
Parflow 3.9: development of lightweight embedded DSLs for
geoscientific models.
Zbigniew P. PiotrowskiFZJ, Jaro HokkanenCSC, Daniel Caviedes-VoulliemeFZJ, Olaf SteinFZJ, and
Stefan KolletFZJ

FZJForschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
CSCCSC – IT Center for Science Ltd, Keilaranta 14, 02150 Espoo, Finland

Correspondence: Zbigniew Piotrowski (z.piotrowski@fz-juelich.de)

Abstract. Recognizing the leap in high-performance computing with accelerated co-processors, we propose a lightweight

approach to adapt legacy codes to next generation hardware and achieve efficiently a high degree of performance portability.

We focus on abstracting the computing kernels at the loop levels based on the lightweight, preprocessor-based embedded

Domain Specific Language (eDSL) concept in conjunction with Unified Memory management. We outline a set of code pre-

adaptations that facilitate the proposed abstraction. In two geophysical code applications programmed in C and Fortran, we5

demonstrate the efficiency of the eDSL approach in adaptation to NVIDIA GPUs with: native CUDA and Kokkos eDSL

backends achieving up to 10− 30 fold speedup. Our experience suggests that the proposed lightweight eDSL code adaptation

is less expensive in terms of Full Time Equivalent of effort than adaptation based on complex DSL approaches, even if no

earlier GPU competence exists.

1 Introduction10

For more than last four decades, the adaptations of scientific codes to new supercomputing architectures have been an ongoing

and increasingly complex challenge. The particular scenarios of adaptation varied as dictated by the actual major hardware

advancements. For example, the introduction of vector processors enforced the exposition of relatively long loops with arith-

metic rather than logical branching. Memory constrains enforced thoughtful coding, supported with (just emerging) software

development environments of post-punchcard era. The advent of parallel supercomputers drove the development of multiple15

program, multiple data and multi-task programming paradigms, along with communication strategies (e.g. SHMEM/MPI)

and parallel debuggers. Novel classes of numerical algorithms, especially those capable of utilizing distributed memory and

computing chips, gained popularity (Bauer et al., 2021). The parallel supercomputers were soon enhanced with multicore

processors, fueling the transition to hybrid (distributed-shared) memory programming models. Interestingly, as the advent of

personal computing in the 1980s brought a boost to the software engineering techniques in general, the development of special-20

ized processors for gaming (GPUs) in the 2000s, was seminal to the strategy of offloading computationally-intensive parts of

scientific codes to powerful accelerators. This change was accompanied by the alternative, extremely successful IBM Bluegene

concept. The latter employed huge numbers of low-power processors equipped with extremely complex and fast interconnects,

1

https://doi.org/10.5194/egusphere-2023-1079
Preprint. Discussion started: 31 July 2023
c© Author(s) 2023. CC BY 4.0 License.

changing the ratio of time spent in communication and parallel computing. Recent years added to this scenario the tensor

hardware and algorithms specialized for exploiting artificial intelligence and machine learning concepts.25

The growing supercomputing hardware capabilities enable the development of increasingly complex geoscientific models.

The modellers aim to refine the resolution and broaden the range of geophysical scales, and incorporate more biogeophysical

and -chemical processes, which also contribute to the computational cost. From the perspective of an implementation, basic

representation of mathematical operators or particular geophysical phenomena (constituting computing kernels or a sequence

of kernels) evolves rather steadily. However, particular strategies of their optimal representation in memory and execution often30

vary depending on the heterogeneous architecture under consideration.

Computational design and performance receives diverse attention, depending on the particular area of research and applica-

tion. Either evolutionary or disruptive code rewrites appear to be preferred, depending on the personal preferences and technical

requirements. 1 Notably, extreme (in computational terms) scale applications of weather and climate are subject to extensive

software engineering efforts to saturate hardware limits (Fuhrer et al. (2018)). These efforts tend to optimize equipment and35

total cost of operations (TCO), including in particular energy costs. Optimization of the latter may justify funding of dedicated

software engineering, which is an outstanding example of "offsetting" CO2 emissions. However, the majority of existing mid-

and small-scale scientific applications can afford neither large software engineering teams, nor abrupt programming paradigm

shifts. Instead, they continue to rely on generic solutions provided by hardware vendors. Moreover, even for large and/or opera-

tional applications, adapting to disruptive changes (such as new hardware paradigms) is a technical, scientific and management40

challenge. Fortunately, even at the somewhat niche market of scientific supercomputing, the generic programming models are

being steadily and considerably improved. Moreover, the use of relatively simple programming techniques seems to improve

productivity of domain scientists, without significant investment in the change of the working environment and corresponding

programming skills, as proposed in this work.

Every single scientific application represents an area on a technology map spanned by a range of programming languages and45

hardware classes. Many applications rely on Fortran, the most widespread programming language in Earth system modelling,

others utilize the rapidly developing Julia language that embraces modern data processing techniques, e.g. (Sridhar et al.

(2021)). Educational efforts, as well as frontend interface and postprocessing are often realized by Python implementations,

and last but not least many projects use general-purpose C/C++ formulations. On the hardware side, the most common CPUs

are increasingly often accompanied by GPU accelerators and AI-focused tensor processors. Some further specialized hardware50

includes Field Programmable Gate Arrays (FPGAs), ARM or even custom-tailored optical and silicon processors. The technical

landscape is thus more complex than ever before and golden technical standards of the past seem to fade away. Consequently,

the changing hardware technologies and software solutions to harness call for low-cost adaptation strategies. Herein, we discuss

the concept of a simple abstraction layer within an arbitrary programming language, constituting the application agnostic eDSL

1For example, a legacy implementation of the Fortran 77-2008 EULAG model (Prusa et al., 2008) has constantly evolved over the past 40 years (e.g.

Piotrowski et al. (2011)). In parallel it was cast in the modern Fortran, following third party coding standards, (Ziemiański et al., 2021), or re-created from

documentation using modern C++ (Jaruga et al., 2015).

2

https://doi.org/10.5194/egusphere-2023-1079
Preprint. Discussion started: 31 July 2023
c© Author(s) 2023. CC BY 4.0 License.

to facilitate code portability across architectures. In the following sections we discuss two example applications of the eDSL55

concept to C/C++ and Fortran codes, using CUDA and Kokkos backends to interface with GPU accelerators.

2 Application agnostic eDSL for accelerators

Many processes in Earth System Science (ESS) are mathematically modelled with conservation and transport laws in the form

of systems of partial differential equations. These systems are solved typically with a handful of discretisation approaches, e.g.

finite differences, finite volumes or finite elements. This consistency gives rise to a core implementation and computational60

structure which is rather common across various ESS domains. Moreover, the computational challenges and bottlenecks are

overlapping and analogous, which encourages formalization of the common aspects into an abstraction layer, leading to the

concept of Domain Specific Languages (DSLs). Prominent examples for DSLs abstracting solutions for partial differential

equations with various complexity are the Unified Form Language (UFL, Alnæs et al. (2014); Rathgeber et al. (2016)), the

library framework OP2 for solving unstructured mesh-based applications (Mudalige et al., 2012; Balogh et al., 2018), and the65

ExaStencils code generation framework (Lengauer et al., 2014, 2020). Because of the similar numerical and computational

structure, many geoscientific codes can benefit from a common DSL approach (Lawrence et al., 2018; Louboutin et al., 2019).

Here, we argue that an embedded DSL (eDSL) is a suitable solution to ensure performance portability (and future-proofing)

of geoscientific codes. We aim to demonstrate that a (rather simple) lightweight approach based on macro/preprocessor code

creation for a given hardware configuration may already result in significant, worthwhile performance gains. From now on, for70

brevity we use the eDSL term in the context of such minimal and lightweight DSL approach, and some claims may specifically

address this particular subset of a family of DSL approaches.

Computationally intensive kernels tend to repeat the same set of operations for large sets of cells, or they may usually be

made such with the separation of a single dimension. In Earth System modelling, the latter typically happens where a sequen-

tial and horizontally independent physical process (e.g. sedimentation) occurs in an atmospheric column. Consequently, it is75

the kernel control execution structure (e.g. loops) that needs to be generalized to enable porting to a broad range of architec-

tures and programming models. The eDSL approach allows a lightweight and minimally invasive intervention into the existing

code structure. The key code modification is wrapping kernels with an abstraction layer in the form of preprocessing direc-

tives introducing sets of loops or delegating the execution via lambda functions. Here we argue that it helps to minimize the

(apparent) cost function which relates to the compromise between productivity, portability and performance (Lawrence et al.,80

2018). Evidently, by enabling different carefully-crafted backends (e.g. CUDA, OpenMP, OpenACC, Fortran CUDA Loop

Directives (CUF), HIP, Kokkos) performance-portability can be achieved, at least to a reasonable degree. Code readability is

minimally affected, as only localized kernel (execution) definitions need to be implemented or modified, whereas the kernel

body remains in place. Developer productivity is not impaired, since there is little new high-level (frontend) code to become

familiar with. Conversely, readability and productivity may be potentially improved, because lower-level software engineering85

code is hidden and, optionally, abstracted loop names may provide extra annotation. Finally, the eDSL facilitates encapsulation

and the separation-of-concerns (Bauer et al., 2021; Dauxois et al., 2021), allowing for easier maintenance and code sustain-

3

https://doi.org/10.5194/egusphere-2023-1079
Preprint. Discussion started: 31 July 2023
c© Author(s) 2023. CC BY 4.0 License.

ability. In other words, for domain scientists, the eDSL approach keeps the frontend code clean of hardware specific code and

optimizations, and for software engineers, keeps backend code at a higher abstraction level.

The eDSL is better understood as a framework (or approach) rather than a library. This makes it flexible and agnostic of the90

specific application, in the sense that the abstraction itself can be implemented for any particular application. The prerequisite

is to have the critical kernels and the structure of their control flow statements identified and parallelism is already highly

and well exposed. For example, Eulerian models typically solve PDEs by involving gradient or flux computations across cell

edges or stencils, cell updates, matrix assemblies and so on. Consequently, a few types of parallel loops can be identified, and

encapsulated by the eDSL, gradually targeting the key kernels first. Obviously, despite conceptual and algorithmic similarities,95

the design of a particular application varies in the choice of programming languages used for implementation. Furthermore, it

may have quite diverse data structures and workflows, for which the eDSL needs to be tailored for. In a nutshell, we presume

that the eDSL concept can be straightforwardly implemented on different frontend scientific codes. However, it requires a

flavour catering for the specific high-level language and the lower-level syntax and technicalities of the targeted backends.

Finally, the lightweight eDSL is self-contained within the high-level scientific application code, and not an external depen-100

dency. This minimizes the issues of building with yet-one-more dependency, while also allowing the flexibility of not relying

on the evolution and sustainability of any given dependency. It also facilitates its use for small-scale codes which may not be

typically deployed in HPC centres, but on small-scale clusters (and even single consumer-grade GPU devices) with a limited

software stack management.

Herein, we present and discuss two independent applications of C and Fortran-based eDSLs for performance portability of105

well-established geoscientific codes that are ParFlow and EULAG, respectively. Both codes rely on MPI distributed memory

parallelism, whereas the intra-device parallelism is potentially delegated to the DSL layer. The architecture-specific code that is

dealing with memory management and compute kernels is embedded into the eDSL preprocessor macros. As a result, the macro

definition looks different on the chosen architecture/programming model, however, the actual code duplication is minimal as

compared to the multiple-codebase approach. In the following sections we demonstrate the aforementioned advantages of the110

approach.

3 ParFlow eDSL for accelerators

ParFlow is a widely adopted hydrologic model with the history of development spanning over the last three decades (Kuf-

four et al., 2020). Typical applications include modeling groundwater and overland flow using finite difference and finite

volume schemes on a regular Cartesian grid with fully implicit time integration (Woodward, 1998; Kollet and Maxwell, 2006;115

Maxwell, 2013). The resulting non-linear coupled system of equations is solved using Newton-Krylov methods and multigrid

preconditioning.

In order to separate the hardware architecture complexities from the scientific numerical model, ParFlow has adopted an

eDSL based on C preprocessor macros (ParFlow eDSL). This domain-specific language provides an API for all necessary

operations, such as memory management, message passing, and looping.120

4

https://doi.org/10.5194/egusphere-2023-1079
Preprint. Discussion started: 31 July 2023
c© Author(s) 2023. CC BY 4.0 License.

3.1 Kokkos implementation

The first backend option for GPU support in ParFlow was based on CUDA (Hokkanen et al., 2021), which shows excellent

performance and scaling. Conveniently, adding backend support for libraries such as Alpaka (Zenker et al., 2016), Kokkos

(Edwards et al., 2012), and RAJA (Beckingsale et al., 2019) to target more architectures (and, thus, performance portability)

is straightforward and does not require any major changes. This is because, in ParFlow, the approach of passing loop contents125

form a lambda function to a general CUDA kernel can also be used with the aforementioned libraries as demonstrated for the

ParFlow Kokkos backend in this study. Thanks to the macro-based abstraction layer, the Kokkos backend is not a compulsory

dependency for ParFlow. This is important to hedge the risk of introducing third-party dependencies of unknown sustainability.

Also, the Kokkos API is accessed through only a few ParFlow eDSL macros, such that replacing Kokkos with another similar

backend is easy (essential in case Kokkos development stagnates).130

The ParFlow GPU implementation heavily leverages Unified Memory, using the same pointers in both: host and device

codes. As compared to the manual memory management, Unified Memory significantly decreases the development effort and

results in clearer and simpler code. Furthermore, in the GPU implementation, a pool allocator for Unified Memory is used to

improve the performance (Hokkanen et al., 2021).

In our experience, the first backend option (CUDA) required several months of development time from a single developer.135

Adding Kokkos as an alternative to CUDA required less than two weeks of additional full-time work with no prior knowledge

of Kokkos. Compared to CUDA, Kokkos lacks a C interface, thus the Kokkos API calls must be placed into a separate C++

compilation unit that provides wrapper functions callable from Parflow C code.

In terms of memory management, Kokkos introduces Kokkos View, a multidimensional array template. Views intend to

encapsulate low-level architecture-dependent choices on memory layouts, while enabling fine-grained control of the memory140

space (e.g., host, device or unified memory) where the data lives. Of course, the backend implementation determines how data

Views are translated into hardware specific memory allocations (e.g., cudamalloc). Although Views are indeed a convenient

data type, they are not used in the ParFlow Kokkos backend. This is because changing the variable types from raw pointers to

Kokkos Views in a code that is expected to compile with a C compiler (if Kokkos is not used), would entail unwanted rewrites,

wrappers, or syntactic changes widely throughout the codebase and cause undesirable increased complexity in the implementa-145

tion. Fortunately, the use of Kokkos Views is optional, and memory can be allocated using the Kokkos::kokkos_malloc function.

When called without template arguments, this functions allocates into the Kokkos default memory space, which depends on

the Kokkos backend chosen during compilation time. An instructive example of allocating and deallocating a vector type with

ParFlow eDSL is given in Listing 1. The macro definitions for the native host and Kokkos memory allocations and deallocations

are given in Listings 2 and 3.150

5

https://doi.org/10.5194/egusphere-2023-1079
Preprint. Discussion started: 31 July 2023
c© Author(s) 2023. CC BY 4.0 License.

Listing 1. ParFlow eDSL dynamic memory allocation and deallocation.

/* Vector allocation */

vector = talloc(Vector, 1);

/* Vector deallocation */

tfree(vector);

Listing 2. ParFlow eDSL macro definitions for native host memory allocation and deallocation.

/* The macro definitions are placed in a header file (API) */

#define talloc(type, count) \

(type*)malloc(sizeof(type) * (unsigned int)(count))

#define tfree(ptr) free(ptr)

Listing 3. ParFlow eDSL macro definitions for Kokkos memory allocation and deallocation.

/* The macro definitions are placed in a header file (API) */

#define talloc(type, count) \

(type*)_kokkos_malloc(sizeof(type) * (unsigned int)(count))

#define tfree(ptr) _kokkos_free(ptr)

/* The Kokkos wrapper functions are placed in a cpp compilation unit */

#include <Kokkos_Core.hpp>

extern "C"{

void* _kokkos_malloc(size_t size){

return Kokkos::kokkos_malloc(size);

}

void _kokkos_free(void *ptr){

Kokkos::kokkos_free(ptr);

}

}

The implementation of compute kernels in ParFlow follows an approach similar to the memory management. However,

there can be multiple compute kernels that often consists of different logic and varying number of variables required in the155

calculations. Thus, to address a wide range of scenarios, the loop execution is defined by preprocessor macros, which take the

loop body as a macro argument. The loop body is typically provided as the last argument to the macro, e.g., in Listing 4 the

loop body refers to the contents within the curly brackets. Providing the loop body as a macro argument is key in allowing

6

https://doi.org/10.5194/egusphere-2023-1079
Preprint. Discussion started: 31 July 2023
c© Author(s) 2023. CC BY 4.0 License.

to use the same macros for many compute kernels regardless of the loop logic and the number of variables involved in the

calculations.160

Similarly to the memory management, the loop macros take different form while aiming at the host or the device execution.

For illustration, the loop macro invocation in Listing 4 is expanded for a sequential execution on the host and for a parallel

execution using Kokkos in the form of Listings 5 and 6, respectively. For sequential execution, macro injects the loop body

macro argument inside the innermost loop in the macro definition. Alternatively, in case of the Kokkos backend, the loop body

forms a lambda function that is passed to the Kokkos kernel, where the lambda function simply captures all required variables165

by their value (i.e., with pointers the captured value is just the address the pointer is pointing to, and the data is accessed by

denoting the offset with the conventional square bracket syntax).

Listing 4. BoxLoopI0: a simple loop over the discretized domain.

double *fp;

double *pp;

double value;

Subvector *f_sub;

/* some code missing here */

BoxLoopI0(i, j, k, ix, iy, iz, nx, ny, nz,

{

int ip = SubvectorEltIndex(f_sub, i, j, k);

fp[ip] = pp[ip] - value;

});

Listing 5. BoxLoopI0 macro definition for sequential execution on the host.

#define BoxLoopI0(i, j, k, ix, iy, iz, \

nx, ny, nz, loop_body) \

{ \

for (k = iz; k < iz + nz; k++) \

for (j = iy; j < iy + ny; j++) \

for (i = ix; i < ix + nx; i++) \

{ \

loop_body; \

} \

}

7

https://doi.org/10.5194/egusphere-2023-1079
Preprint. Discussion started: 31 July 2023
c© Author(s) 2023. CC BY 4.0 License.

Listing 6. BoxLoopI0 macro definition for parallel execution using Kokkos.

#define BoxLoopI0(i, j, k, ix, iy, iz, \

nx, ny, nz, loop_body) \

{ \

auto lambda_body = KOKKOS_LAMBDA(int i, int j, int k) \

{ \

i += ix; j += iy; k += iz; \

loop_body; \

} \

\

MDPolicyType_3D mdpolicy_3d({{0, 0, 0}},{{nx, ny, nz}}); \

Kokkos::parallel_for(mdpolicy_3d, lambda_body); \

}

170

3.2 ParFlow performance results

The performance of the Kokkos implementation (using CUDA through Kokkos) was evaluated on the Booster module of the

JUWELS supercomputer (Jülich Supercomputing Centre, 2019) where each node has dual AMD EPYC Rome 7402 processors

(2×24 cores @ 2.8 GHz) and 4 NVIDIA A100 40 GB GPUs. The nodes are connected through 4 HDR200-InfiniBand devices.

The reference results were obtained by performing the simulation without accelerator devices on all available CPU cores. The175

GPU runs only need a single process per GPU, therefore 4 CPU cores per node were used (with 4 available GPUs).

The benchmark consists of a variably saturated infiltration problem into a homogeneous soil with a fixed water table at a

depth of 6 m, and a constant infiltration rate of 8× 10−4 m / hour. The vertical and lateral spatial discretization was 0.025 and

1 m, respectively. The time step size was 1 h. The profile was initialized with a hydrostatic profile based on a matric potential of

-9 m at the top. This results in a considerable initial hydrodynamic disequilibrium with respect to the water table at the bottom180

boundary. The number of grid cells in the lateral directions was varied to change the total number of degrees of freedom in

performance testing (weak scaling).

Figure 1 shows the performance gain from GPUs for a single node. The horizontal and left vertical axes represent the problem

size and the performance, respectively, where the latter describes the number of cells per second. The performance with GPUs

is plotted using CUDA directly with pool allocation (no Kokkos), and using CUDA through Kokkos with and without pool185

allocation. For details on the Unified Memory pool allocation the interested reader is referred to (Hokkanen et al., 2021). Note,

no pool allocation was used on the CPU.

Using Kokkos without CUDA-specific code results in a 20% performance reduction for the largest ParFlow problem size

that fits on a single GPU, when compared with the CUDA implementation. This is mainly caused by parallel reductions,

array initializations, and usage of pinned host/device memory for MPI staging buffers to enable GPU-direct P2P communi-190

cation with Remote Direct Memory Access (RDMA) when using Kokkos. The latter two overheads can be easily resolved

8

https://doi.org/10.5194/egusphere-2023-1079
Preprint. Discussion started: 31 July 2023
c© Author(s) 2023. CC BY 4.0 License.

107 108

Total number of cells
0

1

2

3

4

5

6

Pe
rfo

rm
an

ce
 (c

el
ls/

s)

1e6
GPUs w/ CUDA
GPUs w/ Kokkos
GPUs w/ Kokkos (no RMM)
CPUs only
Relative performance

0

5

10

15

20

25

30

Re
la

tiv
e

pe
rfo

rm
an

ce
 (m

ul
tip

le
)

Single node comparison

Figure 1. Parflow single node performance comparison. Relative performance refers to the performance ratio between CUDA

and CPU implementations of the code. RMM denotes Rapid Memory Manager.

by using CUDA-specific function calls or template arguments with the Kokkos library, which, however, leads to an undesired

non-architecture-agnostic implementation. Furthermore, the Unified Memory pool allocation introduces further architecture-

specificity, as the chosen memory manager (library) only supports CUDA. Nonetheless, viable alternatives exist. An example

is Umpire (Beckingsale et al., 2020), which supports heterogeneous architectures, as well as multiple backends (e.g., CUDA195

and HIP). This is very relevant, since the impact of the pool allocator is significant and more than triples the performance

for the biggest problem sizes. The performance boost of the pool allocator is similar to the one resulting from using directly

the CUDA backend (Hokkanen et al., 2021). This is explained by the recurring Unified Memory allocations and deallocations

during the simulation in ParFlow.

Relative performance, which is the ratio between the accelerated and non-accelerated simulation when using CUDA di-200

rectly, is given as circles in Figure 1. The relative performance increases from ∼5 to ∼30 with increasing problem size. The

performance on CPU may be improved via pool allocation in future, which may reduce the performance increase.

9

https://doi.org/10.5194/egusphere-2023-1079
Preprint. Discussion started: 31 July 2023
c© Author(s) 2023. CC BY 4.0 License.

0 50 100 150 200 250
Nodes

0

1

2

3

4

5

6

Pe
rfo

rm
an

ce
 (c

el
ls/

s)

1e6

GPUs w/ CUDA
GPUs w/ Kokkos
CPUs only
Relative performance

0

5

10

15

20

25

30

Re
la

tiv
e

pe
rfo

rm
an

ce
 (m

ul
tip

le
)

Weak scaling

Figure 2. Weak scaling comparison.

Figure 2 represents weak scaling for 1, 4, 16, 64, and 256 nodes using the largest problem size from Figure 1. The relative

performance when directly using CUDA saturates at ∼28 when increasing the number of nodes which suggests good weak

scaling behavior and performance. In comparison, the performance achieved with the generic Kokkos backend is about 20-25%205

worse.

4 EULAG/MPDATA Fortran eDSL

To verify if the C/C++ eDSL concepts are applicable to Fortran, a similar eDSL was developed for the MPDATA advection

(Smolarkiewicz (2006)) dwarf, cf. (Müller et al. (2019), Rojek et al. (2017) and references therein). Belonging to the class

of iterated non-linear upwind schemes, this benchmark well balances the compactness and complexity. MPDATA constitutes210

a conservation-law form of the generalized transport equation for a specific variable ψ (e.g. velocity component, potential

10

https://doi.org/10.5194/egusphere-2023-1079
Preprint. Discussion started: 31 July 2023
c© Author(s) 2023. CC BY 4.0 License.

temperature, Exner pressure, moist species, passive tracers, etc.):

∂Gϱψ
∂t

+∇ · (Gϱvψ) = GϱR . (1)

where G is the flow Jacobian, ∇ denotes vector of partial derivatives over the system of arbitrary curvilinear coordiantes,

ϱ denotes density, v is the transporting velocity and R is the source/sink term. Notably, MPDATA is an integral part of the215

EULAG (Eulerian/semi-Lagrangian fluid solver) dynamical core, and is employed by a number of scientific (Prusa et al.

(2008); Jaruga et al. (2015)) and weather codes (Kühnlein et al. (2019); Ziemiański et al. (2021)). As part of the EULAG

dynamical core, MPDATA advection is orchestrated with the preconditioned Krylov solver for pressure and explicit diffusion

operator. Extension of the proposed concept to a full Navier-Stokes solver is straightforward, however, out of the scope of this

study.220

4.1 CUDA Fortran backend implementation

Herein, this work we focus on a subset of possible hardware backends, targeting the large and (relatively) low-hanging perfor-

mance gain of code portability to both: CPU and NVIDIA GPU using CUDA Fortran (CUF) directives. In the simplest case,

e.g. within the pure-MPI code it may appear superfluous to abstract loops rather than insert CUF directives directly. However,

the abstraction allows to efficiently hide the code optimization that otherwise would make the code unreadable and unmaintain-225

able. Furthermore, for the direct porting of code to different CPU compilers, some preprocessing is unavoidable. For example,

the MANAGED or DEVICE attributes that are needed to exploit the CUDA Unified memory interface are currently not recog-

nized by other than PGI/NVIDIA Fortran compilers. Last but not least, mixing several sets of precompiler directives heavily

impairs the code readability.

The memory allocation for the CUF backend, similar to ParFlow, leverages Unified Memory. The necessary attribute is intro-230

duced at variable declaration stage with the preprocessor definitions given in Listing (7). Note that to assure for minimization

of the host-device memory transfers, it is beneficial to specify auxiliary (temporary) variables explicitly as DEVICE variables.

Spurious memory page faults, in theory, can be prevented by using CUDA memory hints (or prefetching, if applicable), but

we were unable to avoid the unnecessary transfers when declaring temporary variables as MANAGED. Re-definition of the

variable declaration needs to be performed consistently throughout the code, which is probably the most time-consuming effort235

in the implementation of the eDSL.

Listing 7. Fortran eDSL memory allocation abstraction

#ifdef CUDACODE

#define REAL_sp REAL(KIND=sp), MANAGED

#define DEVREAL_sp DEVREAL(KIND=sp), DEVICE

#else

#define REAL_sp REAL(KIND=sp)

#define DEVREAL_sp REAL(KIND=sp)

#endif

11

https://doi.org/10.5194/egusphere-2023-1079
Preprint. Discussion started: 31 July 2023
c© Author(s) 2023. CC BY 4.0 License.

The key practical prerequisite for the readable abstraction of loops is to identify the number and type of possible loop config-

urations. This is of particular importance for the finite-difference/finite-volume fluid solvers, where operations can be carried

out on several (e.g., so called staggered "C"/unstaggered "A") grids. Moreover, the solvers often employ specialized stencils240

along the domain’s boundaries. As opposed to the ParFlow eDSL, we choose not to pass the loop extents as a macro parameter.

Conversely, aiming at the meaningful code annotation, we let the abstract loop names correspond to the geometric/topological

type of operation performed, e.g. "XYZFullDomainAgrid". In turn, the definition of a particular GPU kernel for each particular

kind of loop is provided by the macro. The loop definition is injected into the code, along with the appropriate CUDA Fortran

directive, which is translated by the NVIDIA compiler to an actual accelerator kernel. The simplest three-dimensional example245

of such macro providing iteration on the full computational domain is presented in Listing (8).

Listing 8. Fortran eDSL loop abstraction

#define FullXYZDomainLoopDC(loop_body)\

!$cuf kernel do(3) <<< (*,*), (32,4) >>>\

do k=1,lp;\

do j=1,mp;\

do i=1,np;\

loop_body\

end do;\

end do;\

end do;

If more general macro definitions are needed, or a precise macro name reflecting the particular operation scope cannot be found,

the formulation of Listing (8) to match Listing (4) can be extended in a straightforward fashion. Furthermore, this approach

may be easily extended, e.g. to support overlapping computations and MPI communication or using multiple streams.250

In a previous, currently unpublished development effort, the MPDATA dwarf was implemented with the GridTools DSL

(Afanasyev et al. (2021)). As compared to GridTools, the first major advantage of a lightweight eDSL is that a rewrite from

Fortran to C++ is not required. Moreover, the stencil definition is retained (in place) instead of being delegated to a sepa-

rate structure (cf. Fig. 2 in Afanasyev et al. (2021)), which preserves excellent code readability and unobstructed debugging. A

downside of the eDSL is that automated composing of stencil operations into multistages with corresponding implicit optimiza-255

tions (cf. Fig. 3 and discussion in Afanasyev et al. (2021)) is not available and is delegated to the developer. However, in our

experience the major prerequisite (to any eDSL approach) is judicious coding of special stencils realizing boundary conditions,

which otherwise limit the (often essential for performance) composition of subsequent stencils into a single compute-intensive

kernel. Thus, automated composition of stencils is often dictated by the numerics, regardless of the particular DSL approach.

Finally, compiler overhead for the eDSL is negligible, whereas the compilation time of the full C++ DSL, depending on the260

language standard, may easily be a hundred times longer due to metaprogramming expenses. This is especially pronounced

when implementing advection of multiple variables, e.g. realizing the timestep of the weather solver.

12

https://doi.org/10.5194/egusphere-2023-1079
Preprint. Discussion started: 31 July 2023
c© Author(s) 2023. CC BY 4.0 License.

4.2 Fortran MPDATA performance results

In the performance analyses, the proposed test setup follows (Jaruga et al. (2015)), where the accuracy of the 3D MPDATA

scheme is benchmarked in the rotating spherical passive tracer scenario. The dimensionless domain size dx00 is prescribed as265

dx00 = 1003 (uniform in all three directions) and consists of an arbitrary n×m× l spatial gridpoint distribution. The spherical

tracer of initial radius r = 0.15dx00 and constant magnitude h= 4 revolves around the point

(xc,yc,zc) =
((

0.5− 0.25/
√

3
)
dx00,

(
0.5 +0.25/

√
3
)
dx00,

(
0.5 +0.25/

√
3
)
dx00

)
(2)

transported with constant angular velocity Ω = (0.1,0.1,0.1)/
√

3. The advection velocity is defined on the C-grid in the form

of non-dimensional Courant numbers, numerically averaged from the analytical definition on the A-grid defined in the point270

(x,y,z) as

(u,v,w) = 0.1/
√

3(−(y− yc) + (z− zc),(x−xc)− (z− zc),−(x−xc) + (y− yc)) (3)

To verify the implementation accuracy, the uniform grid spacing n=m= l = 59 and timestep dt= 0.036 were tested in

double precision for nt= 556 time steps needed to complete one revolution on the circular trajectory. The L2 norm r of the

tracer solution ψ is defined as275

r =
1

nt · dt

√∑
i=1,nml (ψexact−ψ)2)

nml
(4)

where nml = 593 and ψexact represents analytical solution. For both: legacy and optimized codes and single and double

precision, rnt=556 = 0.028, which matches the result of Jaruga et al. (2015).

For the purpose of scalability evaluation, the advection procedure is invoked in a loop over 500 timesteps. The GPU im-

plementation is executed on the 2x2x1 MPI grid, whereas the CPU implementation is decomposed into the 3x4x4 MPI grid280

to minimize the total transmitted amount of halo data (Piotrowski et al. (2011)). All tests discussed rely on non-blocking

CUDA-aware MPI implementation. Similar to Figure 1, the performance gain for 4 x GPU versus 2 x CPU on a single node

on JUWELS Booster as a function of problem size is shown in Figure 3 and demonstrates close to ≈ 18-fold speedup for the

largest problem sizes. Performance of the GPU implementation improves significantly with the number of cells until a total of

≈ 8 ·107 cells are reached. The CPU performance diminishes at the largest problem sizes (probably due to the worsening cache285

utilization), whereas the GPU computing capability seems to gradually saturate. Note that in this comparison both: CPU and

GPU computational formulation deserve extra optimization effort, that is beyond the scope of this study. For example, CPU

formulation would normally benefit from the hybrid MPI-shared parallelization and from loop-tiling optimizations. Further-

more, the GPU performance would be typically limited by total memory available on the node-set of GPUS. Last but not the

least, ratio between number of GPUs to number of CPUs varies between supercomputing architectures.290

For most atmospheric applications considered by the EULAG community, where the temporal integration lasts thousands to

millions of timesteps, the key metric is time-to-solution, thus, scalability limits at very large domain sizes are of less importance.

For this reason, strong scaling is usually of more interest metric than a weak scaling. To investigate strong scalability limits,

13

https://doi.org/10.5194/egusphere-2023-1079
Preprint. Discussion started: 31 July 2023
c© Author(s) 2023. CC BY 4.0 License.

106 107 108 109

Total number of cells

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pe
rfo

rm
an

ce
 (c

el
ls/

s)

1e10

0

5

10

15

20

25

30

Re
la

tiv
e

pe
rfo

rm
an

ce
(m

ul
tip

le
)

GPU
CPU
Relative performance

Figure 3. MPDATA single node performance comparison.

timings of integrating MPDATA advection for one full revolution of the sphere with 7−,14−and 21− times refined resolution

are presented in Fig. 4. Guided by the inspection of Figure 3 we expect that already at the smallest problem size of 4133295

gridpoints the GPU performance is close to saturation. Therefore, we can’t expect perfect scalability when under-loading the

GPU device. Indeed, the 4133 does not scale well beyond the single node, whereas for the largest problem size of 12393 the

strong scalability weakens at the 16 GPU nodes. CPU scalability is better at the higher node counts, however, consistently

delivers longer time-to-solution than a GPU-based integration.

Notwithstanding the operational requirements to limit the time-to-solution, weak scalability study reveals a good parallel300

capabilities up to 12000 CPU cores/1000 GPUs. Apart from the small node counts, the speed-up of GPU over CPU computation

is consistently close to 11.

5 Prerequisites, principles and restrictions of a lightweight eDSL application

It is difficult to define the universal but detailed recipes for minimally invasive eDSL applications across the variety of com-

putational fluid dynamics and geoscientific codes. However, it is certainly possible to name general rules and concepts for the305

development of such eDSLs, which are enumerated and briefly discussed below.

1. Major code sections should be reasonably separated to aid gradual eDSL application.

The most consuming (implementation-wise) part of the eDSL, at least from the Fortran perspective, is the introduction

of the abstracted variable declarations throughout the code. It is therefore beneficial to conceptually separate CPU-

specific compilation units (e.g. initialization, I/O and finalization) from the actual computations on the accelerator. Code310

14

https://doi.org/10.5194/egusphere-2023-1079
Preprint. Discussion started: 31 July 2023
c© Author(s) 2023. CC BY 4.0 License.

10 2 10 1 100 101 102

of nodes (4xA100 GPU or 2x24 EPYC 7402 cores)

10 3

10 2

10 1

100

101

102

103

tim
e-

to
-s

ol
ut

io
n[

s]

0

5

10

15

20

25

30

35

40

Re
la

tiv
e

pe
rfo

rm
an

ce
(m

ul
tip

le
)

GPU 4133

GPU 8263

GPU 12393

CPU 4133

CPU 8263

CPU 12393

Rel. perf. 4133

Rel. perf. 8263

Rel. perf. 12393

Figure 4. Strong scalability of MPDATA gauge implementation for different problem sizes. For time-to-solution (colored

lines) the leftmost datapoints correspond to 1/2 and 1/4 of a 4 GPU node, i.e. 2 or 1 NVIDIA A100 GPU, respectively. Relative

performance gain (point symbols) is shown for full node GPU vs. CPU simulations. Numbers in the legend denote total cell

counts for the refined reference domain: (7 ∗ 59)3, (14 ∗ 59)3 and (21 ∗ 59)3.

modularization, as applied extensively in modern geoscientific modeling frameworks (Shrestha et al. (2014); Gasper

et al. (2014); Pham et al. (2021)), is a prerequisite to achieve performance portability for large code bases.

2. Exposition of parallelism and refactoring towards increased computational intensity should be performed before the

eDSL application. For stencil algorithms on legacy architectures, typically memory(cache) bandwidth-bound, signifi-

cant improvement in the computational performance may be achieved already by code restructuring. For example, the315

optimized (CPU) MPDATA dwarf version evinces typically about two times better performance as compared to the

legacy formulation. The key optimization here was loop fusion enabled by the removal of several intermediate memory

stores to auxiliary variables, thus increasing arithmetic intensity. One could argue that such operations should rather be

performed by the DSL itself. However, in presence of elaborated boundary conditions allowing for multiple scenarios,

this is often not easy, as computation of boundary stencil (e.g. zero flux, zero divergence, etc.) prevents naive kernel320

merging. Treatment of the boundary conditions needs thus be judiciously planned before any eDSL (or DSL) approach

is applied. On the other hand, highly-optimized single-application codes may benefit from the custom-tailored DSL that

handles effectively only a subset of possible b.c. realizations.

15

https://doi.org/10.5194/egusphere-2023-1079
Preprint. Discussion started: 31 July 2023
c© Author(s) 2023. CC BY 4.0 License.

0 50 100 150 200 250
of nodes

0.5

1.0

1.5

2.0

Pe
rfo

rm
an

ce
 (c

el
ls/

s)

1e9

0

5

10

15

20

25

30

Re
la

tiv
e

pe
rfo

rm
an

ce
(m

ul
tip

le
)

GPU
CPU
Relative performance

Figure 5. Weak scalability of MPDATA gauge implementation for the 4923-gridpoints-per-node problem size.

3. Critical sections requiring code specialization should be reorganized to minimize code duplication.

It is not possible to realize optimal computational formulations for all architectures within a single implementation.325

For example, some optimizations, especially in physical parameterizations, prove effective for GPUs, but have adverse

impact on CPU performance. This aspect may be to some degree circumvented by specialization depending on the ar-

chitecture, but ultimately feasibility of such approach depends on the particular application. However, carefully designed

loop abstraction in the eDSL layer should at least be able e.g. to realize code specialization involving loop reordering,

merging and tiling without code duplication.330

4. Non-standard order of stencil execution in the domain may be considered to improve parallel performance.

Abstraction of loops in a eDSL, next to tiling or reordering, enables silent generation and prioritization of loops realizing

inner domain or (subdomain) boundary computations. The computation of stencils at the subdomain boundaries can be

thus prioritized to realize non-blocking communication, overlapped with computation inside of a subdomain, without

the loss of readability.335

5. For sufficiently large computational grids, a memory reuse strategy is needed to fit inside the accelerator device.

Given the enormous computing power of accelerators, it is necessary to feed them with large enough computational

tasks, which is usually linked to large memory demands. For example, extending the MPDATA eDSL to the full EULAG

fluid solver may lead to GPU memory limitations requiring the implementation of a memory pool for auxiliary variables,

which has been discussed in section 3.340

16

https://doi.org/10.5194/egusphere-2023-1079
Preprint. Discussion started: 31 July 2023
c© Author(s) 2023. CC BY 4.0 License.

6 Conclusions

In recent decades, the scientific community faced the end of the Dennard scaling and the onset of the massively parallel

computing era with growing heterogeneity of computing paradigms and architectures. The advent of the widely available

accelerated supercomputing architectures modified the landscape of computational geophysics even further. The pioneers of

computing on GPU and x86 manycore processors paved new routes towards fast and energy efficient calculations. In this work,345

we propose a lightweight embedded Domain Specific Language (eDSL) approach for performance portability. We report our

experience to the still largely unclaimed land of performant execution of geoscientific applications on accelerators. We argue

that thanks to similarities across the Earth System Science codes and their implementations it is possible to define general

concepts of the eDSL approach, greatly facilitating performance portability. Furthermore, the approach seems to be easily

extendable to the general field of Computational Fluid Dynamics and beyond.350

Based on the proposed lightweight eDSL concept, we presented results of accelerator ports of the two established geophys-

ical research codes ParFlow and MPDATA. These codes span exemplarily a range of applications covering transport processes

in the Earth System from the cloud microscale, through variably saturated ground water and surface water flows, to global

atmospheric circulation. The study demonstrates that many geophysical research applications, which for various reasons can

not rely on a large team of software engineers, nevertheless may gain access to rapid computational benefits when applying the355

proposed eDSL concept. At the same time, code readability is maintained and established coding paradigms remain accessible

to the domain scientists.

From our experience, developers of geophysical research codes need to balance between the needs of the domain scientists

and an appropriate use of (finite) supercomputing resources under the common conditions of tight research time frames. We

propose to consider the presented eDSL concept as a lightweight approach towards legacy code performance portability on360

diverse supercomputing architectures, avoiding abrupt transition to new coding paradigms and large human engineering effort,

preserving flexibility and remaining hardware and vendor agnostic. The approach would rarely offer ways to approach the

hardware performance limits, such as FLOP-based peak performance or saturated memory bandwidth. Nonetheless, it does

offer potentially large speed-ups. These may be close to the memory-bandwidth ratio of the full-node combined GPU to CPU

transfer capabilities, or even more in case of compute-bound code. Moreover, the eDSL enables the possibility to harness365

efficiently upcoming hardware on supercomputing systems in the exascale range. In our opinion the eDSL concept will be

applicable to the majority of non-time critical applications that constitute the foundation of modern computational geosciences.

Code availability. The current version 3.12 of Parflow is available from the project website: https://parflow.org under the licence GNU

LGPL. The exact version of the model used to produce the results used in this paper is archived on Zenodo (https://zenodo.org/record/

4957977). MPDATA eDSL 1.0 is available from https://github.com/piotrows/advectionHPCtester. The exact version of the model used to370

produce the results used in this paper is archived on Zenodo (https://zenodo.org/record/8178549).

17

https://doi.org/10.5194/egusphere-2023-1079
Preprint. Discussion started: 31 July 2023
c© Author(s) 2023. CC BY 4.0 License.

Author contributions. SK is responsible for conceptualization and supervision. SK, OS and DCV contributed to the funding acquisition and

project administration. JH and ZP designed methodology, software design and conducted investigation process along with validation and

visualization. ZP and JH prepared the original draft. ZP, SK, OS and DCV contributed to preparation of final manuscript.

Competing interests. The authors declare that they have no conflict of interest.375

Acknowledgements. The authors gratefully acknowledge the Earth System Modelling Project (ESM) for funding this work by providing

computing time on the ESM partition of the supercomputer JUWELS at the Jülich Supercomputing Centre (JSC). This work received funding

from the Initiative and Networking Fund of the Helmholtz Association through the projects ‘Advanced Earth System Modelling Capacity

(ESM)’ and ‘Pilot Lab Exascale Earth System Modelling (PL-ExaESM)’. This work has received funding from the European Union’s

Horizon 2020 research and innovation program under grant agreement No 824158 (EoCoE-2). Z.P. Piotrowski acknowledges support from380

the “Numerical weather prediction for sustainable Europe” project, carried out within the FIRST TEAM program of the Foundation for

Polish Science co-financed by the European Union under the European Regional Development Fund. Commments from Piotr Smolarkiewicz

and Michael Lange on earlier versions of this manuscript are gratefully acknowledged.

18

https://doi.org/10.5194/egusphere-2023-1079
Preprint. Discussion started: 31 July 2023
c© Author(s) 2023. CC BY 4.0 License.

References

Afanasyev, A., Bianco, M., Mosimann, L., Osuna, C., Thaler, F., Vogt, H., Fuhrer, O., VandeVondele, J., and385

Schulthess, T. C.: GridTools: A framework for portable weather and climate applications, SoftwareX, 15, 100 707,

https://doi.org/https://doi.org/10.1016/j.softx.2021.100707, 2021.

Alnæs, M. S., Logg, A., Ølgaard, K. B., Rognes, M. E., and Wells, G. N.: Unified Form Language: A Domain-Specific Language for Weak

Formulations of Partial Differential Equations, ACM Trans. Math. Softw., 40, https://doi.org/10.1145/2566630, 2014.

Balogh, G., Mudalige, G., Reguly, I., Antao, S., and Bertolli, C.: OP2-Clang: A Source-to-Source Translator Using Clang/L-390

LVM LibTooling, in: 2018 IEEE/ACM 5th Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC), pp. 59–70,

https://doi.org/10.1109/LLVM-HPC.2018.8639205, 2018.

Bauer, P., Dueben, P. D., Hoefler, T., Quintino, T., Schulthess, T. C., and Wedi, N. P.: The digital revolution of Earth-system science, Nature

Computational Science, 1, 104–113, https://doi.org/10.1038/s43588-021-00023-0, 2021.

Beckingsale, D. A., Scogland, T. R., Burmark, J., Hornung, R., Jones, H., Killian, W., Kunen, A. J., Pearce, O., Robinson, P., and Ryu-395

jin, B. S.: RAJA: Portable Performance for Large-Scale Scientific Applications, in: Proceedings of P3HPC 2019: International Work-

shop on Performance, Portability and Productivity in HPC - Held in conjunction with SC 2019: The International Conference for

High Performance Computing, Networking, Storage and Analysis, pp. 71–81, Institute of Electrical and Electronics Engineers Inc.,

https://doi.org/10.1109/P3HPC49587.2019.00012, 2019.

Beckingsale, D. A., McFadden, M. J., Dahm, J. P. S., Pankajakshan, R., and Hornung, R. D.: Umpire: Application-focused400

management and coordination of complex hierarchical memory, IBM Journal of Research and Development, 64, 00:1–00:10,

https://doi.org/10.1147/jrd.2019.2954403, 2020.

Dauxois, T., Peacock, T., Bauer, P., Caulfield, C. P., Cenedese, C., Gorlé, C., Haller, G., Ivey, G. N., Linden, P. F., Meiburg, E., Pinardi,

N., Vriend, N. M., and Woods, A. W.: Confronting Grand Challenges in environmental fluid mechanics, Physical Review Fluids, 6,

https://doi.org/10.1103/physrevfluids.6.020501, 2021.405

Edwards, H. C., Sunderland, D., Porter, V., Amsler, C., and Mish, S.: Manycore performance-portability: Kokkos multidimensional array

library, Scientific Programming, 20, 89–114, https://doi.org/10.3233/SPR-2012-0343, 2012.

Fuhrer, O., Chadha, T., Hoefler, T., Kwasniewski, G., Lapillonne, X., Leutwyler, D., Lüthi, D., Osuna, C., Schär, C., Schulthess, T. C.,

and Vogt, H.: Near-global climate simulation at 1km resolution: establishing a performance baseline on 4888 GPUs with COSMO 5.0,

Geoscientific Model Development, 11, 1665–1681, https://doi.org/10.5194/gmd-11-1665-2018, 2018.410

Gasper, F., Goergen, K., Shrestha, P., Sulis, M., Rihani, J., Geimer, M., and Kollet, S.: Implementation and scaling of the fully coupled Ter-

restrial Systems Modeling Platform (TerrSysMP v1.0) in a massively parallel supercomputing environment – a case study on JUQUEEN

(IBM Blue Gene/Q), Geoscientific Model Development, 7, 2531–2543, https://doi.org/10.5194/gmd-7-2531-2014, 2014.

Hokkanen, J., Kollet, S., Kraus, J., Herten, A., Hrywniak, M., and Pleiter, D.: Leveraging HPC accelerator architectures with modern tech-

niques — hydrologic modeling on GPUs with ParFlow, Computational Geosciences, pp. 1–13, https://doi.org/10.1007/s10596-021-10051-415

4, 2021.

Jaruga, A., Arabas, S., Jarecka, D., Pawlowska, H., Smolarkiewicz, P., and Waruszewski, M.: libmpdata++ 1.0: a library of parallel MPDATA

solvers for systems of generalised transport equations, Geoscientific Model Development, 8, 1005–1032, 2015.

Jülich Supercomputing Centre: JUWELS: Modular Tier-0/1 Supercomputer at the Jülich Supercomputing Centre, Journal of large-scale

research facilities, 5, https://doi.org/10.17815/jlsrf-5-171, 2019.420

19

https://doi.org/10.5194/egusphere-2023-1079
Preprint. Discussion started: 31 July 2023
c© Author(s) 2023. CC BY 4.0 License.

Kollet, S. J. and Maxwell, R. M.: Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a

parallel groundwater flow model, Advances in Water Resources, 29, 945–958, https://doi.org/10.1016/j.advwatres.2005.08.006, 2006.

Kuffour, B. N. O., Engdahl, N. B., Woodward, C. S., Condon, L. E., Kollet, S., and Maxwell, R. M.: Simulating coupled surface-subsurface

flows with ParFlow v3.5.0: capabilities, applications, and ongoing development of an open-source, massively parallel, integrated hydro-

logic model, Geoscientific Model Development, 13, 1373–1397, https://doi.org/10.5194/gmd-13-1373-2020, 2020.425

Kühnlein, C., Deconinck, W., Klein, R., Malardel, S., Piotrowski, Z. P., Smolarkiewicz, P. K., Szmelter, J., and Wedi, N. P.: FVM 1.0: a

nonhydrostatic finite-volume dynamical core for the IFS, Geoscientific Model Development, 12, 651–676, https://doi.org/10.5194/gmd-

12-651-2019, 2019.

Lawrence, B. N., Rezny, M., Budich, R., Bauer, P., Behrens, J., Carter, M., Deconinck, W., Ford, R., Maynard, C., Mullerworth, S., Osuna,

C., Porter, A., Serradell, K., Valcke, S., Wedi, N., and Wilson, S.: Crossing the chasm: how to develop weather and climate models for430

next generation computers?, Geoscientific Model Development, 11, 1799–1821, https://doi.org/10.5194/gmd-11-1799-2018, 2018.

Lengauer, C., Apel, S., Bolten, M., Größlinger, A., Hannig, F., Köstler, H., Rüde, U., Teich, J., Grebhahn, A., Kronawitter, S., Kuckuk,

S., Rittich, H., and Schmitt, C.: ExaStencils: Advanced Stencil-Code Engineering, in: Euro-Par 2014: Parallel Processing Workshops,

edited by Lopes, L., Žilinskas, J., Costan, A., Cascella, R. G., Kecskemeti, G., Jeannot, E., Cannataro, M., Ricci, L., Benkner, S., Petit,

S., Scarano, V., Gracia, J., Hunold, S., Scott, S. L., Lankes, S., Lengauer, C., Carretero, J., Breitbart, J., and Alexander, M., pp. 553–564,435

Springer International Publishing, Cham, 2014.

Lengauer, C., Apel, S., Bolten, M., Chiba, S., Rüde, U., Teich, J., Größlinger, A., Hannig, F., Köstler, H., Claus, L., Grebhahn, A., Groth, S.,

Kronawitter, S., Kuckuk, S., Rittich, H., Schmitt, C., and Schmitt, J.: ExaStencils: Advanced Multigrid Solver Generation, in: Software

for Exascale Computing - SPPEXA 2016-2019, edited by Bungartz, H.-J., Reiz, S., Uekermann, B., Neumann, P., and Nagel, W. E., pp.

405–452, Springer International Publishing, Cham, 2020.440

Louboutin, M., Lange, M., Luporini, F., Kukreja, N., Witte, P. A., Herrmann, F. J., Velesko, P., and Gorman, G. J.: Devito (v3.1.0): an

embedded domain-specific language for finite differences and geophysical exploration, Geoscientific Model Development, 12, 1165–

1187, https://doi.org/10.5194/gmd-12-1165-2019, 2019.

Maxwell, R. M.: A terrain-following grid transform and preconditioner for parallel, large-scale, integrated hydrologic modeling, Advances

in Water Resources, 53, 109–117, https://doi.org/10.1016/j.advwatres.2012.10.001, 2013.445

Mudalige, G., Giles, M., Reguly, I., Bertolli, C., and Kelly, P.: OP2: An active library framework for solving unstructured

mesh-based applications on multi-core and many-core architectures, in: 2012 Innovative Parallel Computing (InPar), pp. 1–12,

https://doi.org/10.1109/InPar.2012.6339594, 2012.

Müller, A., Deconinck, W., Kühnlein, C., Mengaldo, G., Lange, M., Wedi, N., Bauer, P., Smolarkiewicz, P. K., Diamantakis, M., Lock, S.-J.,

et al.: The ESCAPE project: energy-efficient scalable algorithms for weather prediction at exascale, Geoscientific Model Development,450

12, 4425–4441, 2019.

Pham, T. V., Steger, C., Rockel, B., Keuler, K., Kirchner, I., Mertens, M., Rieger, D., Zängl, G., and Früh, B.: ICON in Climate

Limited-area Mode (ICON release version 2.6.1): a new regional climate model, Geoscientific Model Development, 14, 985–1005,

https://doi.org/10.5194/gmd-14-985-2021, 2021.

Piotrowski, Z. P., Wyszogrodzki, A. A., and Smolarkiewicz, P. K.: Towards petascale simulation of atmospheric circulations with soundproof455

equations, Acta Geophysica, 59, 1294, https://doi.org/10.2478/s11600-011-0049-6, 2011.

Prusa, J. M., Smolarkiewicz, P. K., and Wyszogrodzki, A. A.: EULAG, a computational model for multiscale flows, Computers & Fluids,

37, 1193–1207, https://doi.org/https://doi.org/10.1016/j.compfluid.2007.12.001, 2008.

20

https://doi.org/10.5194/egusphere-2023-1079
Preprint. Discussion started: 31 July 2023
c© Author(s) 2023. CC BY 4.0 License.

Rathgeber, F., Ham, D. A., Mitchell, L., Lange, M., Luporini, F., Mcrae, A. T. T., Bercea, G.-T., Markall, G. R., and Kelly, P. H. J.: Firedrake:

Automating the Finite Element Method by Composing Abstractions, ACM Trans. Math. Softw., 43, https://doi.org/10.1145/2998441,460

2016.

Rojek, K., Wyrzykowski, R., and Kuczynski, L.: Systematic adaptation of stencil-based 3D MPDATA to GPU architectures, Concurrency

and Computation: Practice and Experience, 29, e3970, https://doi.org/https://doi.org/10.1002/cpe.3970, e3970 cpe.3970, 2017.

Shrestha, P., Sulis, M., Masbou, M., Kollet, S., and Simmer, C.: A Scale-Consistent Terrestrial Systems Modeling Platform Based on

COSMO, CLM, and ParFlow, Monthly Weather Review, 142, 3466 – 3483, https://doi.org/10.1175/MWR-D-14-00029.1, 2014.465

Smolarkiewicz, P. K.: Multidimensional positive definite advection transport algorithm: an overview, International Journal for Numerical

Methods in Fluids, 50, 1123–1144, https://doi.org/https://doi.org/10.1002/fld.1071, 2006.

Sridhar, A., Tissaoui, Y., Marras, S., Shen, Z., Kawczynski, C., Byrne, S., Pamnany, K., Waruszewski, M., Gibson, T. H., Kozdon, J. E., Chu-

ravy, V., Wilcox, L. C., Giraldo, F. X., and Schneider, T.: Large-eddy simulations with ClimateMachine v0.2.0: a new open-source code for

atmospheric simulations on GPUs and CPUs, Geoscientific Model Development Discussions, 2021, 1–41, https://doi.org/10.5194/gmd-470

2021-335, 2021.

Woodward, C. S.: A Newton-Krylov-muItigrid solver for variably saturated flow problems, Transactions on Ecology and the Environment,

17, 1998.

Zenker, E., Worpitz, B., Widera, R., Huebl, A., Juckeland, G., Knupfer, A., Nagel, W. E., and Bussmann, M.: Alpaka - An abstraction library

for parallel kernel acceleration, in: Proceedings - 2016 IEEE 30th International Parallel and Distributed Processing Symposium, IPDPS475

2016, pp. 631–640, Institute of Electrical and Electronics Engineers Inc., https://doi.org/10.1109/IPDPSW.2016.50, 2016.

Ziemiański, M. Z., Wójcik, D. K., Rosa, B., and Piotrowski, Z. P.: Compressible EULAG Dynamical Core in COSMO: Convective-Scale

Alpine Weather Forecasts, Monthly Weather Review, 149, 3563 – 3583, https://doi.org/10.1175/MWR-D-20-0317.1, 2021.

21

https://doi.org/10.5194/egusphere-2023-1079
Preprint. Discussion started: 31 July 2023
c© Author(s) 2023. CC BY 4.0 License.

