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Abstract. Biogenic volatile organic compounds (BVOCs) are important precursors to ozone and secondary organic aerosols 

in the atmosphere, affecting air quality, clouds and climate. However, the trend of BVOC emissions and driving factors for the 

emission changes in different geographic regions over the past two decades has remained unclear. Here, regional to global 10 

changes in BVOC emissions during 2001-2020 are simulated using the latest Model of Emission of Gases and Aerosols from 

Nature (MEGANv3.2) with the input of time-varying satellite-retrieved vegetation and reanalysis meteorology data. 

Comparison of model simulations with the site observations shows that the model can reasonably reproduce the magnitude of 

isoprene and monoterpene emission fluxes. The spatial distribution of the modeled isoprene emissions is generally comparable 

to the satellite retrievals. The estimated annual average global BVOC emissions are 835.4 Tg yrିଵTg yr-1 with the emissions 15 

from isoprene, monoterpenes, sesquiterpenes, and other BVOC comprised of 347.7, 184.8, 23.3, and 279.6 Tg yrିଵTg yr-1, 

respectively. We find that the decrease in global isoprene emissions (െ0.07%  yrିଵ െ 0.07% yr െ 1) caused by increase in 

CO2 concentrations (-0.20%െ0.20%  yrିଵ  yr-1) is stronger than that caused by changes in vegetation (െ0.03%  yrିଵ െ

0.03% yr െ 1) and meteorological factors (0.15%  yrିଵ0.15% yr െ 1). However, regional disparities are large. Isoprene 

emissions increase significantly in Europe, East Asia, and South Asia (0.37 െ 0.66%  yrିଵ0.37 െ 0.66% yr െ 1). The 20 

increasing trend is contributed by half from increased leaf area index (LAI) (maximum over 0.02 m2 m-2 yr-1) and tree cover. 

Changes in meteorological factors contribute to another half, with elevated temperature dominating in Europe and increased 

soil moisture dominating in East and South Asia. In contrast, in South America and Southeast Asia, shifts in vegetation type 

associated with the BVOC emission capacity, which partly results from the deforestation and agricultural expansion, decrease 

the BVOC emission and offset nearly half of the emission increase caused by changes in meteorological factors. Overall, 25 

isoprene emission increases by 0.35%  yrିଵ0.35% yr െ 1 and 0.25%  yrିଵ0.25% yr െ 1 in South America and Southeast 

Asia, respectively. In Central Africa, a decrease in temperature dominates the negative emission trend (െ0.74%  yrିଵ െ

0.74% yr െ 1). Global monoterpene emissions show a significantly increasing trend (0.34%  yrିଵ, 0.6 Tg yrିଵ0.34% yr െ

1, 0.6 Tg yr െ 1) compared to that of isoprene (െ0.07%  yrିଵ, െ0.2 Tg yrିଵ െ 0.07% yr െ 1,െ0.2 Tg yr െ1), especially in 

strong greening hotspots. This is mainly because the monoterpene emissions are more sensitive to changes in LAI and are not 30 
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subject to the inhibition effect of CO2. The findings highlight the important roles of vegetation cover and biomass, temperature, 

and soil moisture in modulating the temporal variations of global BVOC emissions in past two decades. 
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1 Introduction 

Emissions of biogenic volatile organic compounds (BVOCs) from the terrestrial vegetation play a pivotal role in 

atmospheric chemistry and climate due to their large quantity (~1000 Tg yr-1) and high reactivity (Guenther et al., 1995, 2012). 35 

Isoprene and monoterpenes (e.g., α-pinene, β-pinene, limonene) are the most prevalent BVOC species, and other species 

include sesquiterpenes, methanol, ethanol, etc. They These BVOCs account for about 90%90% of total non-methane volatile 

organic compounds (NMVOCs) in the atmosphere (Guenther et al., 2006), which are important precursors for troposphere 

ozone and secondary organic aerosols (SOA) through atmospheric oxidation processes, and thus influence air pollution, clouds 

and Earth’s radiative budget. However, BVOC emissions remain highly uncertain as they depend on a diversity of factors and 40 

it is still unclear about the relative importance of different factors. 

The BVOC emissions are mainly determined by many environmental factors such as vegetation, meteorology, and carbon 

dioxide (CO2) concentrations. The impact of vegetation on BVOC emissions is primarily reflected in vegetation types (e.g., 

forest, grassland), tree species, and vegetation biomass density (e.g., land cover, leaf area index). Previous studies have 

demonstrated that different vegetation types and tree species affect BVOC emissions dramatically (Lathière et al., 2006; 45 

Stavrakou et al., 2014; Sindelarova et al., 2022). For meteorological parameters, especially temperature, light, and soil moisture, 

it was observed that elevated temperature, stronger radiation, and wetter soil significantly promote BVOC emissions (Rinne 

et al., 2002; Bai et al., 2016; Jiang et al., 2018). In contrast, elevated CO2 can suppress the emissions of the major BVOC 

component (i.ee.g., isoprene) (Heald et al.,2009; Wilkinson et al., 2009). The vegetation change has affected nearly half of the 

global land surface (Hurtt, 2011) with land cover change intensifying in recent decades, particularly in tropical and East Asia 50 

(Purves et al., 2004; Pacifico et al., 2012; Piao et al., 2015). Related studies pointed out that 1/3 of the global vegetation growth 

area has been greening since the 21st century, with the leaf area index (LAI) increasing by 2.3%2.3% per decade, of which 

China contributes nearly 1/4 (Chen et al., 2019). In addition, the surge in greenhouse gas emissions since the industrial 

revolution has led to significant global warming and meteorological changes. Thus, due to the large spatio-temporal variations 

in these factors, there may exist significant regional and global differences in BVOC emissions as well as emission trends. 55 

Ground-based measurements can sample BVOC fluxes from leaf to canopy scale (Müller et al., 2010; Bai et al., 2016; 

Sarkar et al., 2020). However, the spatial and temporal coverages of such observations are limited and cannot be extended to 

represent BVOC emissions in a larger domain. The BVOC emission models, such as the Model of Emissions of Gases and 

Aerosols from Nature (MEGAN, Guenther et al., 1995, 2006, 2012) and the BVOC Photosynthesis-Dependent Scheme 

(PS_BVOC, Arneth et al., 2007; Unger et al., 2013), consider the main factors influencing BVOC emissions.  Compared to 60 

the widely used MEGAN version 2.1, the recently released MEGAN version 3.2 has addressed several gaps in BVOC emission 

modeling (Guenther et al., 2020), including (i) more refined BVOC emission factors, where vegetation emission factors are 

calculated based on tree species rather than the original fixed plant functional type (PFT) emission factor and (ii) consideration 
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of environmental stress caused by extreme weather and air pollution. These models have been applied to simulate the BVOC 

emissions from regional to global scales, and to identify the impacts of various factors on the variations in BVOC emissions 65 

(Fu and Liao, 2012; Purves et al., 2014; Stavrakou et al., 2014; Chen et al., 2018; Wang et al., 2021; Li et al., 2022). 

Previous studies have explored the long-term emission trends of BVOCs. Chen et al. (2018) paid attention to changes in 

vegetation from 2000 to 2015 on the global scale, and reported that the global total isoprene emission declined by only 1.5%1.5% 

for this period. Opacka et al. (2021) complemented the work of Chen et al. (2018) by incorporating different satellite-retrieved 

land cover datasets and pointed out that land cover changes from 2001 to 2016 mitigate isoprene emissions ranging from -70 

െ0.33%0.33% to െ0.04%  yrିଵ െ 0.04% yr െ 1, while temperature and radiation changes enhance isoprene emissions by 

0.94%  yrିଵ0.94% yr െ 1. Sindelarova et al. (2022) argued that although vegetation change from 2000 to 2019 exerted a 

small effect (െ0.11%  yrିଵ െ 0.11% yr െ 1) on the overall change in global isoprene emissions, the changes were significant 

in some hotspots. Purves et al. (2004) found that changes in vegetation in the Eastern United States from 1980 to 1990 could 

lead to an increase of BVOC emissions by about 17%17%. Fu and Liao (2012) analyzed the changes in BVOC emissions in 75 

China from 2001 to 2006 and found that the interannual variability of isoprene emissions was dominated by changes in the 

meteorological fields, while the variability of monoterpene emissions was more sensitive to changes in vegetation. Stavrakou 

et al. (2014) explored the factors influencing isoprene emissions in Asia from 1979 to 2012 and found that enhanced 

temperature and light led to a 0.52%  yrିଵ0.52% yr െ 1 increase in emissions in China, and oil palm expansion in Southeast 

Asia increased the isoprene emissions by more than 1%  yrିଵ1% yr െ 1. Chen et al. (2018) showed that from 2000 to 2015, 80 

afforestation caused a 5 െ 10%5 െ 10% increase in isoprene emissions in Northeastern China and India, while deforestation 

led to about a 10%10% reduction in isoprene emissions in the Amazon basin, West Africa, and Southeast Asia. Wang et al. 

(2021) indicated that the greening of China from 2001-2016 led to a significant increase (up to 11.7%11.7%) in BVOC 

emissions, and the regional accumulated BVOC emissions in 2018 could be 26%26% higher than those in 2001, mainly due 

to the increase in vegetation cover and LAI (Li et al., 2022). However, these previous studies were conducted at various spatio-85 

temporal scales using fixed vegetation or meteorological datasets for a given year, leading to difficulties in comparing their 

magnitude and even sign of the BVOC emission trends, and it is still unclear which factor dominates the BVOC emission 

trends in different hotspot regions. 

 This study provides a comprehensive analysis of BVOC emission trends from 2001 to 2020 on a regional to global scale 

using the latest BVOC emission model, MEGANv3.2, combined with time-varying satellite vegetation retrievals and 90 

meteorological reanalysis data. More importantly, this study further identifies the contribution of various driving factors to 

these trends. The findings of this research shed light on the importance of BVOC emissions in air quality and aerosol radiative 

forcing in hotspot regions. This paper is organized as follows. In Section 2, we introduce the MEGANv3.2 model and its input 

data, model experimental design, and BVOC observation data used in model evaluations. In Section 3, the spatio-temporal 

distributions and trends of BVOC emissions in different regions are analyzed. The contributions of various driving factors (i.e., 95 
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vegetation, meteorology, and CO2) are quantified. In Section 4, we discuss the uncertainty of the model results and the sources 

of biases in the BVOC emission trends by comparing with previous studies. Conclusions of this study are given in Section 5. 

2 Method and Data 

2.1 MEGANv3.2 

The MEGAN emission model has been widely used to simulate BVOC emissions at global and regional scales (Guenther 100 

et al., 2006, 2012). It has also been incorporated into various Earth system models and chemical transport models (Müller et 

al., 2008; Li et al., 2013; Sindelarova et al., 2014; Messina et al., 2016; Bauwens et al., 2018; Chen et al., 2018). Here, the 

latest version of MEGANv3.2 is applied to estimate the BVOC emissions from 2001 to 2020. Compared to the earlier version 

MEGANv2.1 (Guenther et al., 2012), MEGANv3.2 estimates vegetation emission factors based on variable plant species 

measurements instead of on fixed plant functional type (PFT, Guenther et al., 2020). Specifically, while MEGANv2.1 uses a 105 

look-up table of emission factors for the 15 PFTs corresponding to the biological emission classes (see Table 2 in Guenther et 

al. (2012)), MEGANv3.2 uses the so-called Emission Factor Processor, to estimate the landscape average emission factors, 

which are based on the following three databases: (1) Growth form datasets for four PFTs: tree, shrub, grass, and crops; (2) 

Ecotype datasets: composed of a mix of emission-specific tree species/grass associated with specific emission capacities; and 

(3) Updated tree species/grass datasets corresponding to the biogenic emission classes. These updates can distinguish the 110 

differences in vegetation emission factors in regions with the same PFT but with varying plant species. The new version also 

considers the additional stress factors of emissions by using the simple threshold function, including high/low temperature, 

strong wind, and heavy O3 pollution. Additionally, the number of BVOC components in MEGANv3.2 is expanded from the 

original 148 to over 200. MEGANv3.2 calculates the BVOC emissions rate (ER) as follows: 

                                                                    𝐸𝑅 ൌ  𝐸𝐹 ⋅ 𝐸𝐴                                                                                               (1) 115 

where 𝐸𝐹 and 𝐸𝐴 represent the standard emission factor (i.e., 𝐸𝑅 at “standard” conditions) and the nondimensional emission 

activity factor, respectively.  

The 𝐸𝐹 map can be obtained by running MEGANv3.2 Emission Factor Processor, which combines growth form and 

ecotype data with plant species community and species emission factor datasets to generate the mean emission factor. A brief 

algorithm is shown below:   120 

                            𝐸𝐹 ൌ  𝐸𝐹௧௥௘௘ ⋅ 𝑓௧௥௘௘ ൅ 𝐸𝐹௦௛௥௨௕ ⋅ 𝑓௦௛௥௨௕ ൅ 𝐸𝐹௚௥௔௦௦ ⋅ 𝑓௚௥௔௦௦ ൅ 𝐸𝐹௖௥௢௣ ⋅ 𝑓௖௥௢௣                                          (2) 

where 𝐸𝐹௧௥௘௘, 𝐸𝐹௦௛௥௨௕, 𝐸𝐹௚௥௔௦௦, and 𝐸𝐹௖௥௢௣ represent the species emission factors for the four types of growth forms (i.e., 

PFTs), and f is the fraction of the specific growth form in a model grid cell. 

The emission activity factor considers the effect of various environmental factors and is calculated as 

                                        𝐸𝐴 ൌ  LAIv ⋅ 𝛾௣ ⋅ 𝛾் ⋅ 𝛾ு் ⋅ 𝛾௅் ⋅ 𝛾ௌௐ ⋅ 𝛾ைయ ⋅ 𝛾஺ ⋅ 𝛾ௌெ ⋅ 𝛾஼                                                          (3) 125 
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where LAIv represents the leaf area index of vegetation covered surfaces and is obtained by dividing LAI with VCF (vegetation 

cover fraction). 𝛾௣, 𝛾், 𝛾ு், 𝛾௅், 𝛾ௌௐ, 𝛾ைయ, 𝛾஺, 𝛾ௌெ, 𝛾஼ represent the activity factors for downward shortwave radiation, 2-m 

air temperature, high temperature, low temperature, strong wind, O3 pollution, leaf age, soil moisture, and CO2 concentration, 

respectively. In MEGANv3.2 the increases in temperature, radiation, and soil moisture favor the BVOC emissions, while 

high/low temperature (>40 °C or <10 °C) and strong wind (>12 m s-1) as well as heavy O3 pollution and high CO2 concentration 130 

suppress the BVOC emissions. Currently, the inhibition effect of CO2 on BVOC emissions in the model is only available for 

isoprene. In this study, we consider the effect of all above activity factors on BVOC emissions except for the O3 pollution 

factor (i.e., 𝛾ைయ= 1). More details of these algorithms are described in Guenther et al. (2006, 2012, 2020). 

2.2 Data 

2.2.1 Vegetation datasets 135 

The vegetation parameters driving MEGANv3.2 include LAI, VCF, and PFT. In this study, the Moderate-resolution 

Imaging Spectroradiometer (MODIS) vegetation retrievals from 2001 to 2020 were used. LAI data was obtained from Yuan 

et al. (2011), which improved the MODIS version 6 product MCD15A2H (Myneni et al., 2015) with a temporal resolution of 

8 days and a spatial resolution of 0.5°ൈ0.5°. The LAIv calculated in MEGANv3.2 is defined as LAI divided by VCF, 

representing the leaf area index per unit vegetation area. The VCF was from the yearly MODIS MOD44B version 6 dataset 140 

(DiMiceli et al., 2015), which contains three ground cover components (i.e., tree cover, non-tree cover, and bare soil cover). 

We summed the first two observed variables as vegetation cover. The raw VCF product (250 m pixel size, sinusoidal grid) 

was further converted to a 0.5°ൈ0.5° latitude/longitude grid by a conservation interpolation before used in MEGANv3.2. The 

PFT was obtained from the yearly MODIS MCD12C1 product with a spatial resolution of 0.05° (Friedl and Sulla-Menashe, 

2015). To calculate the growth form fractions used by the Emission Factor Processor in Equation 2, The the selected 17 MODIS 145 

IGBP (International Geosphere Biosphere Programme) global vegetation classification types from above MODIS PFT product 

were mapped to four main PFT classification types (i.e., tree, shrub, grass, and crop) in MEGANv3.2 based on methods from 

Sulla-Menashe and Friedl (2018). The ecotype dataset mentioned in Section 2.1 is based on satellite imagery and ground 

surveys and comes from the MEGAN model development group (https://bai.ess.uci.edu/megan/data-and-code/growth-form-

and-ecotypes, last access: 21 Nov 2022) The reprocessed datasets were conservatively interpolated to a spatial resolution of 150 

0.5°ൈ0.5° as model inputs. 

2.2.2 Meteorological datasets 

The meteorological parameters driving the MEGANv3.2 model were from the Modern-Era Retrospective analysis for 

Research and Applications, Version 2 (MERRA-2) (Gelaro et al., 2017). To reduce the biases in the simulated radiation flux 

trends from aerosols, MERRA-2 has assimilated aerosol optical depths from space-based observations in the long-term and 155 

considered the interaction of aerosols with the climate system. The selected variables used in MEGANv3.2 include 2 m 
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temperature, surface downward shortwave radiation, surface soil moisture, water vapor mixing ratio, 10 m wind speed, 

precipitation, surface air pressure, low-level wind speed, cloud cover, and snow cover. Photosynthetically active radiation 

(PAR) in MEGANv3.2 was obtained by dividing the surface downward shortwave radiation by two. The temporal resolution 

of these variables is either 1-hourly or 3-hourly, and the 3-hourly data are linearly interpolated to the uniform 1-hourly data. 160 

All selected parameters were further interpolated from the original 0.5° × 0.625° to a spatial resolution of 0.5° × 0.5° (consistent 

with the resolution of the vegetation datasets) for driving the MEGANv3.2 model. In our study, MERRA-2 data from 2001 to 

2020 were used. 

2.2.3 Observations 

We used in situ observations of BVOC emission fluxes collected from the literature for the comparison with our model 165 

estimates. In total, isoprene emission fluxes at 26 observation sites and monoterpene emission fluxes at 11 observation sites 

were collected and listed in Table S1 and S2. Other BVOCs emission fluxes were not collected, mainly due to their few 

observations and small contributions to the total BVOC burdens. The units of all collected data were converted to mg C m-2 

day-1 for easy comparison. 

In addition, we also employed global isoprene burden data from space-based observations for the comparison with the 170 

simulation. The space-based observations from the Cross-track Infrared Sounder (CrIS) include direct retrievals of global 

isoprene column burden with an optimal estimate for January, April, July, and October of 2013 (Fu et al., 2019; Wells et al., 

2020). Although isoprene column burdens are different from emission fluxes, there is a strong positive correlation between 

them, and thus isoprene burden data can provide a good reference for qualitative analysis of the spatial distribution of isoprene 

emissions. 175 

2.3 Simulations 

To isolate the contribution of different influencing factors (vegetation, meteorology, and CO2) to BVOC emission trends 

from 2001 to 2020, we perform nine sensitivity experiments (Table 1). These experiments consist of two groups. The first 

group contains four experiments: EMIT_ALL is the control experiment that considers the historical changes of all factors. 

EMIT_VEG, EMIT_MET, and EMIT_CO2 consider only the historical changes of vegetation parameters, meteorological 180 

factors, and CO2 concentration, respectively, while the other factors are fixed as those in 2001. These three experiments were 

used to quantify the contributions of vegetation, meteorology, and CO2 concentrations to the BVOC emission trends, 

respectively. In the second group, five experiments were conducted to isolate the contributions of individual vegetation 

parameters (i.e., PFT, LAIv) and meteorological factors (i.e., temperature, light, and soil moisture). For vegetation parameters, 

the experimental setup is the same as EMIT_VEG but with PFT (EMIT_VEG_FIX_PFT) or LAIv (EMIT_VEG_FIX_LAIv) 185 

fixed as that in 2001. The difference between EMIT_VEG and EMIT_VEG_FIX_PFT/EMIT_VEG_FIX_LAIv represents the 

contribution of LAIv and PFT historical changes to the BVOC emission trends. For meteorological factors, the experimental 
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setup is the same as EMIT_MET but with temperature (EMIT_MET_FIX_T2m), light (EMIT_MET_FIX_RAD), or soil 

moisture (EMIT_MET_FIX_SM) fixed as that in 2001. The difference between EMIT_MET and EMIT_MET_FIX_T2m, 

EMIT_MET_FIX_RAD, and EMIT_MET_FIX_SM represent the impact of temperature, light, and soil moisture changes to 190 

the BVOC emission trends, respectively. The model horizontal resolution is 0.5° × 0.5°, the temporal resolution is 1 hour, and 

the simulation period is 2001-2020. The input variables include the satellite-retrieved vegetation parameters and MERRA-2 

reanalysis data as described above. 

Table 1: Description of model experiments driven with vegetation parameters, meteorological parameters, and CO2.  

Simulations LAIv PFT T2m RAD SM CO2 

EMIT_ALL 2001-2020 2001-2020 2001-2020 2001-2020 2001-2020 2001-2020 

EMIT_VEG 2001-2020 2001-2020 2001 2001 2001 2001 

EMIT_MET 2001 2001 2001-2020 2001-2020 2001-2020 2001 

EMIT_CO2 2001 2001 2001 2001 2001 2001-2020 

EMIT_VEG_FIX_PFT 2001-2020 2001 2001 2001 2001 2001 

EMIT_VEG_FIX_LAIv 2001 2001-2020 2001 2001 2001 2001 

EMIT_MET_FIX_T2m 2001 2001 2001 2001-2020 2001-2020 2001 

EMIT_MET_FIX_RAD 2001 2001 2001-2020 2001 2001-2020 2001 

EMIT_MET_FIX_SM 2001 2001 2001-2020 2001-2020 2001 2001 

Note: LAIv = leaf area index of vegetation covered surfaces, PFT = plant functional type, T2m = 2 m temperature, RAD = surface solar 195 

radiation, SM = soil moisture, CO2 = CO2 concentrations. 

3 Results 

3.1 Spatio-temporal distribution of BVOC emissions 

3.1.1 Spatial distribution of BVOC emissions 

The latest version of the MEGANv3.2 model used in this study has not been fully evaluated in previous studies, thus we 200 

first compared the simulation results with the in-situ isoprene and monoterpene emission fluxes collected from the literature. 

For a fair comparison, the simulated isoprene and monoterpene fluxes were interpolated to the sample-specific locations and 

averaged over the same measurement period. 
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Fig. 1a shows the locations of the observation sites, which are mainly distributed in North America, Europe, and Asia. 

Four main vegetation types are included: (1) evergreen broadleaf forest (EBF), (2) deciduous broadleaf forest (DBF), (3) 205 

evergreen needleleaf forest (ENF), and (4) grassland (Grass). Observations show that there is a large range of isoprene emission 

fluxes (10-120 mg C m-2 day-1) and monoterpene emission fluxes (0.1-15 mg C m-2 day-1) for different PFTs (Guenther et al., 

2012). Isoprene emission flux is generally larger in EBF and DBF than in ENF and Grass. Compared to the observations of 

isoprene emission fluxes, MEGANv3.2 can simulate the magnitude of isoprene emission fluxes with a correlation coefficient 

of 0.48 and a mean bias of -3.25 mg C m-2 day-1 (Fig. 1b). The model can also simulate the larger isoprene emission fluxes for 210 

EBF and DBF than for ENF and Grass. However, the model tends to underestimate isoprene fluxes from grassland by a factor 

of about 10, possibly because the prescribed grass emission factors are too low. The model also tends to mostly overestimate 

the isoprene emission fluxes from EBF while underestimate them from DBF. For ENF, although there is only one station, the 

model significantly overestimates the isoprene emission fluxes by a factor of 6.  

Fewer monoterpene samples (11) were collected than isoprene samples (26). As shown in Fig. 1c, the model overestimates 215 

the monoterpene emission with a correlation coefficient of 0.34 and a mean bias of 3.65 mg C m-2 day-1. Although the 

overestimation is mostly within a factor of 10, it largely overestimates the monoterpene emission flux at two sites located in 

Eastern China and Northwestern South America by two orders of magnitude. Comparison of long-term observations at the 

K34 tower site (vegetation type: EBF) in 2013 in the Amazon reveals that the simulated seasonal variations of isoprene 

emission fluxes are similar to the observation (Fig. 1d). The model also captures the increase in emission during the dry season 220 

with a correlation coefficient of 0.48, although there is a smaller contrast between dry season and other seasons in the model. 

Not surprisingly, there are still large discrepancies between the simulations and observations, which may be ascribed to 

the deficiency in emission parameterizations such as vegetation emission factors. It may be also ascribed to input parameters 

such as vegetation and meteorology. In addition, note that the comparison of in situ isoprene measurements with the model is 

not always representative. Isoprene has a very short lifetime (minutes to hours) in the atmosphere, which implies that its 225 

measured fluxes depend on the local tree or plant species near the observation site. Tthe model results at a horizontal resolution 

of 50 km represent a regional mean for the grid cell where the specific observation site is located, which can also partly explain 

the difference between the simulations and observations because of the large spatial variability in BVOC emissions. The large 

bias in the seasonal variation of isoprene fluxes in MEGANv3.2 may be due to a lack of representation of the isoprene emission 

capacity of tree species at different leaf ages (Alves et al., 2018). Additionally, the model bias arises from a lack of realistic 230 

representations of leaf phenology, canopy structure, soil moisture feedbacks, and variation in isoprene emissions due to the 

complex biodiversity in the Amazon region. 
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Figure 1: (a) The location distribution of isoprene and monoterpene observation sites based on the literature collection (the five-
pointed star represents the location of the K34 tower site, EBF: evergreen broadleaf forest, DBF: deciduous broadleaf forest, ENF: 235 
evergreen needleleaf forest, Grass: grassland), and comparison with simulated (b) isoprene fluxes, (c) monoterpene fluxes, and (d) 
monthly variations of isoprene fluxes measured at the K34 tower site in 2013 (the upper and lower limits of the observations 
represent one standard deviation). R: correlation coefficient, Bias: absolute bias, RMSE: Root mean square error, and Num: Total 
number of observation samples. In (b) and (c), the 1:1 (solid) and 1:10/10:1 (dashed) lines are plotted for references. In (d), gray 
shade denotes the dry season. 240 
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Fig. 2 shows the comparison of simulated isoprene emission fluxes from this study, IASB-TD-OMI dataset, and CrIS. 

IASB-TD-OMI datasets employ a “top-down” approach to constrain isoprene emission fluxes simulated by a chemical 

transport model with formaldehyde observations from the Ozone Monitoring Instrument (OMI) (Stavrakou et al., 2014, 2015). 

CrIS is directly retrieved from satellite observations (Section 2.2). Note that CrIS provides the isoprene burden, which cannot 

be directly compared with the modeled emission flux. Here we use it to indicate the relative intensity of isoprene emission 245 

(Section 2.2) and validate the spatial patterns of simulated isoprene emissions.  

 The simulated results and IASB-TD-OMI show similar spatial patterns of isoprene emission, with the correlation 

coefficients of 0.64, 0.77, 0.74 and 0.77 for January, April, July, and October, respectively. However, except for January, the 

simulated emissions from this study are systematically higher than those obtained from IASB-TD-OMI by about 20%20%. 

The differences are mainly concentrated in South America, Central Africa, and Southeast Asia, which may be partly due to 250 

differences in estimation methods (i.e., top-down vs. bottom-up), emission model parameters (e.g., vegetation emission factors) 

and the meteorological datasets used (MERRA-2 vs. ERA-Interim). In addition, the simulated isoprene emissions are compared 

to the isoprene column burdens retrieved from the CrIS. The spatial distributions of simulated isoprene emission and the CrIS-

retrieved column burden are moderately correlated, with the correlation coefficient varying between 0.43 and 0.58. The 

isoprene emission and the column burden show similar spatial patterns (e.g., large values in Eastern North America and Central 255 

Africa) and seasonal variations (e.g., the lowest emission flux and column burden in July), which suggests that the model 

estimates reasonable isoprene emissions. 
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Figure 2: The comparison of (left column) simulated isoprene emission fluxes (0.5° × 0.5°) with (middle column) IASB-TD-OMI (0.5° 
× 0.5°) and (right column) CrIS data (2° × 2.5°) in January, April, July, and October of 2013. The annual global emission or burden 260 
are given at the bottom-left of each panel. The correlation coefficients R of the simulation results with IASB-TD-OMI and CrIS are 
marked in the subplots in the middle and right columns, respectively. Gray shade denotes the region where data is not available.  

Fig. 3 shows the spatial distribution of annual emission fluxes for four BVOC categories, including isoprene, 

monoterpenes, sesquiterpenes, and other BVOCs. The contribution of each category to total BVOC emission are also shown. 

The spatial patterns of the emission fluxes for the four BVOC categories are relatively similar (Fig. 3a-d). The strongest 265 

emissions (>20 g m-2 yr-1 for total BVOC emission) are mainly located in the tropical regions such as South America, Central 

Africa, and Southeast Asia. The latitudinal distribution of emissions shows that the peaks of all four categories are located at 

0-15°S, decreasing gradually toward the poles (Fig. 3f). Isoprene emission accounts for the largest fraction (> ൐ 40%40%) of 

total BVOC emission at 0-15°S and the fraction decreases in higher latitudes. In contrast, monoterpene emission accounts for 
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the least fraction (around 20%20%) at 0-15 °S and the fraction increases to ~40%~40% in high altitudes. The latitudinal 270 

variations of different BVOC categories are mainly caused by different PFT covers at different latitudes.  

 

Figure 3: The spatial pattern of the annual average BVOC emission fluxes of (a) isoprene, (b) monoterpenes, (c) sesquiterpenes, (d) 
other BVOCs, (e) total BVOC, and (f) the latitudinal distribution (left: total emission, right: fraction of each category; pie chart: the 
fraction of each category in global total emissions) for the period 2001–2020. The annual global emissions are given at the bottom-275 
left of each subplot. 
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In total, annual global BVOC emission is 835.4 Tg yr-1 during 2001-2020. The total emission for isoprene, monoterpenes, 

sesquiterpenes, and other BVOC is 347.7 Tg yr-1, 184.8 Tg yr-1, 23.3 Tg yr-1, and 279.6 Tg yr-1, respectively, and accounts for 

41.6%41.6%, 22.1%22.1%, 2.8%2.8%, and 33.5%33.5%, respectively of the total BVOC emission. Overall, isoprene is the 

dominant component for total BVOC emissions. The contribution from sesquiterpenes is relatively minor compared to isoprene 280 

and monoterpenes emissions. Table 2 further compares the BVOC emissions estimated in this study with others. The annual 

global BVOC emission (835.4 Tg yr-1) from this study is within the range (558-1005 Tg yr-1) of previous estimations with 

MEGANv2.1 using different drivers. The annual global isoprene emission estimated in this study (347.7 Tg yr-1) is smaller 

than most previous bottom-up estimates, but is close to the top-down estimate based on GOME2 (344.7 Tg yr-1). Interestingly, 

the isoprene emission estimated in this study is 12%12% lower than that estimated by Weng et al. (2020), while the 285 

monoterpene emission estimated in this study is 26%26% higher, although the present study used the same driving fields (i.e., 

MERRA-2 meteorological field and MODIS vegetation parameters) as Weng et al. (2020). These discrepancies are mainly 

ascribed to the differences in vegetation emission factors between the two versions of MEGAN. As compared to MEGANv2.1, 

isoprene emission factors are smaller and monoterpene emission factors are larger in MEGANv3.2. Note that MEGANv2.1 

only utilizes fixed emission factors corresponding to the PFTs, but the PFT is insufficient to characterize the emission factors, 290 

e.g., tree species with the same PFT may have very different BVOC emission rates. MEGANv3.2 further considers differences 

in emission factors for tree species with the same PFTs. Thus, the vegetation emission factors in MEGANv3.2 are more 

accurately represented. However, we note that the uncertainties associated with emission factors are still large due to the 

limited observational data (Guenther et al., 2020). The estimated sesquiterpenes emission in this study (23.3 Tg yr-1) is 

consistent with previous estimates based on the MERRA meteorological field (20.0-21.6 Tg yr-1), but is higher than those 295 

based on the ERA meteorological field (11.9-16.6 Tg yr-1). This is partly due to the higher values of 2 m temperature and 

downward shortwave radiation field in MERRA than in ERA in the tropical regions, resulting in higher emission (Sindelarova 

et. al., 2022). In addition, the other BVOC emission estimated in this study (279.6 Tg yr-1) is higher than previous studies 

(115.5-278.8 Tg yr-1), which can be partly attributed to more BVOC components (e.g., butane, butanenitrile, acetophenone, 

benzene cinnamaldehyde, cinnamic acid, etc.) considered in MEGANv3.2 than in MEGANv2.1. 300 

Table 2. Comparison of annual global BVOC emission rate with previous studies (Tg yr−1). 

Reference Period 
Method  
(model, meteorology, vegetation) 

Isoprene 
Monoterpen
e 

Sesquiterpenes 
other 
BVOC 

Total 
BVOC 

Bottom-up 

This study 2001-2020 
MEGANv3.2, MERRA-2, 
MODIS 

347.7  184.8  23.3  279.6  835.4  

Sindelarova et al. 
(2022) 

2000-2019 MEGANv2.1, ERA5, CLM4 440.5  82.7  16.6  222.3  762.1  

Sindelarova et al. 
(2022) 

2000-2019 MEGANv2.1, ERA5, ESA-CCI 299.1  63.2  11.9  183.7  557.9  

Sindelarova et al. 
(2022) 

2000-2017 
MEGANv2.1, ERA-Interim, 
CLM4 

385.2  78.5  14.9  211.4  690.0  
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Weng et al. (2020) 1980–2017 
MEGANv2.1 in HEMCO, 
MERRA-2, MODIS 

391.0  135.9  21.6  115.5  664.0  

Weng et al. (2020) 2014-2017 
MEGANv2.1 in HEMCO,  
GEOS-FP, MODIS, 4°× 5° 

374.0  142.8  23.3  124.9  665.0  

Weng et al. (2020) 2014-2017 
MEGANv2.1 in HEMCO,  
GEOS-FP, MODIS, 2°× 2.5° 

377.4  140.4  22.7  121.3  661.8  

Weng et al. (2020) 2014-2017 
MEGANv2.1 in HEMCO,  
GEOS-FP, MODIS, 0.25°× 
0.3125°  

386.5  135.8  21.8  115.9  659.9  

Sindelarova et al. 
(2014) 

1980–2010 
MEGAN-MACC, MERRA, 
MODIS 

594.0  95.0  20.0  261.3  970.3  

Guenther et al. (2012) 2000 
MEGANv2.1, Qian 2006,  
CLM4-SP 

535.0  162.3  29.0  278.8  1005.1 

Opacka et al. (2021) 2001-2016 
MEGAN-MOHYCAN,  
ERA-Interim, CLM4 

418.0          

Opacka et al. (2021) 2001-2016 
MEGAN-MOHYCAN,  
ERA-Interim, MODIS 

520.0          

Opacka et al. (2021) 2001-2016 
MEGAN-MOHYCAN,  
ERA-Interim, GFW and MODIS 

354.0          

Arneth et al. (2011) 1981–2002 LPJ-GUESS, CRU, LPJV 524.7          

Arneth et al. (2011) 1981–2002 MEGANv2.02, NCEP, MODIS 428.4          

Arneth et al. (2011) 1981–2002 BVOCEM, UM, SDGVMV 533.8          

Guenther et al. (2006) 2003 MEGANv2.02, NCEP, MODIS 600.0          

Top-down 

Stavrakou et al., (2015) 2005-2014 
OMI-based, MEGAN-
MOHYCAN, ERA-Interim, 
MODIS 

273.9          

Stavrakou et al., (2014) 2007-2012 
GOME2-based, MEGAN-
MOHYCAN, ERA-Interim, 
MODIS 

344.7          

Shim et al., (2005) 1996-1997 
GOME-based, GEOS-Chem-
MEGAN, GEOS-STRAT, 
AVHRR 

641.5          

Note: MEGAN (Model of Emission of Gases and Aerosols from Nature), HEMCO (Harvard-NASA Emissions Component), MACC 

(Monitoring Atmospheric Composition and Climate project), MOHYCAN (Model of Hydrocarbon emissions by the CANopy), LPJ-GUESS 

(Lund-Potsdam-Jenna General Ecosystem Simulator), BVOCEM (Biogenic Volatile Organic Compound Emission Model), OMI (Ozone 

Monitoring Instrument), GOME (Global Ozone Monitoring Experiment instrument), GEOS-Chem (the global 3-D model of atmospheric 305 

chemistry driven by meteorological input from the Goddard Earth Observing System (GEOS) of the NASA Global Modeling and 

Assimilation Office (GMAO)), MERRA (the Modern-Era Retrospective analysis for Research and Applications), ERA5 (the European 

Center for Medium-Range Weather Forecasting fifth generation of atmospheric reanalysis products), ERA-Interim (the European Center for 

Medium-Range Weather Forecasting interim reanalysis products), GEOS-FP (GEOS-Chem met field archive of the GMAO "forward 

processing" product), Qian 2006 (Qian et al. (2006) atmospheric forcing), CRU (the Climatic Research Unit of the University of East Anglia), 310 

NCEP (the National Center for Environmental Prediction reanalysis product), UM (climate model output from the UK Met Office Unified 

Model), GEOS-STRAT (met field data product compatible with GEOS-Chem from GMAO), MODIS (Moderate-resolution Imaging 

Spectroradiometer), CLM4 (Community Land model), ESA-CCI (Climate Change Initiative of the European Space Agency) CLM-SP 

(standard global simulation constrained by observed land cover), GFW (Global Forest Watch), LPJV (Lund-Potsdam-Jenna vegetation), 

SDGVMV (Sheffield Dynamic Vegetation Model), AVHRR (Advanced Very High Resolution Radiometer). 315 
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3.1.2 Seasonal variation of isoprene emissions 

The seasonal cycle of simulated isoprene emissions over the nine regions (i.e., NAM: North America, EUR: Europe, NAS: 

North Asia, EAS: East Asia, SAS: South Asia, SEAS: Southeast Asia, SAM: South America, CAF: Central Africa, AUS: 

Australia) are presented in Fig. 4. Overall, different regions show different seasonal cycles. Isoprene emissions mainly depend 

on vegetation and meteorological conditions. At mid to high latitudes, due to the densest vegetation and highest temperatures 320 

in the summer months (Fig. S1), isoprene emissions peak in the summer months. In contrast, isoprene emissions are lowest 

during winter months in these regions. For example, in North America, Europe, North Asia, and East Asia of the Northern 

Hemisphere, isoprene emissions are highest in July and lowest in January. We note that the seasonal variations of isoprene 

emissions in Europe are consistent with the results from the EMEP (European Monitoring and Evaluation Programme) model, 

which are derived based on the cover fractions and emission factors of detailed tree species and other vegetation (categorized 325 

into six PFTs) (Sindelarova et al., 2022). In Australia of the Southern Hemisphere, isoprene emissions peak in austral summer. 

At low latitudes of Northern China, South Asia and South America isoprene emissions peak at the end of the dry season in 

May and October, respectively due to the higher temperatures (Fig. S1). In the tropical regions and low latitudes of the Southern 

Hemisphere, including Southeast Asia and Central Africa, isoprene emissions exhibit a typical bimodal distribution with two 

peaks in April and October, corresponding to the peak LAI and temperature in these two months (Fig. S1).  330 

In total, the global total isoprene emission peaks in July and reaches its minimum in January. This is different from the 

study of Sindelarova et al. (2014), which showed the peak of global total isoprene emission in OctoberDecember and the 

lowest value in June, mainly because they simulated greater isoprene emissions over South America and Central Africa than 

our study. 
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 335 

Figure 4: The seasonal variation of isoprene emissions for each region outlined in black on the map averaged during 2001-2020. The 
shaded area represents one standard deviation. The nine regions are listed below: NAM: North America; EUR: Europe; NAS: North 
Asia; EAS: East Asia; SAS: South Asia; SEAS: Southeast Asia; SAM: South America; CAF: Central Africa; AUS: Australia. 

3.2 Trends of BVOC emissions 

Fig. 5 shows the interannual variation of total isoprene emissions over the nine regions for the last 20 years from the four 340 

experiments in the first group (ALL, VEG, MET, and CO2). By comparing these experiments, the individual impact of three 

major factors (i.e., vegetation, meteorology, and CO2) on isoprene emissions can be identified. There are strong interannual 

variations in isoprene emissions in all the regions. As shown in Table 3, the standard deviation of the regionally-summed 

isoprene emissions is 0.1-8.1 Tg yr−1 in the nine regions, and the ratio of standard deviation to climatology mean is 0.01-0.08. 

For the trends, although the trend in global isoprene emissions between 2001 and 2020 is weak (~0.07%  yrିଵ~0.07% yr െ345 

1; p=0.67), significant trends in regional emissions can be found in some specific regions. In Europe, East Asia, and South 
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Asia, regionally-summed isoprene emissions exhibit significantly increasing trends of about 0.37 െ 0.66%  yrିଵ0.37 െ

0.66% yr െ 1. In contrast, there is a significantly decreasing trend in Central Africa (െ0.74%  yrିଵ-0.74% yr-1). The trends 

are weak in the other regions (North America, South America, Southeast Asia, and Australia) except in North Asia, where a 

decreasing trend of െ0.32%  yrିଵ െ 0.32% yr െ 1 is modest, but not statistically significant due to the large interannual 350 

variability of isoprene emission in this region.   

 

 

Figure 5: Interannual variation and trends in regional isoprene emissions for each region outlined by black rectangles on the map. 
Trends are expressed by the relative change in percentage (i.e., the linear change during 2001-2020 divided by the mean value). p-355 
values denote statistically significant levels using the Mann-Kendall test. ALL represents simulated results considering interannual 
variability of all drivers (i.e., vegetation, meteorology, and CO2), while VEG, MET, and CO2 represent simulated results considering 
only interannual variability of vegetation, meteorology, and CO2 concentrations, respectively. 
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Table 3. The statistical parameters (Avg: average value, Tg yr−1; Std: standard deviation, Tg yr−1; Std/Avg: ratio of standard 360 
deviation to average value) of total isoprene emissions over the nine regions during 2001-2020 from the four experiments in the first 
group (ALL, VEG, MET, and CO2). 

NAM ALL VEG MET CO2 EUR ALL VEG MET CO2 NAS ALL VEG MET CO2 

Avg 22.8  22.2  22.9  21.4  Avg 5.3  5.3  5.2  4.9  Avg 5.8  6.7  5.8  6.5  

Std 1.4  0.2  1.5  0.3  Std 0.4  0.1  0.3  0.1  Std 0.5  0.2  0.4  0.1  

Std/Avg 0.06 0.01 0.06 0.01 Std/Avg 0.07 0.02 0.07 0.01 Std/Avg 0.08 0.02 0.08 0.01 

EAS ALL VEG MET CO2 SAS ALL VEG MET CO2 SEAS ALL VEG MET CO2 

Avg 18.6  18.0  18.1  16.9  Avg 5.6  5.5  5.3  5.0  Avg 39.7  38.3  40.2  37.4  

Std 0.7  0.4  0.6  0.2  Std 0.3  0.2  0.2  0.1  Std 1.6  0.4  1.7  0.5  

Std/Avg 0.04 0.02 0.03 0.01 Std/Avg 0.06 0.04 0.04 0.01 Std/Avg 0.04 0.01 0.04 0.01 

SAM ALL VEG MET CO2 CAF ALL VEG MET CO2 AUS ALL VEG MET CO2 

Avg 148.8  146.3  151.2  143.3  Avg 58.3  59.0  56.9  55.5  Avg 8.9  9.6  8.9  9.4  

Std 7.0  1.4  8.1  1.7  Std 4.1  0.7  3.7  0.7  Std 0.7  0.4  0.7  0.1  

Std/Avg 0.05 0.01 0.05 0.01 Std/Avg 0.07 0.01 0.07 0.01 Std/Avg 0.08 0.04 0.08 0.01 

 

For the impacts of various factors, the interannual variations of isoprene emissions are mainly determined by 

meteorological factors in all the regions, as the time series of isoprene emissions in MET follows closely with those in ALL. 365 

In comparison, vegetation factors play a much smaller role in the interannual variations of isoprene emissions. As CO2 

concentrations increase constantly, there is little impact from CO2 concentrations on the interannual variations of isoprene 

emissions. The most remarkable impacts of vegetation and CO2 concentrations is on the trends of isoprene emissions during 

the last 20 years.  

Vegetation factors lead to significant trends of isoprene emissions (p<0.1 for AUS; p<0.05 for other regions) in all regions. 370 

In Europe, North Asia, East Asia, South Asia, and Australia, vegetation changes (increases in vegetation cover or shift in 

vegetation type) strongly promote isoprene emissions, with the trends of 0.28% െ 0.41%  yrିଵ0.28% െ 0.41% yr െ 1. In 

contrast, vegetation changes (decreases in vegetation cover or shift in vegetation type) reduce isoprene emissions in South 

America and Southeast Asia (with the trends of about െ0.15%  yrିଵ െ 0.15% yr െ 1), which may be ascribed to the local 

deforestation.  375 

There are also considerable contributions from meteorological factors on the trends of isoprene emissions. Changes in 

meteorological factors lead to significantly increasing trends of isoprene emissions (0.28%0.28% to 0.43% yr െ 1 ; to 

0.43%  yrିଵ; p<0.1) in Europe, East Asia, South Asia, and South America. In contrast, meteorological factors cause a strongly 
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declining trend of isoprene emissions in Central Africa (െ0.61%  yrିଵ െ 0.61% yr െ 1; p<0.05). There are also increasing 

trends of isoprene emissions ( 0.25%0.25%  to 0.35%  yrିଵ0.35% yr െ 1 ) in North America and Southeast Asia and 380 

decreasing trends ( െ0.15% to െ 0.38% yr െ 1  )to െ0.38%  yrିଵ ) in North Asia and Australia due to changes in 

meteorological factors, although the trends are not statistically significant (p>0.1).  

As expected, the CO2 inhibition effect results in a significant decrease of െ0.20%  yrିଵ in isoprene emissions (Fig. 5).the 

increase in CO2 concentration leads to a significant decrease in isoprene emissions (-0.2% yr-1), mainly due to the inhibitory 

effect of CO2 on isoprene emissions. Note that this study uses a globally uniform and yearly mean CO2 concentration without 385 

considering spatial and seasonal variations of CO2 concentration. Additionally, the CO2 concentration can also indirectly affect 

isoprene emissions by changing meteorological and vegetation factors. Specifically, the increase of CO2 concentration is partly 

responsible for global warming and thus higher temperatures (e.g. Monson et al., 2007), and the increased CO2 concentration 

can potentially lead to a larger LAIv (Monson et al., 2007). These indirect effects are not explicitly considered in this study. 

Different from isoprene emissions, there is no statistically significant effect of CO2 concentration on monoterpene 390 

emissions as suggested by previous studies (Malik et al., 2019, 2023). Therefore, monoterpene emissions in MEGANv3.2 only 

consider the effects of vegetation and meteorological factors and show a significantly positive trend of 

0.34%  yrିଵ0.34% yr െ 1 globally (Fig. S2). In total, the increasing trends caused by vegetation changes and meteorological 

factors are comparable globally. In Europe, East Asia, and South Asia, the increasing trends induced by vegetation changes 

(increase in vegetation cover or shift in vegetation type) are larger than those induced by meteorology changes, indicating the 395 

dominant role of vegetation change in these regions. In North Asia and Australia, vegetation changes lead to increasing trends, 

while meteorological changes lead to decreasing trends. The overall impacts are the increase of monoterpene emissions, due 

to the dominant impacts from vegetation changes. In the other regions, changes in meteorological factors dominates over 

vegetation changes in determining the trends of monoterpene emissions. In particular, in South America and Southeast Asia, 

changes in meteorological factors lead to strongly increasing trends of monoterpene emissions, which are much larger than 400 

those induced by vegetation changes. 

Vegetation changes affect isoprene and monoterpene emissions differently, mainly due to differences in the emission 

capacity (i.e., emission factors, Equation 2) of vegetation types for these two components. Vegetation changes lead to a stronger 

trend of the monoterpene emission than that of the isoprene emission in some regions. For example, the isoprene-emission 

trends are 0.08%  yrିଵ0.08% yrെ 1, 0.40%  yrିଵ0.40% yr െ 1, 0.28%  yrିଵ0.28% yr െ 1, 0.30%  yrିଵ0.30% yr െ 1, 405 

and 0.41%  yrିଵ0.41% yr െ 1 , while the monoterpene-emission trends are up to 0.19%  yrିଵ0.19% yr െ 1 , 

0.54%  yrିଵ0.54% yr െ 1, 0.43%  yrିଵ0.43% yr െ 1,0.47%  yrିଵ0.47% yr െ 1, and 0.56%  yrିଵ0.56% yr െ 1 in North 

America, Europe, North Asia, East Asia, and South Asia, respectively. However, in Southeast Asia and South America, the 

effect of vegetation changes on the trends of monoterpene emissions is weaker. In addition, the effect of meteorological 
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changes on monoterpene emissions is found to be weaker than that on isoprene emissions in most regions, especially in Central 410 

Africa, where the trend for isoprene emission is െ0.61%  yrିଵ െ 0.61% yr െ 1, while the trend for monoterpene emission is 

െ0.26%  yrିଵ െ 0.26% yr െ 1. Overall, compared to isoprene emissions, a stronger increasing trend and a weaker decreasing 

trend of monoterpene emissions are found in these hotspot regions when all influencing factors are considered. 

3.3 Drivers of BVOC emission trends 

3.3.1 Changes in vegetation factors, meteorology, and CO2 concentrations 415 

BVOC emissions depend on various factors including vegetation parameters, meteorological conditions, and CO2 

concentration. Fig. 6 shows the global distribution of the trends in these influencing factors of BVOC emissions from 2001 to 

2020, including vegetation parameters (i.e., VCF, LAI), meteorological parameters (i.e., surface 2 m temperature, surface solar 

radiation, and soil moisture), and CO2 concentrations. Different regions show different VCF trends. A moderate increase of 

0.1%0.1% t to 1%  yrିଵ1% yr െ 1 in VCF can be found in Central North America, East Asia, and India, while a decrease of 420 

െ0.1% െ 0.1%  to െ1%  yrିଵ െ 1% yr െ 1  exists in Central South America, Central and Southwest Africa, Western 

Australia, and Central Asia. Decrease of VCF is mainly related to local deforestation or wildfire burning. Specifically, the four 

main PFTs used in MEGANv3.2 (i.e., tree, shrub, grass, and crop, Equation 2) have shifted significantly in some regions (Fig. 

7a-d). Tree covers increase in East Asia and Europe by about 0.3 െ 0.5%  yrିଵ0.3 െ 0.5% yr െ 1. Grass covers increase in 

Central South America, with a maximum increase trend of more than 1%  yrିଵ1% yr-1, corresponding to the decrease of tree 425 

and shrub covers in these regions. Crop covers also increase in some regions such as Eastern South America and Northern 

India.  

Most vegetated areas are becoming greener (i.e., higher LAI) during 2001-2020, especially in Europe, East Asia, and 

South Asia, with a positive trend of exceeding 0.02 m2 m-2 yr-1. The decrease trends of LAI only exist in some isolated regions 

in Eastern South America, Central Africa, and Western Australia. Note that VCF and LAI reflect two different aspects of 430 

vegetation information using different retrieval methods. VCF represents the amount of ground covered by the vertical 

projection of vegetation, and its variation focuses on the extension or shrinkage of vegetation on the ground surface. While 

LAI reflects the amount of vegetation biomass, and its variation emphasizes the changes in vegetation biomass content per 

unit of ground surface area. Therefore, the variations of these two parameters may be different. LAIv in MEGANv3.2 

(Equation 3) is calculated by dividing LAI by VCF, representing the leaf area per unit of the canopy area (vegetation covered 435 

area), which implicitly reflects the overall growth condition of vegetation (e.g., the number of plant foliage, canopy structure) 

per unit of vegetation-covered area. Due to the rapid shrinking of vegetation cover, LAIv in South America shows more 

remarkable increasing trend than LAI does (Fig. 7e). 

For meteorological factors, trends in surface 2 m temperature (T2m) vary significantly in different regions. T2m increases 

with a small trend (0.01 to 0.05 ℃ yr-1) in most regions during 2001-2020. A larger increase of 0.05 to 0.2 ℃ yr-1 occurs in 440 
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the Arctic and Europe. Despite increasing trends of T2m in most regions, there are also cooling trends of -0.05 to -0.2°C yr-1 

in some regions such as Northeastern North America, Central Africa, and Central Asia. Large trends in surface solar radiation 

exist in tropical regions, with significant dimming trends in Central South America and Central Africa, and brightening trends 

in some parts of Southeast Asia. Soil moisture increases significantly in large parts of Central Africa, South Asia, and Northeast 

Asia, while it decreases significantly in South America and Australia. Finally, global CO2 levels have increased dramatically 445 

from 370.57 ppm in 2001 to 412.44 ppm in 2020. Overall, these factors have changed significantly over the past 20 years, 

which has led to significant changes in BVOCs emissions as shown in Section 3.2. 
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Figure 6: Trends in (a, b) vegetation factors, (c-e) meteorological factors, and (f) CO2 concentrations from 2001 to 2020. (a) vegetation 
cover fraction (VCF), (b) leaf area index (LAI), (c) surface 2 m temperature (T2m), (d) surface solar radiation, (e) soil moisture, and 450 
(f) CO2 concentration. Stippling denotes regions where the trend is statistically significant (p < 0.1) using the Mann-Kendall test. 

 

Figure 7: Trends in (a-d) cover fractions of the four plant functional types (PFTs) and (e) LAIv (leaf area index of vegetation covered 
surfaces) from 2001 to 2020. (a) tree, (b) shrub, (c) grass, and (d) crop. Stippling denotes regions where the trend is statistically 
significant (p < 0.1) using the Mann-Kendall test. 455 
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3.3.2 Contribution of drivers to Drivers of BVOC emission trends 

We further decompose the main drivers (vegetation, meteorology, and CO2 concentrations) and quantify the contribution 

of individual driver to isoprene emission trends. Fig. 8 shows the spatial patterns of isoprene emission trends estimated from 

the nine experiments listed in Table 1. The pattern in Fig. 8a is affected by a combination of vegetation change (Fig. 8b), 

meteorological variability (Fig. 8c) and CO2 concentration change (Fig. 8d). The statistically significant and positive trends 460 

are mainly located in the mid-latitudes of Eurasia, with the strongest trends of 2%2% to 5%  yrିଵ5% yr െ 1, while the 

negative emission trends are distributed in Central Africa and Central Australia, with the largest magnitudes ranging from 

െ5% െ 5%  to െ8%  yrିଵ െ 8% yr െ 1 . Vegetation changes increase isoprene emissions in most regions except in the 

Amazon, while CO2 concentration changes decrease isoprene emissions uniformly across the globe (relative trend: 

െ0.20%  yrିଵ െ 0.20% yr െ 1 ; absolute trend: െ0.7 Tg  yrିଵ െ 0.7 Tg yr െ 1 ; p<0.01). For meteorological variability 465 

effects, the areas with statistically significant trends are smaller than those considering the effects of vegetation or CO2 

concentration changes, and show different signs in different regions. For instance, the positive trends are mainly in Europe, 

Central Asia, and northern South America, while the negative trends are in Central Africa, Central Australia, and the area 

around Lake Baikal. 

In terms of the effects of individual factors, the trends of isoprene emissions illustrated in Fig. 8e and Fig. 8f are both 470 

statistically significant in most areas, which result from the changes in LAIv (Fig. 7e) and PFT (Fig. 7a-d, especially for tree 

cover). Note that changes in LAIv and PFT lead to opposite trends for the total global isoprene emissions (LAIv effect: 

0.07%  yrିଵ0.07% yr െ 1, p<0.01; PFT effect: െ0.1%  yrିଵ െ 0.1% yr െ 1, p<0.01), resulting in a weak effect of vegetation 

changes on the global isoprene emission trend (െ0.03%  yrିଵ െ 0.03% yr െ 1; p=0.16). The trends of isoprene emissions 

illustrated in Fig. 8g-i result from the changes in 2 m temperature (Fig. 6c), surface solar radiation (Fig. 6d), and soil moisture 475 

(Fig. 6e), respectively. Temperature changes play a dominant role in the isoprene emission trends, with statistically significant 

positive trends in Europe and South America, up to 1%1% to 2%  yrିଵ2% yr െ 1, while negative trends are found in Central 

Africa, Northwest South Asia, and Southern North Asia, with maximum trends of െ2% െ 2% to െ5%  yrିଵ െ 5% yr െ 1. 

Radiation changes exert a weaker effect on the isoprene emission trends (െ0.2% െ 0.2% to െ0.5%  yrିଵ െ 0.5% yr െ 1), 

but show statistically significant negative trends over most regions (global scale, relative trend: െ0.06% yrିଵ െ 0.06% yr െ480 

1; absolute trend: െ0.2  Tg yrିଵ െ 0.2 Tg yr െ 1; p<0.05). In some specific regions, changes of soil moisture significantly 

affect the trends of isoprene emissions. Positive trends are mainly distributed in Central Africa and Central Asia (2%2% to 

5%  yrିଵ5% yr െ 1), while negative trends are located in Eastern Amazonia and Australia, up to െ5-5% to െ10%  െ

10% yr െ 1. 
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 485 

Figure 8: Spatial distribution of isoprene emission trends from 2001 to 2020. (a) ALL represents simulated results considering 
interannual variability of all drivers. (b, c, and d) VEG, MET, and CO2 represent simulated trends when considering only 
interannual variability of vegetation, meteorology, and CO2 concentrations, respectively. (e, f) Contributions from individual 
vegetation parameters including LAIv (leaf area index of vegetation covered surfaces) and PFT (plant functional types). (g, h, and 
i) Contributions from individual meteorological factors including T2m (surface 2 m temperature), RAD (surface solar radiation), 490 
and SM (soil moisture). Stippling denotes regions where the trend is statistically significant (p < 0.1) using the Mann-Kendall test. 
Trends are expressed by the relative change in percentage (i.e., the linear change during 2001-2020 divided by the mean value) and 
absolute change. p-values represent statistically significant levels using the Mann-Kendall test. 

To understand the discrepancies in isoprene emission trends across regions and to identify the contribution of individual 

influencing factors, nine hotspot regions (same as Fig. 4) are selected for further analysis. As shown in Fig. 9a, in some regions 495 

of the Northern Hemisphere, such as Europe, East Asia, and South Asia, both vegetation and meteorology changes strongly 

boost the isoprene emissions. In contrast, isoprene emissions in Central Africa decline sharply, mainly due to the 

meteorological changes. In other regions, especially Southeast Asia, South America, and Australia, the effects of the three 

factors offset each other, resulting in overall small trends. 

The vegetation parameters can be decomposed into LAIv and PFT cover (Fig. 9b, Equations 2 and 3; the difference 500 

between EMIT_VEG and EMIT_VEG_FIX_PFT/EMIT_VEG_FIX_LAIv in Table 1). The LAIv calculated in MEGANv3.2 

combines the information from LAI and VCF, which implies the growth of vegetation per unit of vegetation-covered area, 
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while PFT cover reflects the amount of extension for different vegetation types on the ground surface. Large increases in the 

isoprene emissions mainly exists in Europe, North Asia, East Asia, South Asia, and Australia, where changes in LAIv and PFT 

jointly promote the emissions. These regions have experienced a dramatic increase in LAIv, along with an obvious expansion 505 

of tree covers. In particular, crop covers in South Asia and shrub covers in Australia increase rapidly (Fig. 9d). In other regions, 

however, changes in the PFT covers cancel out the contribution from increased LAIv, resulting in weaker positive trends in 

the isoprene emissions. Southeast Asia and South America even have experienced a moderate decrease of െ0.14% െ 0.14% 

to െ0.16%  yrିଵ െ 0.16% yr െ 1 in the emissions, mainly due to shifts in local vegetation functional types induced by the 

deforestation (Fig. 9d). In these regions, primary broadleaf evergreen forests are converted to some economic trees and crops 510 

(e.g., rubber, oil palm, and sugar cane). 

Three meteorological variables namely temperature, radiation, and soil moisture, which are the main influencing factors 

from meteorology, are selected for quantifying their effects on the trends of isoprene emissions (Fig. 9c, d; the difference 

between EMIT_MET and EMIT_MET_FIX_T2m, EMIT_MET_FIX_RAD, and EMIT_MET_FIX_SM in Table 1). The 

emission trends caused by meteorological factors are large in Europe, East Asia, South Asia, South America, and Central 515 

Africa, although the emission trends are not statistically significant in some regions (p>0.1). Elevated temperature is found to 

dominate the rise in emissions in Europe and South America, and temperature cooling dominates the falling in emissions in 

Central Africa. The enhancement of isoprene emissions in East and South Asia is dominated by the increase of soil moisture. 

Overall, for meteorological parameters, changes in temperature and soil moisture exert the largest influence on the trends of 

isoprene emissions, with little effects from changes in radiation except in some regions of South America and Central Africa. 520 

The spatial pattern of monoterpene emission trends is similar to that of isoprene emission trends, but shows stronger 

positive trends in larger areas, especially in greening hotspots (Fig. S3). The discrepancies are mainly owing to the fact that 

monoterpene emissions are more sensitive to changes in LAIv (Fig. S3d; LAIv effect: 0.15%  yrିଵ0.15% yrെ 1, p<0.01) and 

not sensitive to the inhibition effect of CO2. Monoterpene emission trends differ significantly in some regions from isoprene 

emission trends, which is mainly due to the different impacts of vegetation and meteorological factors on their emissions (Fig. 525 

S4). In North America, Southeast Asia, and South America, monoterpene emissions exhibit significantly increasing trends, 

while isoprene emission trends are not significant. For vegetation parameters, changes in LAIv increase the monoterpene 

emissions more significantly than on the isoprene emissions, while changes in PFT exert a weaker effect on the monoterpenes 

emission trends. The combined effects cancel out negative emission trends in Southeast Asia and South America and promote 

the increase in emissions in other regions. The effect of meteorological factors on monoterpene emission trends is similar to 530 

that on the isoprene emission trends, although the effect is weaker. 
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Figure 9: Trends of isoprene emissions and associated influencing factors from 2001–2020 in nine regions. (a) ALL represents 
simulated results considering interannual variability of all drivers, while VEG, MET, and CO2 represent simulated results 
considering only interannual variability of vegetation, meteorology, and CO2 concentrations, respectively. (b) Contributions from 535 
individual vegetation parameters including LAIv (leaf area index of vegetation covered surfaces) and PFT (plant functional types). 
(c) Contributions from individual meteorological factors including T2m (surface 2 m temperature), RAD (surface solar radiation), 
and SM (soil moisture). (d) Trends of individual influencing factors including vegetation parameters, meteorological factors, and 
CO2 concentrations. Tree, shrub, grass, and crop represent the cover for the four plant functional types (PFTs). The single, double, 
and triple asterisks denote 90%, 95%, and 99% confidence levels (CI) using the Mann-Kendall test, respectively.  540 
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4 Discussion 

In this study, we simulate the global BVOC emissions over the last 20 years using the latest version of the BVOC emission 

model MEGANv3.2 with time-varying vegetation and meteorological parameters, and CO2 concentrations. We quantify the 

impacts of the various driving factors on the BVOC emission trends. Isoprene emissions are found to increase significantly in 

Europe, East Asia, and South Asia, with comparable contributions from vegetation and meteorological factors. Warming in 545 

Europe and wetting of soil in East Asia and South Asia lead to an increase in the isoprene emissions, while cooling in Central 

Africa leads to a significant decrease in the isoprene emissions.  

The results presented here demonstrate the heterogeneous spatial and temporal variabilities of vegetation and 

meteorological factors, leading to different trends of BVOC emissions in different regions of the world. In some regions (e.g., 

Europe, East Asia, and South Asia), vegetation and meteorological factors combine to promote the BVOC emissions, resulting 550 

in significant positive trends, while in other regions, such as South America and Southeast Asia, the effects of vegetation and 

meteorological factors on the BVOC emissions offset each other, resulting in weak emission trends. For vegetation parameters, 

the biomass-related parameter LAIv and type-related parameter PFT cover are both proportional to the intensity of BVOC 

emissions. Although multiple satellite data reveal a global trend towards greening (i.e., increased LAI), there is a substantial 

decrease in PFT cover (i.e., tree cover) in some local regions of Southeast Asia and South America, leading to a decreasing 555 

trend of BVOC emissions there.  

Note that the selection of the reference year (i.e., year 2001 in Table 1) may cause variations in simulated BVOC emissions, 

mostly affecting the magnitude rather than the sign of the absolute trends. Since this study focuses on the relative trends in 

BVOC emissions (i.e., ratio of absolute trend to multi-year means), differences in the reference year have little effect on the 

magnitude and sign of our estimation results. We show that during 2001-2020, global isoprene emissions decrease by a trend 560 

of െ0.07%  yrିଵ െ 0.07% yr െ 1, with changes in the meteorological factors, vegetation, and CO2 concentrations 

contributing to a trend of 0.15%  yrିଵ0.15% yr െ 1 , െ0.03%  yrିଵ െ 0.03% yr െ 1 , and െ0.20%  yrିଵ -0.20% yr-1, 

respectively. Some previous studies (e.g., Chen et al, 2018; Opacka et al, 2021; Sindelarova et al. 2022) also investigated the 

trends of isoprene emissions during 2000s and 2010s and obtained similar results about the positive trends due to 

meteorological changes and negative trends due to vegetation change. Chen et al. (2018) showed that the isoprene emission 565 

trend was െ0.1%  yrିଵ -0.1% yr-1 between 2000 and 2015. Sindelarova et al. (2022) used a time-varying ERA5 

meteorological data and a static CLM4 land cover map to calculate the isoprene emission for 2000-2019 and suggested an 

isoprene emission trend of 0.35%  yrିଵ0.35% yr െ 1. When replacing the static land cover map with the annually varying 

ESA-CCI data, Sindelarova et al. (2022) also found that the emission trend decreases to 0.24%  yrିଵ0.24% yr െ 1. Opacka 

et al. (2021) found that the MEGAN-MOHYCAN model driven by the time-varying ERA-Interim meteorological field 570 

yielded an isoprene emission trend of 0.94%  yrିଵ0.94% yr െ 1 for 2001-2016, while time-varying vegetation parameters 

can offset the positive trend by 0.04%  yrିଵ0.04% yr െ 1 (based on MODIS land cover data) or 0.33%  yrିଵ0.33% yr െ 1 
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(based on modified MODIS land cover data). The differences in the magnitude of trends due to meteorological changes or 

vegetation changes may be ascribed to the difference in the input data (meteorology and vegetation) and emission 

parameterizations. In fact, driven by the ERA5, ERA-Interim, and MERRA-2 meteorological fields, the model simulates a 575 

trend of isoprene emission from 0.15%0.15% to 0.94%  yrିଵ0.94% yr െ 1 (a factor of 6 difference). Different vegetation 

data lead to the simulated isoprene emission trends differing from െ0.03% െ 0.03% to െ0.33%  yrିଵ െ 0.33% yr െ 1 (a 

factor of 11 difference). In addition, different model parameterizations can lead to large discrepancies in emission changes. 

For example, based on the same vegetation data, Li et al. (2022) showed that isoprene emission induced by vegetation changes 

increased by about 20.6%20.6% over China between 2001 to 2018, which is larger than that in our study (12.0%12.0%). 580 

The difference can be explained by the fact that we use different vegetation emission factors and vegetation activity factors 

from Li et al. (2022).  

Vegetation cover tends to increase in a large part of global land areas and decrease in smaller areas such as South America 

(i.e., Amazon) and Southeast Asia (Fig. 6a). The trends of global isoprene emission due to vegetation cover change is largely 

determined by the decreasing trends in Amazon and Southeast Asia due to the large contributions from these regions to global 585 

total isoprene emissions (Fig. 3a, Fig. 8f). The decrease of isoprene emissions in Amazon and Southeast Asia is mainly due to 

the change in PFT, such as from the original tropical broadleaf evergreen forest to broadleaf deciduous trees with agricultural 

economic benefits (Fig. 7, Fig. 9). In some areas, such as Europe, East Asia, and South Asia, the increased forest coverage due 

to afforestation contributes significantly to the increase in isoprene emissions, which is similar to the results from Chen et al. 

(2018). However, Sindelarova et al. (2022) simulated little changes in isoprene emissions in Europe, mainly due to differences 590 

in the satellite PFT data used in their and our studies.  

In this study, we use the latest version of MEGAN model, which considers more refined factors compared to its 

predecessors. However, there are still large uncertainties in simulated BVOC emissions and their trends, such as in the 

treatment of drought and heat wave stress, emission factors of certain tree species, etc. Previous observations have shown that 

isoprene and monoterpene emissions are affected differently by drought severity (Brilli et al., 2007; Kaser et al., 2022; Otu-595 

Larbi et al., 2020; Simpraga et al., 2011). Isoprene emissions remain unchanged under mild drought, but increase under 

moderate drought with increased leaf temperature due to changes in stomatal conductance (Kaser et al., 2022). However, under 

severe drought, isoprene emissions drop due to reduced substrate supply (Brilli et al., 2007). The effects of drought on 

monoterpenes are similar to those of isoprene (Lavoir et al., 2009; Ormeno et al., 2007). Therefore, these processes need to be 

better described in the model (Wang et al., 2022). In addition, Therefore, more BVOC flux observations are urgently needed 600 

for model validations. In particular, the vegetation emission factors for tree species may be largely biased due to a scarcity of 

available observations and need to be further refined. 



30 
 

5 Conclusions 

In this study, the time-varying meteorological data and satellite observations are used to drive the latest BVOC emission 

model MEGANv3.2 to simulate global BVOC emissions for the past 20 years. The contributions from different factors to the 605 

trends of BVOC emissions from global to regional scales are quantified. 

Compared with site observations, the model can simulate isoprene emissions within a factor of ten at most stations but 

systematically overestimates the monoterpene emissions. Compared to space-borne isoprene retrievals, the model can capture 

high isoprene emission regions such as South America and Central Africa. There are large seasonal variations in isoprene 

emissions, which are mainly determined by temperature and vegetation variations. The relative contribution of isoprene 610 

(monoterpene) emissions to BVOC emissions tends to decrease (increase) with latitudes, which is mainly ascribed to the 

meridional variations of PFT cover and corresponding emission factors. 

Isoprene emissions increase significantly in Europe, East Asia, and South Asia (at rates of 0.37 െ 0.66%  yrିଵ0.37 െ

0.66% yr െ 1), with changes in both vegetation and meteorological factors contributing almost equally to the trends. For 

different meteorological factors, isoprene emission trends are mainly driven by the increase in temperature in Europe and by 615 

the increase in soil moisture in East and South Asia. In South America and Southeast Asia, shifts in PFT cover leads to a 

significant decrease in the BVOC emissions, which cancels out nearly half of the increasing trends induced by the changes in 

meteorological parameters. In addition, despite the increase in global mean temperature, there is a decrease in temperature in 

Central Africa, resulting in a significantly decrease trend in isoprene emission in this region (െ0.74%  yrିଵ-0.74% yr-1). The 

dominant factors of monoterpene emission trends are similar to those of isoprene emissions, while monoterpene emissions 620 

show a stronger increasing trend or a weaker decreasing trend in most regions. In addition, monoterpene emissions are more 

sensitive to changes in LAIv, resulting in more pronounced increasing trends in greening hotspots. 

Overall, our study highlights the significant BVOC emission trends both globally and regionally. More importantly, the 

results from this study clarify the contributions from different drivers and deepen our understanding of long-term BVOC 

emission trends at regional to global scales. Changes of BVOC emissions may have important impacts on ozone and 625 

atmospheric particle formation, which consequently impact the atmospheric chemistry, radiation and climate. These 

interactions involving BVOCs will be investigated by using a coupled meteorology-chemistry with the BVOC emission model. 
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obtained from https://goldsmr4.gesdisc.eosdis.nasa.gov/data/MERRA2/ (last access: 21 Nov 2022). The globally averaged 
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