it is bound to be accepted and his
expected final payoff improves by µiε > 0. This contradiction proves P1.

Suppose P2 does not hold. Let j0 6= i be a player such that aij0 =
ρaj0 + (1− ρ)dj0 + α with α 6= 0. By Claim (A) and Claim (B), α > 0.

Let x ∈ RN be defined by xj0 = α and xj = 0 for all j 6= j0. By
comprehensiveness and nonlevelness, we have ai − x belongs to the interior
of S. Thus, there exists ε > 0 such that

bai := ai − x+ (ε, ..., ε)

belongs to S. Suppose player i changes his proposal to bai. Let baj = aj for
all j 6= i. The new average ba =Pi∈N µibai satisfiesbaii = aii − xi + ε = aii + ε > aii,baij0 = aij0 − xj0 + ε = ρaj0 + (1− ρ)dj0 + α− α+ ε > ρaj0 + (1− ρ)dj0 ,
andbaij = aij − xi + ε = aij + ε > aij ≥ ρaj + (1− ρ) dj for all j 6= i, j0.

Thus, by Claim (A), the new proposal of player i is due to be accepted.
Also, player i improves his expected payoff. This contradiction proves P2.

Conversely, we show that proposals (ai)i∈N satisfying P1 and P2 can be
supported as an equilibrium.

First, we prove that ai ≥ d for all i ∈ N . By convexity, x = ρa +
(1− ρ) d belongs to S. Fix i ∈ N , by P2, we have aij = xj for all j 6= i. We
conclude that ai ≥ x because ai ∈ ∂S and x ∈ S. Hence:

aj =
X
i∈N

µiaij ≥
X
i∈N

µixj =
X
i∈N

µi (ρaj + (1− ρ) dj) = ρaj + (1− ρ) dj

and thus (1− ρ) aj ≥ (1− ρ) dj , i.e. aj ≥ dj .
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Fix a player i ∈ N . If he rejects the proposal from a proposer j 6= i, his
expected final payoff is ρaj+(1−ρ)dj . Thus, his expected final payoff is the
same as that the other player is offering. Since the rest of the players accept
the proposal, he does not improve his expected final payoff by rejecting it.
If the proposer is player i himself, the strategies of the other players do not
allow him to decrease his proposal to any of them (since it would be rejected
by Claim (A)). Moreover, increasing one or more of his offers to the other
players keeping the rest unaltered implies his own payment decreases (by
P1 and nonlevelness). Finally, by offering an unacceptable proposal, he may
be dropped out and his expected final payment becomes di, which does not
improve his final payoff because aii ≥ di. Thus, the proposals do form an
equilibrium.

Proposition 8 Let S =
©
x ∈ RN :

P
i∈N λixi ≤ ξ

ª
for some λ ∈ RN

++ and
ξ ∈ R. Assume a set of proposals

¡
ai
¢
i∈N satisfies P1 and P2. Then a =

δ (S, d, C), i.e.

λiai = λidi + µi

X
j∈N

λjaj −
X
j∈N

λjdj


for each i ∈ N .

Proof Fix i ∈ Cq. Then,

λiai = λi
X
j∈N

µjaji = λi
X
j 6=i

µjaji + µiλia
i
i.

By P1,

λiai = λi
X
j 6=i

µjaji + µi

ξ −
X
j 6=i

λja
i
j


= λi

X
j∈N

µjaji + µi

ξ −
X
j∈N

λja
i
j

 .
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By P2,

λiai = λi
X
j∈N

µj (ρai + (1− ρ) di) + µi

ξ −
X
j∈N

λj (ρaj + (1− ρ) dj)


= ρλiai + (1− ρ)λidi + µi

ξ − ρ
X
j∈N

λjaj − (1− ρ)
X
j∈N

λjdj

 .

Since ai ∈ ∂S and
P

j∈N µj = 1, we have
P

j∈N λjaj = ξ. Hence,

λiai = ρλiai + (1− ρ)λidi + µi

(1− ρ) ξ − (1− ρ)
X
j∈N

λjdj

 .

Hence,

(1− ρ)λiai = (1− ρ)λidi + (1− ρ)µi

ξ −
X
j∈N

λjdj


and dividing by (1− ρ),

λiai = λidi + µi

ξ −
X
j∈N

λjdj


which completes the proof because ξ =

P
j∈N λjaj .

Corollary 9 Assume S =
©
x ∈ RN :

P
i∈N λixi ≤ ξ

ª
for some λ ∈ RN

++,
ξ ∈ R. Then, for each ρ ∈ [0, 1), there exists a unique equilibrium payoff,
which equals δ (S, d, C).

Proof Immediate from Proposition 7 and Proposition 8.

Proposition 10 Let (S, d, C) ∈ B (N). Then, for each ρ ∈ [0, 1), there
exists an equilibrium.

Proof By Proposition 7, we only need to prove that there exist proposals
satisfying P1 and P2.
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Let K = {x ∈ S : x ≥ d}. This set is nonempty (d ∈ K), closed (because
S is closed), and bounded. Thus, K is a compact set. Furthermore, K is
convex (because S is convex).

We define n functions αi : K → K as follows. Given i ∈ N , αij(x) :=
ρxj + (1 − ρ)dj for each j 6= i and αii (x) is defined in such a way that
αi (x) ∈ ∂S.

These functions are well-defined because y := ρx + (1 − ρ)d belongs to
K (by convexity) and αi(x) equals y in all coordinates but i’s, which we
increase until reaching the boundary of S.

Also, because of the smoothness of S the functions αi are continuous.
By the convexity of the domain,

P
i∈N µiαi(x) ∈ K for each x ∈ K. By

a standard fix point theorem, there exists a vector a ∈ K satisfying a =P
i∈N µiαi(a).

We define ai = αi (a) for each i ∈ N . It is trivial to see that
¡
ai
¢
i∈N

satisfies P1 and P2.

Proposition 11 Let (S, d, C) ∈ B (N) and let
¡
ai
¢
i∈N be the proposals in

equilibrium. Then, there exists M ∈ R such that
¯̄̄
aij − aj

¯̄̄
≤ M(1− ρ) for

all i, j ∈ N .

Proof Fix i ∈ N . Given j ∈ N\ {i}, by P2:¯̄
aij − aj

¯̄
= |ρaj + (1− ρ) dj − aj | = (1− ρ) |aj − dj | .

We define

M i
1 = max {|aj − dj | : j ∈ N\ {i} , ρ ∈ [0, 1)} .

Notice that aj depends on ρ. This maximum is well-defined because
aj ≥ dj for all j ∈ N\ {i}, a ∈ K = {x ∈ S : x ≥ d}, and K is compact.

We have then
¯̄̄
aij − aj

¯̄̄
≤M i

1(1− ρ) for all j ∈ N\ {i}.

We now study
¯̄
aii − ai

¯̄
. We know that ai =

P
j∈N µjaji . Then,

aii =
1

µi

ai −
X
j 6=i

µjaji

 .
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So,

¯̄
aii − ai

¯̄
=

1

µi

¯̄̄̄
¯̄ai −X

j 6=i
µjaji − µiai

¯̄̄̄
¯̄

=
1

µi

¯̄̄̄
¯̄ai −X

j 6=i
µj (ρai + (1− ρ) di)− µiai

¯̄̄̄
¯̄

=
1

µi

¯̄̄̄
¯̄ai − ρ

X
j∈N

µjai − (1− ρ)
X
j 6=i

µjdi − (1− ρ)µiai

¯̄̄̄
¯̄ .

Since
P

j∈N µj = 1,

¯̄
aii − ai

¯̄
=

1

µi

¯̄̄̄
¯̄(1− ρ)

X
j∈N

µjai − (1− ρ)
X
j 6=i

µjdi − (1− ρ)µiai

¯̄̄̄
¯̄

=
1− ρ

µi

¯̄̄̄
¯̄X
j 6=i

µjai −
X
j 6=i

µjdi

¯̄̄̄
¯̄

≤ 1− ρ

µi

X
j 6=i

µj |ai − di|

=
1− ρ

µi
¡
1− µi

¢
|ai − di| .

Let

M i
2 =

1− µi

µi
max {|ai − di| : ρ ∈ [0, 1)} .

Using arguments similar to those used with M i
1 we can argue that M

i
2 is

well-defined, for each i ∈ N .

So, we take M i = max
©
M i
1,M

i
2

ª
and M = max

©
M i
ª
i∈N .

Proposition 12 Let (S, d, C) ∈ B (N), and let a (ρ) be an equilibrium pay-
off for each ρ ∈ [0, 1). Then, a (ρ)→ δ (S, d, C) when ρ→ 1.

Proof Note that a (ρ)→ δ (S, d, C) means that for all ε > 0 there exists
ρ0 ∈ [0, 1) such that if ρ > ρ0 then, |a (ρ)− δ (S, d, C)| < ε.
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Assume the result is not true. This means that there exists ε̂ > 0 such
that for each ρ0 ∈ [0, 1) it is possible to find ρ > ρ0 satisfying |a (ρ)− δ (S, d, C)| ≥
ε̂.

Let
©
ρk0
ª∞
k=0

( [0, 1) be a sequence with ρk0 → 1. For each k, it is
possible to find ρk > ρk0 satisfying

¯̄
a
¡
ρk
¢
− δ (S, d, C)

¯̄
≥ ε̂. Since ρk0 → 1

and ρk > ρk0 for all k, we have ρ
k → 1. Moreover,

¯̄
a
¡
ρk
¢
− δ (S, d, C)

¯̄
≥ ε̂

for all k.

Since a
¡
ρk
¢
≥ d for each k and S is closed, there exists a∗ ≥ d such

that a∗ is a limit point of
©
a
¡
ρk
¢ª∞

k=0
, i.e. there exists a subsequence of©

a
¡
ρk
¢ª∞

k=0
which converges to a∗. We can assure without loss of generality

that a
¡
ρk
¢
→ a∗.

Since ρk → 1, by Proposition 11, ai
¡
ρk
¢
→ a∗ for each i ∈ N . Since

ai(ρ) ∈ ∂S for each ρ ∈ [0, 1), i ∈ N and ∂S is closed, we conclude that
a∗ ∈ ∂S.

Let λ be the unit length vector normal to ∂S at a∗. We associate to
each ρk a bargaining problem with coalitional structure (Sk, d, C) as follows:

Given k, there exists at least one hyperplane on RN containing the n
points

©
ai(ρk) : i ∈ S

ª
. If there are more than one hyperplane, we take the

one whose unit length outward orthogonal vector λk is the closest to λ.

We define:

Sk =

x ∈ RN :
X
j∈N

λkjxj ≤
X
j∈N

λkja
i
j (ρ) , i ∈ N

 .

The half-space Sk is well-defined because
P

j∈N λkja
i
j (ρ) =

P
j∈N λkja

i0
j (ρ)

for all i, i0 ∈ N .

Since ai
¡
ρk
¢
→ a∗ for all i ∈ N , by the smoothness of ∂S, λk → λ.

Therefore,

Sk → S0 =

x ∈ RN :
X
j∈N

λjxj ≤
X
j∈N

λja
∗
j

 .

By Proposition 7, the proposals
©
ai(ρk) : i ∈ N

ª
satisfy P1 and P2 for

(S, d, C). But these properties are the same for (Sk, d, C). Thus, by Propo-
sition 7, a

¡
ρk
¢
is an equilibrium payoff for (Sk, d, C). By Proposition 8, this
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implies that a
¡
ρk
¢
= δ (Sk, d, C). Hence, given i ∈ N ,

ai

³
ρk
´
= di +

µi

λki

X
j∈N

λkjaj

³
ρk
´
−
X
j∈N

λkjdj


and thus

a∗i = di +
µi

λi

X
j∈N

λjaj −
X
j∈N

λjdj

 .

Hence a∗ = δ (S, d, C). But this contradicts that
¯̄
a
¡
ρk
¢
− δ (S, d, C)

¯̄
≥ ε̂

for each k = 0, 1, .... This proves the result.
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