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Abstract (250words) 26 

Ice caves are one of the least studied parts of the cryosphere, particularly those 27 

located in inaccessible permafrost areas at high altitudes or high latitudes. We 28 

characterize the climate dynamics and the geomorphological features of Devaux 29 

cave, an outstanding ice cave in the Central Pyrenees on the French-Spanish 30 

border. Two distinct cave sectors were identified based on air temperature and 31 
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geomorphological observations. The first one comprises well-ventilated galleries 32 

with large temperature oscillations likely influenced by a cave river. The second 33 

sector corresponds to more isolated chambers, where air and rock temperatures 34 

stay below 0ºC throughout the year. Seasonal layered ice and hoarfrost occupy 35 

the first sector, while transparent, massive perennial ice is present in the isolated 36 

chambers. Cryogenic calcite and gypsum are mainly present within the perennial 37 

ice. During winter, the cave river freezes at the outlet, resulting in a damming and 38 

back-flooding of the cave. We suggest that relict ice formations record past 39 

damming events with subsequent formation of congelation ice. 34S values of 40 

gypsum indicate that the sulfate originated from the oxidation of pyrite present in 41 

the bedrock. Several features including the air and rock temperatures, the 42 

absence of drips, the low small loss of ice in the past seven decades, and the 43 

location of ice bodies in the cave indicate that the cave permafrost is the result of 44 

a combination of undercooling by ventilation and diffusive heat transfer from the 45 

surrounding permafrost, reaching a thickness of ~200 m below the surface. 46 

Keywords: Ice cave, cave monitoring, cryogenic cave carbonates, cryogenic 47 

gypsum, Devaux cavePyrenees. 48 

1. Introduction 49 

Mountain areas are one of the most susceptibleamong those environments to 50 

most affected by current climate change (Hock et al., 2019). In the mid-latitudes, 51 

high-altitude areas are subject to mountain permafrost, a very sensitive and 52 

unstable phenomenon that responds quickly to environmental changes (Harris et 53 

al., 2003; Biskaborn et al., 2019) due to the number of factors. They influence the 54 

spatial distribution of mountain permafrost, including snow cover distribution and 55 

thickness, topography, water availability, surface temperature and rock 56 

temperatureSnow cover distribution and thickness, topography, water availability, 57 

and surface and rock temperature influence the spatial distribution of mountain 58 

permafrost  (Gruber and Haeberli, 2009). In light of these processes, Due to this 59 

number of processes multidisciplinary studies including, among others, 60 

measurements of rock temperature measurements in boreholes,  and the bottom 61 

temperatures of snow cover (BTS), a variety of geophysical techniques, and 62 

thematic detailed maps mapping (geomorphology, thermal) are needed to gain a 63 
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comprehensive understanding of mountain permafrost (e.g. Lewkowicz and 64 

Ednie, 2004; Serrano et al., 2019; Biskaborn et al., 2019). On the other hand, the 65 

integrated study studies of paleo-permafrost (e.g. Vaks et al., 2020), e.g. Vaks et 66 

al., 2020) and modern permafrost, specifically mountain permafrost (e.g., Supper 67 

et al., 2014; Scandroglio et al., 2021), sheds light on past, present and future 68 

developments of permafrost areas, an issue of vital importance in the context of 69 

global warming. Studies of past permafrost require sedimentary records, which 70 

are locally preserved in caves located at high altitudes and/or high latitudes. 71 

Thus,  tTemporal and spatial changes in past permafrost distribution have been 72 

identified using speleothems (stalagmites, flowstones) in high-73 

latitudecircumpolar and polar regions (e.g., (Vaks et al., 2013, 2020; Moseley et 74 

al., 2021; Li et al., 2021) as well as in mid-latitude regions (e.g., Lundberg and 75 

McFarlane, 2007; Fankhauser et al., 2016; Lechleitner et al., 2020). 76 

Ice caves are defined as cavities in rock hosting perennial ice that results from 77 

the transformation of snow and/or the freezing of infiltrating water reaching the 78 

cave (Perşoiu and Lauritzen, 2018). Cave ice can be dated and used as a 79 

valuable paleoclimate archive in non-polar areas (e.g., Stoffel et al., 2009; Spötl 80 

et al., 2013; Perșoiu et al., 2017; Kern et al., 2018; Sancho et al., 2018a; Leunda 81 

et al., 2019; Munroe, 2021; Racine et al., 2022).  Furthermore, temporal and 82 

spatial changes in past permafrost distribution have been identified using 83 

speleothems (stalagmites, flowstones) in circumpolar and polar regions (e.g.,  as 84 

well as in mid-latitude regions (e.g., Lundberg and McFarlane, 2007; Fankhauser 85 

et al., 2016; Lechleitner et al., 2020). Recently, coarse cryogenic cave carbonates 86 

(CCCcoarse), that form during slow freezing of water inside caves, have been used 87 

as indicator of permafrost degradation, permafrost thickness, and subsurface ice 88 

formation (Žák et al., 2004, 2012; Richter et al., 2010a; Luetscher et al., 2013; 89 

Orvošová et al., 2014; Spötl and Cheng, 2014; Bartolomé et al., 2015; 90 

Dublyansky et al., 2018; Koltai et al., 2020; Munroe et al., 2021; Spötl et al., 91 

2021).  92 

Many ice caves are located in areas where the mean annual air temperature 93 

(MAAT) outside the cave is above 0ºC (Perşoiu and Lauritzen, 2018) and, 94 

therefore, are highly susceptible to future climate warming (Kern and Perşoiu, 95 

2013). These ice caves are local thermal anomalies which are controlled by the 96 
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cave geometry and the associated ventilation pattern. Their ice deposits 97 

represent sporadic permafrost occurrences and do not inform about the wider 98 

thermal environment. In contrast, at high altitudes and high latitudes subsurface 99 

ice deposits are still preserved by the presence of permafrost under the current 100 

climate  conditionschange. There, mountain permafrost is limited to areas where 101 

a periglacial belt is present, with MAAT ≤ 0º C. For example, in the European 102 

Alps, discontinuous mountain permafrost is observed between above 2600 and 103 

to 3000 m a.s.l. (Boeckli et al., 2012), while in southern Europe permafrost is 104 

generally absent (i.e. not observed even on the highest massif of the Iberian 105 

Peninsula, Gómez-Ortiz et al., 2019). In the Central Pyrenees few studies 106 

suggest the possible presence of permafrost above 2750 m a.s.l. (Serrano et al., 107 

2019, 2020; Rico et al., 2021), and the presence of a few ice caves has only 108 

recently been documented (e.g. Sancho et al., 2018a; Serrano et al., 2018) 109 

informing about the occurrence of sporadic permafrost..   110 

The aim of this study is to characterize the permafrost conditions in Devaux cave, 111 

a high-altitude ice cave in the Central Pyrenees. We monitored air, water and 112 

rock temperatures and used cryogenic cave deposits to i) document the 113 

distribution of permafrost within this cave, and ii) to study the processes that 114 

resulted in perennial cave ice bodies and associated cryogenic mineral 115 

occurrences.  116 

 117 

2. Study site 118 

Devaux cave opens at ~2838 m a.s.l. in the NE cliff of Gavarnie cirque (France) 119 

of the Monte Perdido massif (MPm) in the Central Pyrenees (Fig. 1a). The cave 120 

is located between the Parc National des Pyrénées (France) and the Parque 121 

Nacional de Ordesa y Monte Perdido (Spain). Named after Joseph Devaux who 122 

discovered and explored it in 1928, the cave was later investigated with respect 123 

to its hydrogeology and microclimatology and preliminary descriptions of its 124 

deposits were reported (e.g., Devaux, 1929; 1933; Rösch and Rösch, 1935; 125 

Rösch, 1949; dDu Cailar and Dubois, 1953; Requirand, 2014). 126 

 127 
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The area is dominated by limestones and dolostones ranging from the Upper 128 

Cretaceous to the Eocene-Paleocene. MPm is the highest limestone karst area 129 

in Europe reaching up to 3355 m a.s.l. (Monte Perdido peak) (Fig. 1b). The 130 

nearest peaks to Devaux cave are Marboré (3248 m a.s.l.) and the three Cascada 131 

peaks (3164 m, 3111 m, and 3098 m a.s.l.). The limestone thickness above the 132 

cave varies between ~200 and 250 m (Fig. 2a). In Devaux, the galleries follow 133 

the axis of a NW-SE striking syncline (Fig. 1b). A river runs along the cave (Fig. 134 

2a, b). The cave has two known entrances: the lower one corresponds to the 135 

main outlet of the cave river (Brulle spring, North 1, ~2821 m a.s.l.), while the 136 

upper entrance is known as the “Porche” (South, ~2836 m a.s.l.) (Figs. 1c and 137 

2b). Between these two entrances, a small gallery (Spring North 2) opens +1.2 m 138 

above Brulle spring (Fig. 1c). Brulle is one of the main springs in the Gavarnie 139 

cirque. This spring drains a catchment of ~2.6 km2 (polje) located on the southern 140 

face of MPm between ~2850 and 3355 m a.s.l. (Figs. 1b and, 1d). Major water 141 

flow is observed during late spring and early summer when snowmelt recharges 142 

occurs in a catchment characterised by shafts, sinkholes and small closed 143 

depressions (Fig. 1d). The water of Brulle spring feeds, together with some other 144 

springs located a few hundred meters below, the Gavarnie waterfall (Fig. 1b). A 145 

tracer experiment (du Cailar et al., 1953) indicated that part of the water of the 146 

Gavarnie waterfall, and thus likely also from Brulle spring, comes from a ponor in 147 

the Lago helado (lake, Fig. 1e), located ~2.3 km to the east of Devaux cave (Figs. 148 

1b and 2a). The Gavarnie waterfall (Fig. 1b) turned green within ~21 hours after 149 

injection of the tracer but the water at Brulle spring was not directly checked (du 150 

Cailar et al., 1953). During the colder months, the spring water as well as the 151 

Gavarnie waterfall freeze. 152 

The geomorphology of the area is dominated by karst, glacial and periglacial 153 

landforms. The area was strongly glaciated during the last glacial period on both 154 

sides of the massif (e.g., Reille and Andrieu, 1995; Sancho et al., 2018b; 155 

Bartolomé et al., 2021). Today, only two glacier relicts covered by scree deposits 156 

are present in the Gavarnie cirque (Fig. 1b): 1) the Cascada dead-ice which is 157 

located several hundred meters below Devaux cave, and 2) a dead-ice 158 

accumulation in the NE wall of the cirque. Till present close to Brulle spring, on 159 

the access to Devaux and in the Cascada glacier, point to a much larger glacier 160 

Con formato: Inglés (Estados Unidos)



6 
 

extent in the past, maybe corresponding to the Little Ice Age or even the 161 

Neoglacial advance recognized in the nearby Tucarroya (Fig. 1b) and Troumouse 162 

cirques (Gellatly et al., 1992; González Trueba et al., 2008; García-Ruiz et al., 163 

2014, 2020).  164 

The study area lies at the transition between Atlantic and Mediterranean climate, 165 

with generally cold and dry winters and warm and dry summers. In MPm, the 166 

annual zero 0°C isotherm is located at ~ 2900 m a.s.l. (López-Moreno et al., 2016; 167 

Serrano et al., 2019). The wet seasons are fall and spring. The annual 168 

precipitation at the Góriz meteorological station (2150 m a.s.l. and 3 km SE of the 169 

cave) averages 1650 mm. However, mass balance calculations of the nearby 170 

Monte Perdido glacier, where more than 3 m of snow (density(ρ 450 Kkg/m3) 171 

accumulates between November to April, indicates a minimum amount of 1500 172 

mm w.e (water equivalent), therefore the total annual precipitation in elevatehigh 173 

areasparts of the massif exceedsss 2500 mm However, mass balance 174 

calculations of the nearby Monte Perdido glacier suggest that annual precipitation 175 

next to the cave may exceed 2500 mm, as the snow depth measured in early 176 

May exceeds on average 3 m (López-Moreno et al., 2019). In the MPm, 177 

discontinuous permafrost is present between ~2750 and ~2900 m a.s.l. and 178 

becomes more frequent above ~2900 m a.s.l. on the northern side (Serrano et 179 

al., 2019). Periglacial activity is characterized by rock glaciers, solifluction lobes 180 

and patterned ground (Feuillet, 2011).  181 

 182 

3. Material and methods 183 

3.1 Cave survey and mapping 184 

A survey of Devaux cave was conducted using a compass and clinometer as well 185 

as a laser distometer (Disto-X, Heeb, 2014). In addition to cave ice, chemical and 186 

clastic deposits were mapped inside the cave . These features were overlain onto 187 

the cave survey to produce a geomorphological cave map (Fig. 2b). The labelling 188 

of the cave chambers (A to K) follows the nomenclature introduced by Devaux 189 

(1929) and Rösch and Rösch (1935).  190 
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A map of potential solar radiation (RAD) of the MPm was obtained using an 191 

algorithm which considers the effects of the surrounding topography on 192 

shadowing considering the position of the sun. RAD was calculated for every 193 

month of the year and was then averaged to obtain an annual mean. Details of 194 

this computation can be found in Pons and Ninyerola (2008). 195 

3.2 Cave monitoring 196 

The cave consists of large rooms (e.g., room F, or and those located beyond 197 

SCAL chatière) connected by small galleries (Fig. 2b), locally with narrow 198 

passages (e.g., galleries close to SPD room or SCAL chatière, Fig. 2b). 15 199 

stations were installed in the outmost ~350 m of the cave to monitor air (11 200 

sensors), water (2 sensors) and rock temperature (2 sensors) (Fig. 2b). Cave air 201 

temperature variations were recorded using different devices (Hobo Pro v2 U23-202 

001 (accuracy ±0.25°C, resolution 0.02°C), Tinytag Talk 2 (accuracy ±0.5°C, 203 

resolution, 0.04°C) and ELUSB2 (accuracy ±0.21°C, resolution 0.5°C)). The cave 204 

river temperature was recorded at two points. T; the first site (W7) was located 205 

close to the Brulle spring (Fig. 2b; Hobo TiDBit V2, accuracy ±0.21°C, resolution 206 

0.02°C) and, the second site (W6) was located in room F (Fig. 2b; Hobo UA-001-207 

08; accuracy ±0.53°C, resolution 0.4°C). Both sensors were installed at a water 208 

depth of 20 cm. Finally, the rock temperature was recorded at two sites (R1 and 209 

R2 in room D and K, respectively) using a Hobo U23-003 device (accuracy 210 

±0.25°C, resolution 0.02°C). Each sensor has two external temperature probes 211 

(channels 1 and 2, Ch1-Ch2). These temperature probes were installed in two 212 

horizontal drill holes of 60 cm depth, ~1.5 to 2 m from each other. 213 

We monitored sporadically the cave during different time intervals between 2011 214 

and 2015, while a continuous monitoring was carried out between July 2017 and 215 

July 2021. We calculated the mMaximum, minimum and mean temperatures as 216 

well as the number of frost/warm days were obtained for each sensor and site 217 

(Fig. 2b). Changes in the ice morphology were evaluated using wall marks 218 

measured at four points since 2013 in room G and using one point during 2020-219 

2021 in room SPD (Fig. 2b) using a digital sliding caliper. 220 

The outside temperature was measured at two points in the MPm, at the “Porche” 221 

entrance (~2836 m a.s.l.) and on the southern face of MPM at ~2690 m a.s.l. For 222 
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comparison, these temperature records were corrected assuming an adiabatic 223 

lapse rate of 0.55°C 100-15.5 ºC km-1 m (López-Moreno et al., 2016; Navarro-224 

Serrano et al., 2018) to an elevation of ~2850 m a.s.l., corresponding 225 

approximately to the lower limit of the hydrological catchment area of Devaux. In 226 

both cases, the temperature was measured using Tinytag Talk 2 sensors 227 

equipped with a radiation shield. These data were compared to the temperature 228 

record from the Pic du Mmidi de Bigorre meteorological station (PMBS; 2011-229 

2020) (2860 m a.s.l., ~28 km N of Devaux) obtained from Météo-France. 230 

Moreover, the homogenised MAAT dataset available since 1882 from PMBS 231 

(Bücher and Dessens, 1991; Dessens and Bücher, 1995) was were used to 232 

identify identify long-term climatic temperature trends. 233 

3.3 Mineralogy, water and mineral sampling X-ray diffraction, ion chromatography 234 

and sulfur isotopes 235 

X-ray diffraction (XRD) analyses were performed on sulfate and carbonate 236 

crystals from rooms G, D and K, as well as on sulphide and oxidized crystals 237 

thereof from the host rock (Fig. sS1). The analyses were performed at the 238 

Geosciences Institute in Barcelona (GEO3-BCN-CSIC) using a Bruker-AXS 239 

D5005 powder diffractometer configured in θ/2θ-mode (e.g. (Rodríguez-Salgado 240 

et al., 2021)theta-2 theta geometry. 241 

Samples of cave drips water, ice and river water were analysed for major ions by 242 

ion chromatography (IC) at the laboratories of the Pyrenean Institute of Ecology 243 

(Zaragoza). Carbonate alkalinity was determined by titration within 24 hours after 244 

sampling.  245 

Sixteen samples, including sulfate crystals, dissolved sulfate and pyrite crystals 246 

were selected for sulfur isotope analysies at the Godwin Laboratory for 247 

Paleoclimate Research of the University of Cambridge (UK), following the 248 

methodology of (Giesemann et al., (1994). For gypsum samples, ~5 mg of 249 

powdered gypsum were dissolved in deionized water at 45ºC overnight. Then, a 250 

BaCl2 solution (50 g/L) was added to induce BaSO4 precipitation. In the case of 251 

water samples, BaCl2 was added directly to the sample. Subsequently, 6M HCl 252 

was added to remove any co-precipitated carbonate mineralss and the BaSO4 253 

precipitate was rinsed several times with deionized water. Finally, BaSO4 was 254 
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dried at 45ºC overnight. Sulfates dissolved in water were precipitated using the 255 

same method. 256 

Isotope measurements were carried out using a Flash Elemental Analyzer (Flash-257 

EA) at 1030 ºC. The samples were folded in tin capsules. After sample 258 

combustion, the generated SO2 was measured by continuous-flow gas source 259 

isotope ratio mass spectrometry (Thermo Scientific, Delta V Plus). Samples were 260 

run in duplicate and calibration was accomplished using NBS-127. The 261 

reproducibility (1σ) of 34S was better than 0.2‰, similar to the long-term 262 

reproducibility of the standard over the run (0.2‰). 34S isotope values are 263 

reported relative to VCDT (Vienna-Canyon Diablo Troilite). 264 

 265 

4. Results 266 

4.1 Devaux cave description 267 

Devaux cave is ~2500 m long and comprises three distinct levels (Fig. 2b). The 268 

lower and the middle levels correspond to the Brulle spring (0 m), and the 269 

“Porche” entrance (~+14.5 m), respectively. The third one comprises chambers 270 

and galleries +21 m to +29 m above the Brulle spring (Fig. 2b). In the inner part 271 

of the cave, some unexplored vertical chimneys may connect to sinkholes in the 272 

catchment above the cave (Fig. 2a). The main ice deposits are located in rooms 273 

D, G, SPD and K (Fig. 2b). Except for SPD, these chambers located above the 274 

Porche entrance (between ~+1 and +7 m) can be accessed via ascending 275 

passages. 276 

During the cold season, the cave river starts freezing at the spring and the ice 277 

then expands backward into room F (Fig. 2b). The ice totally or partially clogs the 278 

main gallery and dams the water inside the cave forming a small lake (cf. also 279 

Rösch and Rösch, 1935). This process is important for the seasonal ice extent 280 

as the flooding of the cave depends on whether the springs (North 1 and North 281 

2) are frozen or not (e.g., Rösch and Rösch, 1935). Webcam observations 282 

(Gavarnie, Oxygène hut) suggest a possible freezing of the Brulle spring from 283 

late November to mid-May simultaneous with the freezing of the Gavarnie 284 

waterfall. Moreover, historical photos (e.g., Devaux, 1929; Rösch and Rösch, 285 

1935) and our own observations show that snow during winter and spring can 286 
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reach the Brulle entrance - a situation that also favours the blocking of the 287 

springs. As a result of such flooding events, slackwater deposits are 288 

presentformed in the cave entrance zone, but locally also further into the cave 289 

(e.g., in rooms I, J, K and SCAL chatière, along the main gallery; Fig. 2b), while 290 

silty sediments are found at elevated positions with respect to the river level (e.g., 291 

in rooms D and G). Sandy sediments dominate in the large rooms located beyond 292 

the SCAL chatière. Two such successions (~1 m thick) comprising hundreds of 293 

rhythmitic fine  sand- and silt layers are present in elevated areas with respect to 294 

the current river, witnessing major events of back-flooding. 295 

Observations made during summer show a dominant air-flow direction from the 296 

inner to the outer parts of the cave, exiting through the Brulle and Porche 297 

entrances. Conversely, the opposite is expected for the cold season (chimney 298 

effect). When the Brulle spring is partially clogged by the ice during early summer 299 

forcing the stream to flow below the ice, air flows from room F to C (Fig. 2b) (e.g., 300 

summer 2021). The air flow is imperceptible in rooms D, G, and close to K located 301 

away from the main cave passages. 302 

4.2 Climate setting of Devaux cave 303 

The MAAT at the elevation of Devaux cave is ~0 ºC (-0.04 ºC; 2017-2021). On  304 

the other hand, a positive MAAT (1.8 ºC) is recorded on the southern side of the 305 

MPm at a similar altitude (Fig. 3a). Maximum and minimum air temperatures 306 

outside the cave vary between 24.5 °C and -17.2 °C (hourly values, 2017-2021). 307 

The PMBS MAAT record (Fig. 3b) shows an increase warming trend of ~+around 308 

+1.5 ºC since the beginning of the measurements in 1882. Before 1985, 309 

temperatures below 0ºC dominated the annual cycle, while positive MAATs 310 

became more frequent in recent years. Minimum temperatures also show an 311 

temperature increaseing trend of ~+2.5 ºC, while the maximal annual 312 

temperatures do not show a clear trend. The north-facing Gavarnie cirque is 313 

associated with a clear RAD anomaly (Fig. 4). Values lower than 215 kWh/m2 are 314 

observed at ~2000 m and between ~2800 and 2900 m a.s.l., corresponding to 315 

the cirque bottom, the area located behind La Torre peak and the surroundings 316 

of Devaux cave. At the cave site entrance the RAD value is only 390 kWh/m2, in 317 
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stark contrast to the summit areas and surroundings where the RAD often 318 

exceeds 1500 kWh/m2 (Fig. 4).  319 

While the mean daily air temperature (MDAT) at the cave entrance (purple line in 320 

Fig. 5) and the temperature series from PMBS (pink line in Fig. 5) agree in their 321 

absolute values, the variability of MDAT at the Devaux entrance is lower than at 322 

the PMBS. This pattern could be related to local topographic conditions leading, 323 

for instance, to less RAD, or to the position of the sensor in the cliff (less night 324 

emissivity). Given this radiation contrast, warmer temperatures prevail on the 325 

southern side of the MPm (Fig. 4), favouring early snowmelt in spring and early 326 

summer, while at the same time the temperature stays below 0 ºC in the cave’s 327 

surroundings.  328 

4.3 Devaux cave temperature variations 329 

The cave can be separated into distinct areas depending on their thermal regime: 330 

ventilated galleries (rooms A, B, C, F and the main gallery from SPD to SCAL 331 

chatière) to K) and those poorly ventilated parts off the main air flow path (rooms 332 

D, G, K - Figs. 2b, 5). 333 

4.3.1 Well-ventilated cave parts  334 

Air (T2air, T5air, T10air, T11air) and water (W6water, W7water) temperature data show 335 

large seasonal oscillations. at T2air, T5air, T10air T11air, T12air,  W6water, W7water and 336 

R2rock sensors. All sensors except T11air, T12air, and R2rock show a few days with 337 

of positive temperatures during summer. Sensor T2air (2011-2012, Fig.5a), which 338 

is also the closest to the Porche entrance, shows the highest correlation (r) with 339 

the external temperature (0.73, p<0.001). Sensor T5air (2017-2021, Fig. 5d) in 340 

room B also shows a high correlation and significant correlation (0.82, p<0.0005) 341 

with the outside temperature. During the major cave refrigerationcooling that 342 

takes place between the end of October toand May and the correlation is 343 

significatent and ranges between 0.68 to 0.84. During the summers and part of 344 

the falls, the correlations decreases notably (-0.23 to 0.76).  Sensor T11air (2018-345 

2021, Fig. 5d) is located in SPD room. Despite being a well-ventilated gallery, the 346 

sensor is relatively protected from the air flow by the room morphology and shows 347 

lower correlations (0.69, p<0.001)is partly protected from the air flow and shows 348 

lower a correlation (0.69, p<0.001) despite being located in a well-ventilated 349 
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gallery (SPD room). Also during the refrigerationwinter months, the correlations 350 

are lower (0.49-0.62, p<0.001) than in T5air.  Sensor T5air (2017-2021, Fig. 5d) 351 

in room B also shows a high correlation with the outside temperature from 352 

November to May (0.82, p<0.001(2017-2018); 0.66, p<0.001(2018-2019); 0.66, 353 

p<0.001(2019-2020); 0.86, p<0.001(2020-2021)), while during summer and fall 354 

correlations with external temperatures are slightly weaker (0.52, p<0.001(2017-355 

2018); 0.37, p<0.001(2019-2020); 0.66 p<0.001(2020-2021)). Sensor T11air 356 

(2017-2021, Fig. 5d) is located in SPD room. Despite being a well-ventilated 357 

gallery, the sensor is relatively protected from the air flow by the room morphology 358 

and shows lower correlations (0.45, p<0.001(2018-2019); 0.34, p<0.001(2019-359 

2020); 0.79 p<0.001 (2020-2021)) compared to T5air. Sensor T10 (2014-2015, 360 

Fig. 5c) does not show any significant correlation with the external temperature. 361 

Sensors T12air and R2rock are located in room K, and similar to T11air, the chamber 362 

morphology shields them from the air flow. Rock temperature sensor R2 rock 363 

shows a slightly variable temperature ranging between -0.19°C and -0.28°C 364 

(mean of -0.24 and -0.23°C for channel 1 and 2, respectively). Sensor T12air 365 

shows a low correlation with the external temperature (r2=0.35, p<0.001 (2018-366 

2021)), and the same is observed for Text - R2 rock (r2=0.35, p<0.001 (2019-2021). 367 

Meanwhile the correlation between T12 air and R2 rock is high but not significant 368 

(r2=0.93, p>0.005 (2019-2021). 369 

The water sSensors W6water and W7water (Figs. 5b, c) recorded water temperature 370 

variations during the years 2012-2013 and 2014-2015, respectively. Both sensors 371 

record a continuous temperature decline from the end of November to mid-372 

January until the water freezes. At W7water, the temperature ranges between -0.3 373 

and -5.8 °C between the end of fall and the beginning of winter, while between 374 

January and the beginning of June, the temperature stays close to 0°C between 375 

January and the beginning of June. At W6 water, the temperature reached a 376 

minimum of -1.7 ºC and shows smaller variations than at W7water. No significant 377 

correlation was found between the external air temperature and the river water 378 

temperature. Only W6water shows a weak small correlation with the external 379 

temperature when ice is absent (0.39 p<0.001 and 0.40 p<0.001). 380 

For each monitored interval, the mean annual cave temperature at the T2air, T5air 381 

and T11air sensors is lower than the outside mean temperature for the same 382 

Comentado [M23]: line 346: I suggest replacing “small” 

with “weak”. 

 



13 
 

period (by 0.4º, 2.0º, 3.3º C lower, respectively). The W6water, W7water and T10air 383 

sensors show mean temperatures higher than the external mean temperatures 384 

(by 1.6º, 2.6º, 2.5º C higher, respectively). The periods 2011-2012 and 2017-2018 385 

(at T2air and T5 air, respectively) represent the coldest cave years of the monitoring 386 

period. 387 

 388 

4.3.2 Poorly ventilated cave parts  389 

Air temperature sSensors located in rooms D (T3air, T4air, T8air, R1rock),  and G 390 

(T9air), K (T12air,) and rock temperature (R1rock, R2rock) show air temperatures 391 

below 0 ºC during the monitoring period with small oscillations and a weak and/or 392 

insignificant correlation with the external air temperature. All sensors show 393 

temperatures below 0 ºC during the monitoring period with small oscillations. 394 

Sensor R1rock (Fig. 5) recorded rock temperatures consistently below 0ºC during 395 

the entire monitoring period. This sensor shows constant rock temperatures (-396 

1.24 °C and -1.27 ºC for channels 1 and 2, respectively), similar within error to 397 

the cave air temperature (T3air, T9air; 2019-2021). All sensors except for T3air 398 

(2011-2012, Fig. 5a) show mean air and rock temperatures lower than the mean 399 

external temperature during the same period (by 0.59 °C to 2.47ºC lower). The 400 

muted temperature variations in these chambers reflect reduced heat exchange 401 

compared to the well-ventilated parts of the cave. Sensors T12air and R2rock are 402 

located in room K, and similar to T11air, the chamber morphology shields them 403 

from the air flow. Rock temperature sensor R2 rock shows a slightly more variable 404 

temperature ranging between -0.19°C and -0.28°C (mean of -0.24 and -0.23°C 405 

for channel 1 and 2, respectively). Sensor T12air shows a low correlation with the 406 

external temperature (r2=0.35, p<0.001 (2018-2021)), and the same is observed 407 

for Text - R2 rock (r2=0.35, p<0.001 (2019-2021). Meanwhile the correlation 408 

between T12 air and R2 rock is high but not significant (r2=0.93, p>0.005 (2019-409 

2021). 410 

 411 

 412 

4.4 Cave deposits 413 
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4.4.1 Ice  414 

Congelation ice formed by freezing of water within the cave is the most abundant 415 

type of ice, and four main ice deposits are located in chambers D, G, SPD, and 416 

K (Fig. 2b). The most relevant feature of these ice bodies is their high 417 

transparency and massive aspect, i.e. the lack of layering (Figs. 6a, b). 418 

Transparent ice is present on the ceiling, blocking chimneys, galleries and 419 

fractures. The local loss of transparency is related to the presence of cryogenic 420 

cave minerals and/or air inclusions (Figs. 6a, b, c, d).  421 

A highly transparent ice deposit covers the southwest wall of room D and blocks 422 

the access to a gallery (Fig. 6a). The height of this deposit reaches ~6 m, and its 423 

base is located ~20 m above the Brulle spring. The thickness of this ice deposit 424 

ranges from 4.5 to 14.5 m (horizontal laser measurements across the ice in the 425 

gallery blocked by ice) and the estimated volume ranges from ~350 to ~710 m3. 426 

Three unconformities marked by cryogenic minerals were identified in this ice 427 

body.  428 

In room G, an ice body (~25.8 to 29.6 m above the Brulle spring) is present on 429 

the ceiling (Fig. 6b) and the estimated ice volume is ~180 m3. A comparison with 430 

a historical photograph shortly before 1953 (Casteret, 1953) suggests that the ice 431 

body has not changed significantly during the last ~69 years (Figs. 7a, b). Ice-432 

rock distances measured at four points, however, reveal small changes at three 433 

of them. The first has retreated 9.8 mm since 2014 (mean 0.9 mm a-1, n=2), the 434 

second has retreated 19.2 mm since 2014 (mean 0.6 mm a-1, n=5), and the third 435 

one has retreated 15.8 mm since 2013 (mean 2.2 mm a-1, n=7). At ~80 m from 436 

the entrance, a small descending room (SPD) (Figs. 2b, 6c) hosts a small volume 437 

of ice. Measurements between 2020 and 2021 indicate a retreat of 20 mm a-1 438 

(n=1). A last major ice deposit is present ~280 m from the entrance (room K), 439 

where transparent and massive ice (~15.5 m above the Brulle spring) is currently 440 

fills a filling a cupula or chimney (Figs. 2b, 6d). Additional ice bodies are present 441 

behind the SCAL chatière in the upper gallery (Fig. 2b), but they have not been 442 

studied. 443 

In contrast to these massive ice deposits, layered ice of seasonal origin is present 444 

in small chambers adjacent to the river (E and F rooms) (Fig. 6e). This ice forms 445 
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sheets of around about 10-15 cm in thickness which are present in room F and 446 

nearby areas (Fig. 6f). This ice is related to the damming and freezing of water 447 

inside the cave when the Brulle spring freezes. Our visits from 2017 to 2021 448 

revealed that most of the damming and subsequent ice formation in room F took 449 

place during winter and spring 2017-2018 corresponding with the coldest months 450 

(both inside the cave and outside) of the monitoring period (Fig. 5d). These ice 451 

slabs are characterized by flat surfaces on both sides and obviously record 452 

incomplete freezing of the dammed water. The ice sheets largely disappeared 453 

during summer and fall, and only strongly degraded ice remained in elevated 454 

areas of room F. 455 

On the other hand, the ice sheets associated with earlier episodes of river 456 

damming and freezing have disappeared, and only linear colour changes 457 

remained as witnesses of such events on the walls of the room E (Fig. 8d). A 458 

historical photograph exemplifies these ice levels in the access between rooms 459 

F and E (Fig. 8a). In August 1984 the ice was close to the ceiling and nearly 1 m 460 

thick (Fig. 8a; Marc Galy, pers. comm.). This contrasts with the low ice level in 461 

recent years (Fig. 8b). In total, three ice-level marks were identified in relation to 462 

back-flooding and subsequent freezing of ponded water (Figs. 8c, d). They 463 

appear at a lower elevation than the Porche entrance (c.+9.5, +9.2, +8.8, m with 464 

respect to the Brulle spring).  465 

Another important feature is the presence of hoarfrost, which is was observed in 466 

rooms A, B,C, E, F and along the gallery between SPD and K J (Figs. 2b, 7g, 7h). 467 

The crystal size varies from few mm to 4 cm and appears to be upholstering some 468 

galleries and cupolas, forming aggregates that hang from the ceiling (Fig. 6h). 469 

Finally, seasonal ice formations (e.g., icicles and ice stalagmites), as well as drips 470 

are restricted to the outmost ~15 m, in the vicinity of both entrances, and in the 471 

innermost part of the cave (~ 500 m from the entrance). Seasonal ice formations 472 

are absent in cave sectors where transparent ice bodies and hoarfrost are 473 

present. Firn deposits derived from snow are restricted to the Porche entrance. 474 

 475 

4.4.2 Mineral deposits  476 
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They comprise mainly cryogenic cave minerals. XRD analyses of samples from 477 

rooms D, G and K yielded gypsum and calcite, while the sulfide crystals and their 478 

oxidation products present in the host rock were identified as pyrite and goethite, 479 

respectively. The presence of cryogenic gypsum in Devaux was already reported 480 

by du Cailar and Dubois (1953). In room D, gypsum was observed within the ice 481 

and on boulders (Figs. 9a, b, c). A total of three gypsum levels (lower, middle and 482 

upper, located at ~21.4, ~22.6 and ~23.9 m, respectively, with respect to the 483 

Brulle spring) were identified in the ice (Fig. 9a). Due to the progressive retreat of 484 

the ice body, some of these crystals are now present on the ice surface. Gypsum 485 

levels comprise large single crystals (0.5-1 cm in diameter), aggregates forming 486 

rafts (10 cm) up to 1 cm in thickness (Fig. 9b), as well as a fine crystalline fraction. 487 

Visual eExamination of the fine fraction under using a binocular stereo 488 

microscope indicates the presence of small aggregates of cryogenic cave 489 

carbonates and gypsum (CCG) (<1 mm) including globular, single and twin 490 

morphologies <1 mm in diameter (Fig. 9d).  491 

 492 

In room G, gypsum and carbonates crystals are present in the lower part of the 493 

ice deposit (Fig. 10e) and on blocks. There, CCC are larger (>10 mm) than in 494 

room D and include globular shapes and raft-like aggregates, similar to those 495 

reported by Žák et al. (2012). Some of these CCC show gypsum overgrowths 496 

(Fig. 9f). Across the ice surface, patches of globular CCC (sub-millimelitre size) 497 

have been released by ice sublimation (Figs. 7a, b). In room SPD, CCC and CCG 498 

(≤ 2 mm) are present within and on the ice (Figs. 2b, 7c). Finally, in room K, only 499 

few CCC were still present within the ice, while most of them form heaps of loose 500 

crystals covering blocks. Some of these CCCs exceed 5 mm in diameter. Crystal 501 

morphologies include rosettes, skeletons and rhombohedrons similar to those 502 

reported by Žák et al. (2012) as well as white tapered crystal aggregates. Beyond 503 

room K, regular carbonate speleothems (i.e. stalagmites, stalactites and 504 

flowstones) are present. On the contrary, gGypsum crystals growingcoating from 505 

walls or ceilings wereas not observed. 506 

4.5 Cave water chemistry and sulfate isotopic composition 507 
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The chemical composition of water in Devaux cave (n=22) cave is dominated by 508 

calcium and bicarbonate with relatively high Mg concentrations and locally also 509 

elevated sulfate concentrations (Table 1). Total dissolved solids (TDS, n=7) vary 510 

from 57 to 315 mg l-1. Devaux´s dripwater has higher mean sulfate concentrations 511 

(65 mg l-1) than the cave river (11 mg l-1) and massive and seasonal ice (2.8-18 512 

mg l-1). Concerning the sulfur isotopic composition (Table 2), the The 34S value 513 

of dissolved sulfate in the dripwater is -14.4‰ (n=1), which is significantly higher 514 

than in cave river water (-28.5‰ to -27.3‰, n=2; Table 2). Gypsum crystals in 515 

room D show homogeneous 34S values ranging from -15.1‰ to -15.8‰ (n=7), 516 

while in room G they range from -12.3‰ to -11.9‰ (n=5). A pyrite sample from 517 

the host rock yielded a 34S value of -12.7‰ (n=1). 518 

5. Discussion 519 

5.1. Processes controlling the thermal regime in Devaux cave and the extent 520 

current of permafrost extent 521 

A complex spatial distribution and a high degree of heterogeneity are among the 522 

main characteristics of mountain permafrost (Gruber and Haeberli, 2009). In 523 

Devaux cave the existence of permafrost can be related to a combination of two 524 

processes: i) cave atmospheric dynamics, and ii) conductive heat transfer 525 

through the rock.  526 

Devaux cave is characterized by mean air and rock temperatures lower than the 527 

external mean annual temperature (Fig. 5). The low cave temperatures in winter 528 

lead to an inward airflow and an associated negative thermal anomaly behind the 529 

cave entrance zone. On the contrary, during summer, the cold and dense air 530 

flows out of the cave due to the temperature difference between outside and 531 

inside air. Also tThe heat supplied to the cave by the river can also 532 

modifyinfluences the cave air temperature by exporting thermal energy . Thus, 533 

this process drags cold outside air intofrom the cave during winter and on the 534 

contrary during summer. Devaux cave is characterized by mean air and rock 535 

temperatures lower than the external mean annual temperature (Fig. 5). The low 536 

cave temperatures in winter lead to an inward airflow and an associated negative 537 

thermal anomaly behind the cave entrance zone. Similar seasonal ventilation 538 
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patterns have been observed in ice caves elsewhere (e.g., Luetscher et al., 2008; 539 

Colucci and Guglielmin, 2019; Perşoiu et al., 2021).   540 

On the other hand, positive temperatures are observed both in the cave river and 541 

in the air at the cave entrance (Fig. 5), reflecting heat advected by water (river) 542 

and the influence of the external temperature (cf. Luetscher et al., 2008; Badino, 543 

2010). The lack of correlation between the external and internal temperatures 544 

and the small temperature variability in rooms D, G, and K reflect their thermal 545 

isolation from well-ventilated cave parts. There, the apparent thermal equilibrium 546 

between the rock and the cave atmosphere (Trock=Tair) supports the notion that 547 

heat exchange is dominated by conduction through the bedrock. 548 

The MAAT at the altitude of the cave is -0.04 ºC (2017-2021) suggesting that the 549 

0 °C isotherm is located close to the cave. Using an array of techniques (geomatic 550 

surveys, temperature monitoring, temperature at the base of the snowpack (BTS) 551 

and geomorphological and thermal mapping), Serrano et al. (2019) found 552 

observed mean annual ground temperatures between -1 and -2 ºC on the 553 

northern slope of the MPm suggesting that discontinuous permafrost is present 554 

between 2750-2900 m a.s.l., with more continuous permafrost startings at 2900 555 

m a.s.l. The orientation of the Gavarnie cirque, as well as the high slope angle, 556 

and shadow from the surrounding peaks favour the preservation of permafrost at 557 

lower elevations (e.g., Gubler et al., 2011).  558 

 559 

Given the high thermal inertia of the rock, the permafrost temperature at depth is 560 

still under the influence of past climate conditions (e.g., Haeberli et al., 1984; 561 

Noetzli and Gruber, 2009) and, therefore, part of the current permafrost in the 562 

area could be inherited from previous colder times (e.g., Colucci and Guglielmin, 563 

2019). In particular, the low mean annual temperatures recorded at PMBS at in 564 

the late 19th century the beginning of the Industrial Era arewere favourable 565 

conditions for permafrost development in the recent past. We surmise that the 566 

current permafrost could be inherited from colder periods of the Little Ice Age. 567 

In well-ventilated ice caves hoarfrost is the most dynamic ice formation on 568 

seasonal time scales. The presence of perennial hoarfrost is, however, indicative 569 

of a continuously frozen bedrock and thus representative of caves within the 570 
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permafrost zone (e.g. Luetscher and Jeannin, 2018; Yonge et al., 2018). In 571 

Devaux cave, perennial hoarfrost is observed in rooms where the bedrock is 572 

surrounded by small ice bodies (e.g., gallery close to SPD room, Fig. 6g). Devaux 573 

(1929) indicated the presence of ice crystals on the ceiling at the entrance of 574 

room D. In the same way, du Cailar and Dubois (1953) showed a schematic 575 

cross-section of room D, where ice crystals are present at the beginning of the 576 

room. These historical reports suggest these areas were probably more 577 

ventilated in the past, which favoured the hoarfrost formation.  On the other hand, 578 

seasonal hoarfrost is present in ventilated galleries (A, B, C, F and between SPD 579 

and J). Seasonal hoarfrost in room B and C, and in the area between H to J, 580 

disappears at the end of summer, probably because of the heat delivered by the 581 

cave river, as recorded by the T5 sensor (Fig. 5).  582 

The presence of permafrost in Devaux’s catchment is supported by the absence 583 

of drips and/or seepage in the investigated cave passages (e.g., Luetscher and 584 

Jeannin, 2018; Vaks et al., 2020). Active drips and seasonal ice formations are 585 

limited to the first ~15 m of the cave as well as to the inner part (beyond room K). 586 

Mountain permafrost thus penetrates ~350 m longitudinally from the East eastern 587 

cliff of the Gavarnie cirque to the southern side of the massif, following a west-588 

east direction. On the other hand, given the elevation of the cave and the 589 

topographic topography relief above the cave, the current maximum permafrost 590 

thickness (without taking into account the active layer) on the southern side of 591 

the MPm is ~200 m (without taking into account the active layer). 592 

 593 

5.2. The origin of ice in Devaux cave 594 

The transparent and massive character of Devaux´s cave ice, as well as the 595 

presence of CCC, which formation requires low congelation rates (Žák et al., 596 

(2004)),  suggests that this ice  formed by slow freezing of water dammed by ice 597 

at the spring. This model is consistent with the climate in of the Gavarnie cirque, 598 

cave geomorphological observations, cave air and water temperatures as well as 599 

historical reports. The cave water level can rise by several meters as indicated 600 

by slackwater deposits upstream of the Brulle spring. 601 

 602 
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The distribution and characteristics of ice bodies in Devaux cave indicate that the 603 

hydraulic head rose by at least ~ 15 - 29 m, which is the elevation of the ice bodies 604 

in rooms G, F and K. This situation requires that all springs (including Porche) 605 

are blocked for a sufficiently long time to allow for complete freezing of these cave 606 

lakes. The lack of important unconformities in this massive ice (e.g., detrital 607 

layers), which are usually related to seasonal ablation (e.g., (Luetscher et al., 608 

2007; Stoffel et al., 2009; Hercman et al., 2010; Spötl et al., 2013), suggests that 609 

the ice deposit in room G it is the result of a single flood event. On the contrary, 610 

the small unconformities recognized in the ice body in room D suggest that 611 

several cycles of damming and subsequent ice formation cannot be discarded in 612 

the formation of this ice deposit. 613 

 614 

Our These observations indicate that under the current climate (both in the cave 615 

and outside) only part of the water dammed in rooms F and E freezes during 616 

winter and spring. This strongly suggests that the ice bodies in Devaux cave must 617 

have been associated with colder and/or longer events of ponding and freezing 618 

than today, when the cave was effectively sealed from the outside for prolonged 619 

times. We hypothesize that the advance of a glacier on the steep slopes of 620 

Devaux’s surroundings could have contributed to the blockage of the spring, 621 

leading to backflooding and the formation of large ice bodies in the cave. In the 622 

study area, such periods of glacier growth occurred during the Little Ice Age 623 

and/or the Neoglacial (González Trueba et al., 2008; García-Ruiz et al., 2014, 624 

2020). 625 

 626 

The freezing of a flooded cave passage cannot be explained by the advection of 627 

cold air alone. It is thus surmised that heat transfer through the host rock is a 628 

more plausible mechanism for the complete freezing of the ponded water. The 629 

cave ice bodies, just asas well as the presence of cryogenic minerals, therefore 630 

represents a record of a long cold period or of several such shorter episodes. 631 

Although the cryogenic minerals and in particular CCCcoarse are typically 632 

associated with permafrost thawing during warm spells (Žák et al., 2004; Richter 633 

et al., 2010; Žák et al., 2012; Luetscher et al., 2013), permafrost conditions 634 

prevailed during ice formation in Devaux cave. Thus, Tthe water that feeds 635 
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Devaux’s springs infiltrated during late spring and summer from ponors at Lago 636 

helado and/or surrounding poljes. (which may have acted as local taliks). 637 

However, the heat supplied by this water may have probably not been enough to 638 

thaw the frozen host rock. It is thus very likely that the hostrock temperature was 639 

much lower and/or the outlets remained closed for longer periods than today to 640 

allow for the complete slow freezing of the ponded water. 641 

 642 

5.2.1 Ice volume changes 643 

The colour changes in the walls close to the river (room E), the historical 644 

photograph as well as speleological reports point to large changes (several 645 

meters) of in the height of the seasonal ice in the flood-prone sector of the cave 646 

(Figs. 8a, b). This ice is influenced by the heat exchanged between the water and 647 

the cave. 648 

In contrast, changes in the ice volume are almost negligible in rooms D and G 649 

where the temperature is more constant and below 0ºC (Figs. 7a, b). The ice 650 

body in room G has been retreats retreating only by only ~0.6 to ~2.2 mm a-1. A 651 

similar value (3 mm a-1) was observed in Coulthard cave (Alberta, British 652 

Columbia, Marshall and Brown, 1974), a cave located within permafrost (Yonge 653 

et al., 2018). Changes in the ice body in this cave were related to slow sublimation 654 

due to convective air flow inside the cave (Marshall and Brown, 1974). On the 655 

other hand, the ice in SPD room shows higher ice retreat rates (~ 20 mm a-1). 656 

Similar sublimation rates have been reported in ´others ice caves in the Pamir 657 

Mountains and the northern part of the Russian Platform (Mavlyudov, 2008; Žák 658 

et al., 2018). Overall, Devaux’s cave ice deposits show a remarkable stability 659 

which contrasts to with the rapid changes observed in ice caves outside 660 

permafrost areas (Kern and Perşoiu, 2013; Perşoiu et al., 2021; Wind et al., 661 

2022), including other ice caves in the Pyrenees and Picos de Europa (Belmonte-662 

Ribas et al., 2014; Gomez-Lende et al., 2014, 2016). 663 

 664 

5.3. Cryogenic cave minerals  665 
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In Devaux cave, CCC and CCG are still present within the ice (Figs. 6, a, b, c, d).  666 

Worldwide, only very few in situ observations of coarse-grained cryogenic cave 667 

minerals are known (e.g., Bartolomé et al., 2015; Colucci et al., 2017). du Cailar 668 

and Dubois (1953) reported the presence of gypsum crystals at ~50 cm depth 669 

within the ice in Devaux cave. The first evidence of in situ CCCcoarse in cave ice 670 

was reported from Sarrios 6, an ice cave at 2780 m a.s.l. on the southern slope 671 

of the MPm (Bartolomé et al., 2015). Colucci et al. (2017) documented the 672 

presence of CCCcoarse in a small ice cave in the Italian Alps. Recently, Munroe et 673 

al. (2021) found CCCcoarse in ice of Winter Wonderland cave (Utah, USA). 674 

Because of the abundance of cryogenic cave minerals, the size of individual 675 

crystals and aggregates thereof, and their varied different mineralogy, Devaux 676 

cave provides an additional opportunity for studying the origin of such cryogenic 677 

cave minerals. 678 

 679 

The CCGs in Devaux cave represents, to our knowledge, the first occurrence of 680 

its kind in a carbonate karst terrain. So far, CCGs have only been reported from 681 

gypsum karst areas in Russia and Ukraine (Korshunov and Shavrina, 1998; Žák 682 

et al., 2018 and references therein). In those areascaves, tiny gypsum crystals 683 

(gypsum powder) form during rapid freezing of water. When ice sublimates in 684 

winter, this these gypsum particles powder isare released and accumulates as 685 

powdery deposits on the ice surface. Eventually, they partly powder dissolves on 686 

the ice surface during spring and summer due to the increase in cave air humidity, 687 

and later recrystallizes forming a wide variety of delicate crystal morphologies. 688 

CCGs from Devaux cave shows features that do not correspond to those 689 

previously published from gypsum karst caves. In particular, the Devaux cave 690 

CCGs i) appears together with CCCcoarse crystals (≥5 mm in some cases, in rooms 691 

D and G), ii) the (raft-like) gypsum crystals are large (Fig. 9b) and, in some cases, 692 

are still found within the ice (Fig. 9a) and surrounded by milky ice rich in air 693 

inclusions (Fig. 9a, e), and iii) boulders are locally overgrown by gypsum (Fig. 694 

9c). 695 

 696 

Coarse-grained cryogenic cave minerals form in a semi-closed system, when the 697 

water freezes very slowly freezes inside the caves at low freezing rates (Žák et 698 

al., 2004). Once supersaturation is reached, CCM start to crystallize. The 699 
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formation of gypsum crystals requires the presence of elevated concentrations of 700 

dissolved sulfate which may relate to i) sedimentary gypsum deposits intercalated 701 

within carbonates (e.g., Sancho et al., 2004), ii) the presence of hydrothermal 702 

water containing H2S in relation withrelated to hydrocarbons (e.g., Hill, 1987), or 703 

iii) the oxidation of sulfides (e.g., pyrite) disseminated in limestones carbonate 704 

rocks (e.g., Bottrell, 1991). In the case of Devaux cave marine evaporite rocks 705 

(e.g., of the Upper Triassic Keuper facies) and hydrocarbons are absent in the 706 

catchment of the cave. The most plausible explanation for the presence of 707 

dissolved sulfate in Devaux´s water is the oxidation of pyrite present in the 708 

limestone (du Cailar and Dubois, 1953; Requirand, 2014).  709 

 710 

Water in Devaux cave contains moderate concentrations of sulfate. 34S values 711 

of gypsum (-11.9 to -15.8 ‰), pyrite (-12.7 ‰), and dissolved sulfate (-14.4 ‰ in 712 

dripwater and -28.5 to -27.3 ‰ in Brulle spring water) are within the range of 713 

biogenic pyrite and differ notably from values of marine evaporites (10-35 ‰) 714 

(Seal, 2006). Thus, the 34S values together with the geological setting of the 715 

cave support the hypothesis that disseminated pyrite in the host limestone is the 716 

main source of dissolved sulfate and subsequently of CCG. Only the dissolved 717 

sulfate 34S values of Brulle spring are considerably more negative (-28.5‰ and 718 

-27.3‰). This may be a consequence of microbially mediated redox processes 719 

in the karst that discriminate against 34S (Zerkle et al., 2016; Temovski et al., 720 

2018). Further studies on the microbiology of the cave may shed light on these 721 

mechanisms and how the local sulfur cycle may have changed in the recent past.  722 

 723 

In gypsum caves, dissolved sulfate dominates over the bicarbonate, and the 724 

typical crystallization sequence during freezing of water with high TDS is gypsum 725 

 carbonate (commonly calcite)  celestine (Žák et al., 2018). In Devaux cave, 726 

however, bicarbonate dominates over sulfate, and our observations show that 727 

gypsum crystals partly nucleated on CCCcoarse. Accordingly, the crystallization 728 

sequence at Devaux cave is calcite  gypsum, taking place in a semi-closed 729 

system at low freezing rates.   730 

 731 

The second aspect that makes the CCG in Devaux cave unique is the size and 732 

well-developedeuhedral crystal shapes of the crystals (Fig. 9 b), which differ 733 
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notably from the much smaller sizes of gypsum crystals (20-200 m) and gypsum 734 

powders (1-30 m) found in gypsum caves in Russia and Ukraine (Žák et al., 735 

2018 and references therein). Another characteristic of CCC and CCG 736 

occurrences in Devaux cave is the presence of milky ice surrounding them (Fig. 737 

9a, e) which seems to be related to the freezing process during the formation 738 

cryogenic minerals in a subaqueous environment. Similar to that, CCC were 739 

found within the ice and surrounded by bubbles in Sarrios 6 ice cave (Bartolomé 740 

et al., 2015). However, the scarce presence of CCC within the ice today, together 741 

with the very few sites where this topic is investigated, leads to a lack of studies 742 

about gas inclusions and CO2 degassing during CCC formation. 743 

 744 

Finally, the presence of gypsum aggregates overgrowing some blocks (Fig. 9c) 745 

supports the hypothesis of subaqueous gypsum formation. On the other hand, 746 

the absence of gypsum was never observed growthsinging from on the ceiling or 747 

on the walls, thus allowingallows it to discard its formation from seepage water 748 

followed by precipitation due to evaporation in the cave (e.g., Gázquez et al., 749 

2017, 2020). In essence, all observations indicate that gypsum precipitated in a 750 

semi-closed subaqueous environment and has been preserved from later 751 

dissolution by the exceptionally dry environment of this ice cave. Gypsum 752 

precipitating from freezing waters has been also documented in the Arctic and 753 

the Antarctica (Losiak et al., 2016; Wollenburg et al., 2018) and has been 754 

proposed as a mechanisms for gypsum formation on Mars (Losiak et al., 2016).   755 

 756 

6. Conclusions 757 

The investigation of Devaux ice cave, based on cave monitoring, geomorphology, 758 

and geochemical analyses, provides exceptional insights into the origin of 759 

modern and past mountain permafrost and associated processes and deposits. 760 

- Devaux cave consists of two parts characterised by different thermal regimes: 761 

1) the near-entrance parts and the main gallery showing large temperature 762 

fluctuations and cave air temperatures seasonally exceeding 0ºC. These 763 

passages are influenced by an advective air flow and the heat released by the 764 

cave river. 2) The inner sector and isolated chambers are characterized by 765 

muted thermal oscillations and temperatures constantly below 0ºC. There, the 766 
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cave air temperature is mainly controlled by heat conduction through the 767 

bedrock. 768 

 769 

- Devaux cave is impacted by backflooding in late winter/early spring when the 770 

main outlets freeze, damming the water inside the cave forming a lake. The 771 

blocking of the outlets requires temperatures below 0ºC in the Gavarnie cirque, 772 

while on the southern side of the Monte Perdido massif, temperatures above 773 

0oC allow water infiltration.  774 

 775 

- The absence of dripwater in most parts of the cave together with the presence 776 

of perennial/seasonal hoarfrost, and the location of massive ice bodies on the 777 

ceiling and/or filling cupulas and galleries are indicative of frozen bedrock 778 

surrounding the cave. Permafrost at Devaux cave is attributed to a combination 779 

of rock undercooling by cave air ventilation and the local climate setting giving 780 

rise to the development and/or preservation of permafrost inherited from past 781 

colder periods. Currently, permafrost seems to be present above the cave 782 

reaching a maximum thickness of ~200 m and a lateral extension of ~350 m 783 

towards the southern face of the Monte Perdido massif.  784 

 785 

- We report the first deposits of cryogenic gypsum in a limestone-hosted ice cave. 786 

Most of the cryogenic minerals are still within the ice and surrounded by milky 787 

ice ice rich in air inclusions. Gypsum precipitation occurred subaqueously as a 788 

result of slow freezing, following CCC formation. 34S values show that the 789 

sulfate originated from the oxidation of pyrite present in the limestone.  790 

 791 

- Current climate conditions seem to be still favourable for the preservation of ice 792 

within this cave. This situation contrasts to the large ice mass loss in other ice 793 

caves elsewhere. The ice deposits in Devaux cave allow unique insights into 794 

processes leading to the formation of cryogenic carbonates and sulfates, and 795 

represents an ideala unique site to better understand the mountain permafrost 796 

evolution in the Monte Perdido massif and the Pyrenees in general. 797 
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Žák, K., Urban, J., Cıĺek, V., Hercman, H., 2004. Cryogenic cave calcite from several Central 1153 
European caves: age, carbon and oxygen isotopes and a genetic model. Chem. Geol. 1154 
206, 119–136. https://doi.org/10.1016/j.chemgeo.2004.01.012 1155 

Zerkle, A.L., Jones, D.S., Farquhar, J., Macalady, J.L., 2016. Sulfur isotope values in the sulfidic 1156 
Frasassi cave system, central Italy: A case study of a chemolithotrophic S-based 1157 
ecosystem. Geochim. Cosmochim. Acta 173, 373–386. 1158 
https://doi.org/10.1016/j.gca.2015.10.028 1159 



34 
 

 

 

Figure 1. (a) Location of Devaux cave in the Central Pyrenees (ASTER GDEM, 

NASA v3, 2019). (b) Satellite image and location of Devaux cave, main peaks, 

lakes, glaciers and cirques in the study area (3D ©Google Earth). The yellow 

arrows indicate the underground flow path from Lago helado to the Gavarnie 

waterfall according to the dye-tracing experiment of du Cailar et al., (1953). (c) 

View towards the entrances of Devaux cave. The lower entrance (~2821 m 

a.s.l.) corresponds to the Brulle spring (Spring North 1), while the upper one 

corresponds to the main entrance (Porche (South), ~2836 m a.s.l.). Spring 

North 2 is located between both entrances. Note person for scale (within the 

white circle). Remnants of ice partially blocking Brulle and Spring North 2 (July 

2021). (d) Landscape view of the catchment area and approximate location of 

Devaux cave (in dark pink; photo: Paul Cluzon). (e) Ponor located on the 

southern shore of Lago Helado. 
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Figure 2. (a) Schematic W-E cross section from Lago helado to Devaux cave,  

the assumed extent of mountain permafrost, and and the interpreted 

underground flow path according to du Cailar et al., (1953).  (b) Longitudinal 

section and plan view of Devaux cave showing the locations of sensors and 

cave deposits. Labels R, W and T refer to rock, water and air temperature 

sensors, respectively. The enlarged area corresponds to the first ~345 m of the 

studied sector. Red labels correspond to the approximate location of the 

photographs in Fig. 76. Cave survey by Marc Galy, Groupe Spéléologique des 

Pyrénées (GSPY 86).  
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Figure 3. (a) Monthly temperature variation on the northern and southern 

side of the Monte Perdido massif. Red and blue triangles correspond to the 

4-year means. The dashed black line indicates 0ºC. Light red and blue 

shaded envelopes represent the maximum and minimum mean monthly 

temperatures, respectively. (b) Maximum, mean and minimum annual 

temperatures recorded at the Pic du Midi de Bigorre station since 1882. 

Black line indicates the general trend and dashed black line corresponds 

to 0ºC. 
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Figure 4. Solar radiation map of the study area. The solar radiation anomaly 

observed in the Gavarnie cirque is explained by its northerly orientation and the 

cirque morphology. Black triangles indicate the main peaks above 3000 m. The 

red-white circle marks Devaux cave, while the dashed white line delineates the 

approximate catchment. 
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Figure 5. Mean daily air temperature variations at the Pic du Midi de Bigorre 

station (2860 m a.s.l., red), daily outside air temperature at Devaux cave 

(2836 m a.s.l., purple) and temperature variations in air, water and rock in 

the cave for the different time windows since 2011. Dark pink numbers are 

mean annual air temperatures (MAAT) at the Pic du Midi de Bigorre station 

(PMBS). Dashed lines indicate 0 ºC. Black squares labelled a, b, c, and d 

correspond to the areas enlarged below. The black continuous line is the 

external temperature trend during the monitoring period.  
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Figure 6. (a) Upper part of the ice body in room D. (b) Ice body hanging from 

the ceiling and the southwest wall in room G. White colours spots at near the 

bottom of the deposit correspond to the concentration of air inclusions as well 

as cryogenic carbonates and gypsum in the ice. (c) Small ice body in room SPD 

with CCC-CCG on and within the ice. Red knife (9 cm) for scale. (d) Ice body 

on the ceiling of room K (Terminus Devaux, TD). (e) Brulle spring and remains 

of a layered ice body (September 2018). (f) Broken ice sheets in the flooded 

area in room F (September 2018). (g) Millimetre to centimetre size perennial 

hoarfrost in a blind gallery below SPD room. (h) Seasonal hoarfrost aggregates 

(>30 cm long size) covering a cupola close to room J. 
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Figure 7. (a) Photo of the ice body located in room G taken shortly before 

1953 (Casteret, 1953). (b) Photo taken in 2017. In both pictures, white 

patches on the ice surface correspond to small CCC accumulations released 

from the ice by sublimation. Red arrows indicate common features in both 

images. 
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Figure 8. (a) Photo taken close to the river sector that connects the rooms F 

and E. The estimated ice level is 5 m higher than the Brulle spring. Photo by 

Jean Luc Bernardin (8th August 1984). (b) Similar area in 2020, and maximum 

extension of the seasonal lake ice formed during winter. (c) Higher ice mark 

level (c. +9.5 m with respect to the Brulle spring) and remnants of ice sheets 

from the frozen lake in 2018. (d) Two ice level marks (c. +9.2 m and +8.8 m 

with respect to the Brulle spring) located between the highest mark and the 

elevation of the ice in photo (a). In all images red arrows indicate the same 

rock edges, while green arrows show ice-level marks. 
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Figure 9. (a) Ice body in room G and three levels marked by cryogenic gypsum 

partially still in situ in the ice. The whitest area corresponds to milky ice with a 

high abundance of air inclusions. Gypsum crystals cover parts of the surface of 

the ice body due to ice retreat. (b) Large gypsum “raft” deposited on a block in 

room D. (c) Block in room D with gypsum overgrowths. (d) Microscopic image of 

euhedral CCG with local cores of CCC (white arrows), globular CCC, and detail 

enlarged image of euhedral gypsum crystal with a core nucleus of globular CCC. 

(e) CCC and CCG entrapped within milky ice in room G. (f) Detail of a CCC 

sample from room G covered by CCG. 
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Location  Sample and description 34S (‰) VCDT 

Room D Gypsum crystal (part of large raft) -15.8 

Room D Gypsum crystal (part of large raft) -15.5 

Room D; lower gypsum level Gypsum crystal (individual) -15.6 

Room D; middle gypsum level Gypsum crystal (individual) -15.0 

Room D; middle gypsum level Gypsum crystal (individual) -15.6 

Room D; upper gypsum level Tiny gypsum crystals (aliquot) -15.3 

Room D Gypsum crystal (individual) -15.1 

Room G Gypsum crystal (individual) -12.3 

Room G Gypsum overgrowth (individual) -12.1 

Room G Gypsum overgrowth (individual) -11.9 

Room G Gypsum overgrowth (individual) -12.1 

Room G Gypsum overgrowth (individual) -12.0 

Limestone above cave Pyrite crystal (individual) -12.7 

Entrance “Porche” Drip water (1 liter) -14.4 

Brulle spring River water 1 (1 liter) -28.5 

Brulle spring River water 2 (1 liter) -27.3 

 

Table 2. Sulfur isotope values of gypsum, water and pyrite from Devaux. 

 

 

 

 


