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ABSTRACT 

We investigate the use of consumer-grade eye tracking to 

automatically detect Mind Wandering (MW) during learning from 

a recorded lecture, a key component of many Massive Open 

Online Courses (MOOCs). We considered two feature sets: 

stimulus-independent global gaze features (e.g., number of 

fixations, fixation duration), and stimulus-dependent local 

features. We trained Bayesian networks using the aforementioned 

features and students‟ self-reports of MW and validated them in a 

manner that generalized to new students. Our results indicated 

that models built with global features (F1 MW = 0.47) 

outperformed those using local features (F1 MW = 0.34) and a 

chance-level model (F1 MW = 0.30). We discuss our results in the 

context of MOOC development as well as integrating MW 

detection into attention-aware MOOCs. 

Keywords 
eye-gaze, Massive Open Online Courses, lecture viewing, 
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1. INTRODUCTION 
Imagine you are giving a lecture on population diversity, most of 

your audience is engaged; however, one or more of your students 

are displaying signs of inattentiveness (e.g., dozing off, staring 

blankly). You may call on such a student in the hope of bringing 

their attention back to the lecture. You may even suggest a short 

break if too many students appear to be inattentive. This 

adaptation to your lecture was only possible because you had the 

ability to continually monitor your students‟ levels of attentional 

focus and to alter your instruction in real-time.  

Now imagine you are teaching a Massive Open Online Course 

(MOOC). Your students are no longer in the same room as you 

and in many cases are not viewing the lecture at the same time 

you are delivering it. You no longer have the ability to monitor 

students‟ attentional focus and adapt to signs of inattentiveness.  

Despite the challenges for educators, MOOCs are an increasingly 

popular method amongst students for e-learning and distance 

learning [16]. They have also been popular in traditional learning 

environments as alternate ways for delivering material [27]. 

MOOCs are often distributed world-wide to a variety of students 

across platforms with no limitations on individual participation. 

While there are some advantages to MOOCs with respect to 

promoting access, little is known with regard to how they address 

individual learners‟ needs. MOOCs have long had issues with 

extremely high dropout rates [1, 37], far greater than those in 

„traditional‟ classroom environments. Though there has been 

work tying students‟ experiences with MOOCs to the dropout rate 

[37], there has been little exploration as to individual user 

experiences and trends that lead to retention problems [1, 17].  

As a step towards better understanding student engagement within 

MOOCS, we focus on one form of disengagement called mind 

wandering (MW). MW is defined as an attentional shift from task-

related processing towards internal task-unrelated thoughts [31]. 

In the context of learning, both lab and field studies have 

consistently reported MW rates in the 20%-50% range [21, 26, 

34]; work looking at specifically recorded lectures showed the 

MW rates to be 20-45% [26, 34]. Additionally, a recent meta-

analysis  revealed a negative correlation between MW and 

performance across a variety of tasks [23]. MW negatively 

impacts a learner‟s ability to attend to external events [30], to 

encode information into memory [29], and to comprehend 

learning materials [28, 30]. As a result, MW is generally found to 

have a negative impact on learning outcomes.  

Attempts to assuage the cost of MW rely on knowing if MW has 

occurred. However, detecting MW is no easy task. Although MW 

is related to other forms of disengagement, such as boredom, 

behavioral disengagement, and off-task behaviors [2, 3, 36], it is 

inherently distinct because it involves internal thoughts rather 

than overt expressive behaviors. This raises two challenges. First, 

while other disengaged behaviors often involve detectable 

behavioral markers (e.g., yawns signaling boredom), mind 

wandering is an internal state that can appear similar to being on-

task [31]. Second, the onset and duration of MW cannot be 

precisely measured because MW can occur outside of conscious 

awareness [32].  

Despite these challenges, there has been some progress toward 

automatic detection of mind wandering (discussed as related 

works in Section 1.1). However, almost all of the current MW 

detectors focus on reading. In contrast, we consider MW detection 

while students view MOOC-like lectures, building and validating 

the first gaze-based MW detector during video lecture viewing. 

We focus on video lectures because they are a core component of 

many courses and are vital to MOOCs. As MOOCs and lecture 

capture systems become more popular, we envision a variety of 

challenges with respect to keeping students engaged when content 

delivery occurs outside of the classroom with the instructor not 

even present. In this work, we harness the use of a computer in 

content delivery to take a step towards an attention-aware 

MOOCs.  
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1.1 Related Work 
In an early study attempting to detect MW in the context of 

learning [10], students were asked to read aloud a paragraph about 

biology, followed by either self-explaining or paraphrasing. 

Students self-reported how frequently they zoned out on a scale 

from 1 (all the time) to 7 (not at all). Reports were then grouped 

as either low (1-3 on the scale) or high (5-7 on the scale). 

Supervised machine learning methods were trained using 

acoustic-prosodic features to classify these instances, achieving an 

accuracy of 64%. However, it is unclear whether this detector 

could generalize to new students as the validation method did not 

ensure student-level independence across training and testing sets. 

Researchers have also built MW detectors based on information 

readily available in log files collected during the reading (e.g., 

reading time, complexity of the text). For example, [19] attempted 

to classify whether students were MW while reading a  screen of 

text using reading behaviors and textual features (e.g., text 

difficulty). They were able to classify MW at 21% greater than 

chance using a leave-one-subject out cross-validation method. 

Similarly, another study [11] also attempted to predict MW during 

reading using textual features such as word familiarity, difficulty, 

and reading time. However, rather than using supervised machine 

learning, they used a set of researcher-defined thresholds to 

ascertain if participants were “mindlessly reading” based on 

difficulty and reading time. 

More recent studies have explored additional techniques to detect 

MW during self-paced computerized reading [5, 8, 11]. In these 

studies, MW was measured via thought probes that occurred on 

pseudo-random screens (i.e. screen of text similar to a page of 

text). Participants responded either “yes” or “no” based on 

whether they were MW at the time of the probe. Supervised 

classification models were trained to discriminate the two 

responses using physiological features (e.g., skin conductance, 

temperature) [8] or eye-gaze [5], achieving accuracies ranging 

from 18% to 23% above chance and validated in a manner that 

generalized to new students. Further, combining the two 

modalities led to an 11% improvement in detection accuracy 

above the best individual modality [4]. 

Beyond reading, Pham et al. [22] provide initial proof that MW 

detection is possible during lecture viewing. Students watched 

video lectures on a smart phone using a MOOC-like application 

and responded yes or no to thought probes during the lectures. 

They used student heart rate (extracted via 

photoplethysmography) to train classifiers to detect MW. They 

achieved a 22% greater than chance detection accuracy, thereby 

providing some initial evidence of MW detection in a MOOC-like 

learning environment.   

Hutt et al. [15] focused on detecting MW during learning with an 

intelligent tutoring system (ITS). Students‟ eye gaze was tracked 

with a consumer grade eye tracker as they completed a 30-40 

minute learning session with the ITS. Students reported MW by 

responding to pseudo-random thought probes throughout the 

session. A variety of supervised classification models were trained 

to detect MW from eye movements and basic contextual 

information (e.g., time within session), achieving student-

independent MW detection that was 37% greater than chance. 

Finally, Mills et al. [18] studied MW detection in the context of 

viewing a narrative film. This study used a research grade eye 

tracker to monitor eye movements from which  content-free global 

gaze features (e.g., fixation duration) as well as content specific 

features were computed. The content specific features were 

generated from two areas of interest (AOIs): one from the saliency 

map of the image [14], and one specific to the film being watched. 

These AOIs were then used in conjunction with eye gaze to 

generate content specific (local) features (e.g., average distance of 

fixations from an AOI or intersections with the AOI). The key 

finding was that, unlike in reading tasks, models built using local 

features were more successful than those built from global gaze 

features, achieving a student-independent score of 29% above 

chance. 

1.2 Current Study and Novelty 
The novelty of this paper is two-fold. First, we build the first 

gaze-based detector of MW during video lecture viewing. We 

focus on eye tracking due to well-known relationships between 

visual attention and eye-movements. For example, MW has been 

associated with longer fixation durations [25] and more blinking 

in reading [33]. We use low-cost consumer-grade eye trackers to 

collect gaze data from participants as they view a recorded lecture 

(see Figure 1). Since research grade eye trackers can cost upwards 

of $40,000, the selection of affordable equipment (less than $150) 

increases the applicability of this work, enabling its eventual 

deployment in real world learning environments such as 

classrooms or students‟ homes.  

Second, we compare MW detection with the more generalizable, 

global eye gaze features to AOI based local features. Global eye 

gaze features have previously been successful for detecting MW 

in learning contexts such as reading [7] and interacting with an 

ITS [15]; however, recent work involving narrative film 

comprehension found that AOI based features were more effective 

in that context [18]. We explore if the differences in visual style 

and production techniques between a recorded lecture (Figure 1) 

and a narrative film (Figure 2) influence the effectiveness of local 

features for detecting MW. This is a critical comparison because 

the global features are much more generalizable. 

 

Figure 1. Example frame from recorded lecture 

 

Figure 2. Example frame from narrative film 
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2. MW DETECTION 

2.1 Procedure 
Participants (or students) were 32 undergraduate students from a 

Canadian University, and they were compensated with course 

credit for their participation in the study. Participants watched a 

24 minute lecture on population growth and were informed that 

there would be a test over what they had learned after watching 

the video. MW was defined as “Any thoughts that are not related 

to the material being presented”, with examples such as 

“Concerns about an upcoming exam” and “Thoughts about 

dinner”. Students also had the opportunity to ask questions 

regarding the instructions before the video began, but throughout 

the process, students had no control over the video. 

Eye movements were monitored using a COTS eye-tracker called 

the EyeTribe that retails for $99. The eye tracker was placed just 

below the monitor on the desk.  

2.2 Thought Probes 
Mind wandering was measured during the recorded lecture using 

auditory thought probes, which is a standard approach in the 

literature [30]. Each student received 12 probes throughout the 

course of the recorded lecture that appeared at pre-determined 

times in the video. For each probe, the video paused and text was 

displayed on the screen asking, “In the moments prior to the probe 

were you MW?” Participants could then respond “1” for yes or 

“0” for no.  Overall 31% of the probes were MW. 

It is important to emphasize a few points about the method used to 

track MW. First, this method relies on self-reports because MW is 

an inherently internal phenomenon which requires self-awareness 

for reporting [32]. Second, self-reports of MW have been 

objectively linked to patterns in pupillometry [12], eye-gaze [25], 

and task performance [23], providing validity for this approach. 

However, at this time, there are no reliable neurophysiological or 

behavioral markers that can accurately substitute for the self-

report methodology [32]. Indeed, this is the very reason we set out 

to build gaze-based MW detectors. The limits of thought probes 

are considered further in the Discussion section. For now, we note 

that our use of thought-probes to measure MW is consistent with 

the state of the art in the psychological and neuroscience 

literatures [32].  

2.3 Feature Engineering 
We calculated features from 30-second windows (window size 

was based on previous work [6, 15]) preceding each thought 

probe. We investigated two types of features: global gaze (from 

previous work [15]) as well as local features (based on [18]). 

Global gaze features focus on general gaze patterns and are 

independent of the content on the screen; whereas, local features 

encode where gaze is fixated on the screen.  

2.3.1 Global Features 
Eye movements were measured by fixations (i.e., points in which 

gaze was maintained on the same location) and saccades (i.e. the 

movement of the eyes between fixations). We calculated fixations 

and saccades from the raw eye gaze data using the Open Gaze and 

Mouse Analyzer (OGAMA) [35]. We considered six general 

measures across the 30-second window (bolded in Table 1) from 

which we computed the number, mean, median, minimum, 

maximum, standard deviation, range, kurtosis, and skew of the 

distributions, yielding 54 features. We also included three other 

features (see Table 1), yielding a total of 57 global gaze features.  

Table 1. Eye-gaze features. Bolded cell indicates that nine 

descriptives (e.g., mean) were used as features (see Text) 

Feature Description 

Fixation Duration  Elapsed time in ms of fixation 

Saccade Duration  Elapsed time in ms of saccade 

Saccade Length Distance of saccade in pixels 

Saccade Angle Absolute Angle in degrees between the x-axis 

and the saccade 

Saccade Angle Relative Angle of the saccade relative to 

previous gaze point. 

Saccade Velocity Saccade Length / Saccade Duration 

Fixation Dispersion Root mean square of the distances of 

each fixation to the average fixation 

position 

Horizontal Saccade 

Proportion 
Proportion of saccades with relative 

angles <= 30 degrees above or 

below the horizontal axis 

Fixation Saccade Ratio ratio of fixation duration to saccade 

duration 

 

2.3.2 Local Features 
Local features were computed based on the relationship between 

eye movements and an area of interest (AOI). Two AOIs were 

defined for each frame of the lecture video that fell within the 

window: the most visually salient region of the frame, and the face 

of the lecturer. Visual saliency was determined using a MATLAB 

implementation of the Graph-Based Visual Saliency Algorithm 

[14] which produced a saliency map of pixel intensity from 0 to 1 

for each frame that considered color, intensity, orientation, 

contrast, and movement. Determining the most visually salient 

region consisted of removing pixels with an intensity below a 

certain threshold (starting at 60% of the most intense pixel in the 

frame), leaving one or more regions of pixels as seen in Figure 4.  

 

Figure 3. Example most salient region, lighter areas indicate 

higher saliency. 

If the largest region had an area less than 2000 pixels (about 2% 

of the total area and a similar size to the face AOI), it was selected 

as the most visually salient region; otherwise, the process was 

repeated with a lower threshold. Figure 3 shows an example 

selection; in this case, the lecturer is gesturing, and the hand area 

was chosen as the most salient region. The face AOI was 

computed by detecting the facial location in the video using the 

commercially available software, Emotient [38]. The software 

provided the height and width of the face as well as the location 
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which was converted into a bounding box after adding a small 

buffer of 20 pixels to account for any tracker inaccuracies.   

There were 17 features calculated from each AOI for a total of 34 

features. The features can be divided into three types: (1) AOI 

distance, (2) AOI intersection, and (3) saccade landing. AOI 

distance features consisted of descriptive statistics (minimum, 

maximum, mean, median, standard deviation, skew, kurtosis, and 

range) of the distance between the center of the AOI and the 

fixation position for each frame where the AOI was present, for a 

total of eight AOI distance features per AOI. AOI intersection 

features captured the proportion of time that gaze was within the 

bounding box or within one or two degrees of visual angle from 

the bounding box, resulting in a total of three AOI intersection 

features per AOI. Saccade landing features consisted of counting 

the number of times saccades landed on an AOI, left an AOI, or 

occurred within an AOI. To account for tracking noise, an 

additional set of saccade landing features were computed that 

counted the same events if they occurred within one degree of 

visual angle from the AOI, for a total of six saccade landing 

features per AOI. 

2.4 Model Building 
We focused on Bayesian Networks as they yielded the best 

performance compared to several other standard classifiers on this 

task in our previous work [15]. We used the default 

implementation from the Weka data mining package [13]. We 

validated the models with a leave-one-participant-out cross-

validation scheme. For each fold, probe responses of one 

participant are held out for testing, and the model is trained on the 

remaining probes. This process ensures that no instances of any 

individual participant could appear in both the training and testing 

sets within a fold. This process is then repeated for the number of 

participants. 

In total, there were 384 probes during the lecture. Of those, 12 

were discarded due to insufficient eye gaze data (< 1 fixation) in 

the respective window to compute all the global features. The 

remaining 372 instances were used across all feature sets to ensure 

a fair comparison. Students reported MW in 31% of the 372 

instances, thereby leading to data skew. This imbalance between 

labels poses a challenge as supervised learning methods tend to 

bias predications towards the majority class label. To compensate 

for this concern, we use the SMOTE algorithm [9] to create 

synthetic instances of the minority class by interpolating feature 

values between an instance and its randomly chosen nearest 

neighbors until the classes were equated. SMOTE was only done 

on the training sets; testing sets were unaltered in order to ensure 

validity of the results. 

2.5 Results 
The classification results are shown in Table 2. Because our 

intention is to detect instances of MW, we focus on the precision, 

recall, and F1 score of the MW class as our key metric. For 

comparison, a chance-level baseline was created by randomly 

assigning the MW label to 31% (i.e., the MW baserate) of the 

instances over 1,000 iterations and averaging the result.  

The results indicated that, while all models outperform the chance 

baseline: (1) global features outperformed local features and (2) 

adding local features to the global features increased precision but 

decreased recall, leading to no improvement in F1 MW over 

global features alone. The fact that the best results were obtained 

from global features is significant because these features are more 

likely to generalize across interaction contexts. 

Table 2. MW detection results for the recorded lecture 

Feature Set  F1 MW Precision MW Recall MW 

Global 0.47 0.39 0.62 
Local 0.36 0.40 0.34 
Global + Local  0.42 0.45 0.39 
    

Chance 0.30 0.30 0.30 

3. GENERAL DISCUSSION 
MOOCs present an exciting new era for education, providing 

more resources for traditional and non-traditional students alike. 

However, little is known about user experience and student 

engagement [17] with MOOCs, and it is widely known that they 

are plagued with poor retention rates [37]. Attention is critical to 

learning, [23] and monitoring attentional states of students is a 

step towards better understanding the learning process. MW is 

one key attentional state that is negatively correlated with learning 

[21]. MW is a covert, internal state with no obvious behavioral 

markers, making it difficult to detect. Although strides have been 

made to detect MW using eye gaze in the context of self-paced 

reading, gaze-based MW detection has not yet been attempted in 

the context of recorded lectures, a key component of many 

MOOCs. This is a challenge we address in the current paper. In 

the remainder of this section, we discuss our main findings, 

potential applications, and discuss limitations and future work. 

3.1 Main Findings 
MW detection during reading is supported by decades of research 

on attention and eye movements [24]. Recent work has branched 

away from reading into more complex environments [15, 18] that 

are not afforded with predictable patterns of eye moments. We 

have shown that MW detection is possible in the context of 

viewing a recorded lecture. We were able to accurately classify 

MW with an F1 of 0.47 which is a 56% improvement over chance. 

Although this result is modest, it is an important first step in 

detecting MW in this domain, especially using consumer-grade 

eye tracking equipment. 

Since MW detection in the context of online learning is still in its 

infancy, it is important that we explore techniques that are both 

successful and generalizable. We considered two feature sets in 

this work: global eye gaze features, which have previously 

performed well at detecting MW during reading and while 

interacting with an ITS, and local features, based on AOIs, that 

have previously been shown to be successful predicting MW 

during narrative film viewing. In the context of lecture viewing, 

we have shown that global eye movements outperform local AOI-

based features, contrasting previous work during narrative film 

viewing [18] that found the opposite pattern. 

It is interesting to consider why AOIs were less successful in this 

context as opposed to narrative film viewing. One suggestion lies 

in the different styles of the two media. Commercial, narrative 

films are directed with the viewer in mind, directing the 

audience‟s attention to whatever is pertinent. In many cases, films 

are produced by professionals with years of experience and 

numerous qualifications in their art form. In contrast, a recorded 

lecture involves far more basic film production techniques, and in 

many cases the film audience is the secondary audience; the 

lecture itself is designed for the audience in the room. Our 

methods rely on automated AOI detection. It may be that these 

style differences affect that detection, having a downstream effect 

on the features generated from those AOIs. Further research 

would be required to confirm this hypothesis. 
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All data was collected using low-cost, consumer-grade eye 

trackers (less than $150). This is a marked contrast compared to 

many research-grade trackers that can cost tens of thousands of 

dollars. Our hope is that these models can be deployed at scale 

and can be used to improve engagement and learning from 

MOOCs. For this reason, it was important to ensure that our 

models were validated in a student-independent manner which 

increases our models‟ ability to generalize to new students. The 

combination of student-independent models and consumer grade 

eye tracking increases our confidence that the models will 

generalize more broadly to applications outside of the laboratory, 

though this claim requires further empirical validation. 

3.2 Applications 
Lecture videos play a major role in online learning with MOOCs, 

so our MW detectors can be quite beneficial in that context. Our 

detectors could be implemented to provide real time updates to 

the MOOC software regarding the students‟ attention. Should a 

student be MW, the MOOC software could then adopt a variety of 

potential intervention strategies to refocus attention to the 

learning task.  This could include simply pausing the video, 

asking a content-specific question, or asking the student to self-

explain content that has recently been covered. Both interleaved 

questions [34] and self-explanations [20] have been shown to be 

effective in focusing attention. Students who answer incorrectly 

could then be encouraged to further review material and try again 

or could be redirected to an earlier point in the video. These 

approaches would give them multiple opportunities to correct the 

learning deficits attributed to MW. 

It is important to consider that such interventions rely on MW 

detection which is inherently imperfect. The detector may issue a 

false alarm, suggesting that a student is MW when (s)he is not, or 

it could miss that a student is MW. In our view, MW detection 

does not need to be perfect as long as there is a modicum of 

accuracy. Imperfect detection can be addressed with a 

probabilistic approach, where the detector outputs a MW 

likelihood that is then used to determine whether an intervention 

is triggered (i.e., if the likelihood of MW is 70%, then there is a 

70% chance of an intervention). The interventions should also be 

designed to “fail-soft” in that there are no harmful effects to 

learning if delivered incorrectly.  

A further application is to inform the development of future 

MOOCs. Data from students‟ attention patterns whilst interacting 

with a MOOC video can be used to improve course structure (e.g. 

number of lectures and lecture length as well as course content 

such as individual explanations).  

3.3 Limitations 
We designed our approach to include a low-cost eye tracker, 

however, consumer models have a lower sampling-rate, limiting 

the accuracy of eye-gaze data compared to research-grade eye 

trackers.  Furthermore, a key limitation was that we considered 

one lecture, so generalizability to other lectures is unknown. In 

addition, data was collected in a quiet lab environment; for better 

ecological validity we would need to explore more authentic 

learning environments (e.g. homes or libraries).  

A further limitation relates to the use of thought probes which 

require users to be mindful of their MW and respond honestly. 

Although this methodology has been previously validated [12, 23, 

25] there is no clear alternative to track a highly internal state like 

MW outside of measuring brain activity in an fMRI scanner. One 

futuristic possibility is to combine self-reports and wearable 

electroencephalography (EEG) as a means of collecting more 

accurate MW responses, but it is unclear if this can be done in 

more realistic contexts. 

3.4 Future Work 
The results discussed here invite several possibilities for 

improvement that we will address as future work. First, we will 

explore eye movements in different lectures. Having shown that 

global gaze models are applicable in this context, we will explore 

if we can train a model on one recorded lecture and use that model 

on other lectures and other topics. We will also explore cross 

training to other educational environments, to gain a better 

understanding of the differences and similarities in eye 

movements and attention across learning situations.  

Another potential avenue is to integrate the detector into a MOOC 

to detect MW in real time. Here, the MW probes will be based 

upon the detectors real time assessment of students‟ attention 

instead of pre-prescribed or pseudo random probing. We can then 

better evaluate our detectors by comparing the probabilistic 

assessment of MW to students‟ responses to probes. Providing 

this refinement is successful, we could then use the detector to 

create a MOOC environment that intervenes in real time.  

4. CONCLUSION 
The popularity of MOOCs has ushered in an exciting time for 

students everywhere while also bringing challenges for educators. 

Advances in consumer grade eye tracking allow us to take a step 

towards a better understanding of how students engage with 

MOOCs on a larger scale. We have shown that we can detect MW 

in recorded lectures at above chance level. While much MW 

research has focused on the context of reading, our findings 

suggest that it might be possible to apply research on eye gaze, 

attention, and learning to this new context, thereby affording new 

discoveries about how students learn and interact with MOOCs 

while designing interfaces to sustain attention during learning. 
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