
 

 

Response to the comments of Reviewer #2 

The authors have modelled vegetation and soil COS fluxes within the “two-leaf” version of the 
BEPS (Boreal Ecosystem Productivity Simulator) model. Then, they used observations of COS 
fluxes at seven sites and a Monte-Carlo approach to reduce parameter uncertainty in BEPS. 
They further evaluate the impact on GPP, and discuss parameter identifiability. 

The paper is well built and very neat, the results are clearly presented. Some further 
explanations are however needed, and a few outlooks would be welcome. 

We are truly grateful to the positive comments and thoughtful suggestions. These comments 
are all valuable and very helpful for revising and improving our manuscript. In response, we 
have made changes according to the referee’s suggestions. Below we reply to each comment 
point by point, showing the reviewers’ comments in black and our responses in blue. Changes 
to the original manuscript are highlighted in bold blue. Note that the line numbers in the 
response are updated based on the revised manuscript, which we provide with our response. 

Main comments 

Abstract 

L14-15: “However, most of the current modeling approaches for COS and CO2 did not 
explicitly consider the vegetation structural impacts, i.e. the differences between the sun-shade 
and sunlit leaves in COS uptake” -> It is a bit misleading that the authors bring forward such 
an argument, because they did not demonstrate in this paper the advantage of distinguishing 
between sunlit and shaded leaves. Why did not they show the impact of having a two-leaf model 
compared to a one flux model, as they were the first ones (to my knowledge) to use such a 
model? This would indeed have been a great achievement. 

Response: Thanks for the valuable comments. In order to quantify the effect of changes in the 
quality of incoming radiation on photosynthesis, land surface models (LSMs) need to stratify 
the canopy into sunlit and shaded leaves and consider the differences in the transfer of direct 
and diffuse beams within the canopy (Mercado et al., 2009; He et al., 2013). The advantage of 
distinguishing between sunlit and shaded leaves in LSMs have been demonstrated in a number 
of studies (Wang and Leuning, 1998; Luo et al., 2018; Guan et al., 2022; Bao et al., 2022). 
Specifically, the performance of BL (big leaf), TBL (two big leaf), and TL (two leaf) upscaling 
scheme in estimating Evapotranspiration (ET) and gross primary productivity (GPP) using the 
Biosphere-atmosphere Exchange Process Simulator (BEPS) are evaluated with flux 
measurements from nine eddy covariance towers in Luo et al. (2018). They demonstrated that 
BL underestimates ET and GPP across all sites because the radiation gradient calculated based 
on Beer’s law fails to describe the instantaneous radiation distribution in the canopy. As most 
current process-based plant COS uptake simulations are predominantly based on the Berry's 
stomatal conductance model of COS and the Ball-Barry model, the underestimation of GPP by 
the BL model ultimately impacts plant COS flux simulations. 

As the advantages of the two-leaf model over both the big-leaf model and the two big-leaf 
model in terms of canopy radiation distribution, GPP, and stomatal conductance have been 
extensively discussed, we adopted the two-leaf model to simulate COS in this study. The reason 



 

 

for not further comparing the results of the two-leaf COS model with those of other models 
based on COS observations is primarily twofold: the lack of accurate BEPS model driving data, 
and the absence of in-situ COS concentration and flux observation data.  

(1) The lack of accurate BEPS model driving data. For sunlit and shaded leaf stratification, we 
need accurate description of the canopy structure with at least two structural parameters (Chen 
et al., 2012). One is the leaf area index (LAI), defined as one half the total (all sided) leaf area 
per unit ground surface area (Chen and Black, 1992). The other is the foliage clumping index 
characterizing the way that leaves in a canopy are spatially organized. Thus, In Luo et al. (2018), 
nine sites in Canada are selected mainly because they have some measured LAI, clumping 
index, and soil moisture data. The measured soil moisture data were utilized in Luo et al. (2018) 
to minimize the possible deviations in stomatal conductance modeling caused by the soil 
moisture simulation. Unfortunately, among the seven sites in this study, no continuous in-situ 
LAI or clumping index data were provided along with the COS data (Wehr et al., 2017; Rastogi 
et al., 2018; Spielmann et al., 2019; Vesala et al., 2022). The measured soil moisture data were 
also not available at US-Ha1. Furthermore, as mentioned in the manuscript, even continuous 
in-situ meteorological data were lacking at the IT-Soy site.  

(2) The lack of COS concentration and flux observation data. Unlike CO2, the concentration of 
COS exhibits strong seasonal variations, with seasonal amplitudes reaching up to 100-200 parts 
per trillion (Montzka et al., 2007; Kooijmans et al., 2021; Hu et al., 2021; Ma et al., 2021). 
Given the linear relationship between plant COS uptake and COS concentration (Stimler et al., 
2010), these variations can significantly impact the simulation of COS plant fluxes. 
Unfortunately, continuous in-site COS concentration data are lacking at the sites. Moreover, 
for the majority (5/7) of sites in this study, the COS observation sequences are very short, 
lasting only about one month. As a contrast, observed sequences of GPP and ET at measurement 
sites all span over five years in Luo et al. (2018). 

Overall, due to the lack of accurate BEPS model driving data and continuous in-site COS 
concentration data, the simulated COS flux subject to great uncertainty, whether it is based on 
the two-leaf model or other models. Furthermore, the majority of sites used in this study lack 
long time series of COS observations, and COS flux observations also exhibit considerable 
uncertainty (Kohonen et al., 2020). Therefore, we have refrained from comparing the COS 
simulation performance of the two-leaf model and other models. However, we do agree with 
your opinion and we also believe that comparing the COS simulation performance of the two-
leaf model with other models (i.e., BL and TBL model) is an objective we should pursue, given 
the conceptual scientificity and practical robustness of the two-leaf model (Chen et al., 2012). 
We anticipate that the simulation of plant COS uptake based on the two-leaf model will 
outperform other models (i.e., BL and TBL model), and the global vegetation COS flux 
estimated based on the two-leaf model will exceed that estimated by other models. This will 
provide insights into both the accurate simulation of plant COS uptake and the magnitude and 
distribution of global COS vegetation sink. 

2.4.1 Parameter selection and sampling strategy 



 

 

L154-155: “9 parameters were selected to be calibrated in this study” -> Why didn’t the authors 
perform a sensitivity analysis to select the most important parameters for COS and GPP? We 
are left with the impression that the selection was arbitrary, and we may fear that they have 
missed some important parameter. 

Response: Thanks for the valuable comments. As mentioned in the manuscript, currently, 
numerous studies on parameter sensitivity in COS and GPP simulations have been conducted, 
laying the foundation for the parameter selection in this study. Specifically, the Morris method 
and RS-HDMR method were employed to identified that the sensitive parameters in simulating 
GPP by BEPS for 10 sites covering 7 plant functional types (PFT) over China in Xing et al. 
(2023). In this study, 21 model parameters were screened, encompassing not only 
photosynthesis-related parameters but also those associated with energy and water balance, 
heterotrophic respiration, and autotrophic respiration. The results highlighted that 
𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐25 , , 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , 𝑏𝑏𝐻𝐻2𝑂𝑂 , 𝑚𝑚𝐻𝐻2𝑂𝑂  and 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  as the most crucial parameters for GPP 
simulation by BEPS. In another related manuscript (Zhu et al., 2023), we identified the model 
parameters sensitive to COS for BEPS. Therefore, the 9 parameters were selected to be 
calibrated in this study. Certainly, other literature listed in Section 2.4.1 also provided 
references for our parameter selection.  

We would like to highlight that the references listed in Section 2.4.1 have been updated. 
Specifically, the recently manuscript by Abadie et al. (2023) and Zhu et al. (2023) have been 
incorporated into the section. (line 216-217) 

L155: Table B1 should be placed in the main manuscript, it’s important to see here the detailed 
description of the parameters. 

Response: Thanks for the comments. We have moved the Table into the main manuscript 
(renamed as Table 2). 

2.4.2 Selection of behavioral simulations 

“Behavioral simulation” is not an expression I’ve seen before. Could the authors use simpler 
terms like “selected” and “rejected” (for “non-behavioral”)? 

Thanks for your comment. The terms "behavioral" and "non-behavioral" have been extensively 
employed in the domain of Monte Carlo-based calibration, as evidenced by Beven and Binley 
(1992), Beven and Freer (2001) and Houska et al. (2014). Hence, we have maintained the usage 
of "behavioral" and "non-behavioral" in this context. In response, we have added introductions 
for "behavioral parameter sets" and "non-behavioral parameter sets". “Subsequently, model 
realizations are grouped into behavioral and non-behavioral model runs and associated 
parameter sets based on the values of the single or multiple performance measures and 
the predefined threshold value (Houska et al., 2014). The former describes acceptable 
model realizations conditioned on the available observational data (Blasone et al., 2008; 
Beven and Binley, 2014). The latter describes parameter sets that produce behavior 
inconsistent with observed behavior.”(line 199-203). 



 

 

L168-169: “Thus, the deterministic model prediction is given by the ensemble mean of the 100 
behavioral simulations.” -> The authors could explain that the “100” comes from 0.5%*20,000. 

Response: Thank you for your comments. Now we rewrite this sentence: “Specifically, here 
we chose an ASR of 0.5%, i.e., the top 100 model runs with the lowest RMSE values for 
COS as behavioral simulations.” (line 234-235)  

2.6 Parameter uncertainty 

L183: “Due to the complexity of ecosystem” -> Could the authors be more specific: “Due to 
the functional and structural complexity of ecosystems”? 

Response: Thanks for your comment. We have made the modification to the sentence 
accordingly. (line 247) 

L193-194: “Taking into account the influence of the prior distribution to the behavioral 
parameter sets, the PI is defined as the reduction of the parameter range width. -> This means 
that if the initial range is overestimated, the PI may be artificially high. This could be the case 
for the bH2O parameter, where the max value (1) is 57 times larger than the initial value. Plus, 
the authors later write, citing Miner et al. (2017), that “83 % of the bH2O values are located 
between 0 and 0.15 mol m−2 s−1, and about half are located between 0 and 0.04 mol m−2 s−1” 
(L236-237). 

Response: Thank you for your comments. As we mentioned in the manuscript, the default 
values and prior ranges for these selected parameters were chosen based on literature and 
default model settings. For 𝑏𝑏𝐻𝐻2𝑂𝑂, the default value of it in BEPS is 0.0175 mol m−2 s−1, and 
we assigned the prior range of it according to Miner et al. (2017). We also highlighted that 
“literature-documented values of 𝑏𝑏𝐻𝐻2𝑂𝑂  are highly variable”. Actually, in the compilation 
provided by Miner et al. (2017), a number of documented values of 𝑏𝑏𝐻𝐻2𝑂𝑂 are already several 
tens of times greater than the prior value, for example, reaching as high as 0.57 mol m−2 s−1 
in Bunce (2004) and 0.69 mol m−2 s−1 in Leuning (1995). Specifically, the value of 0.69 
mol m−2 s−1  was provided alongside a corresponding standard deviation of 0.10 
mol m−2 s−1. Considering the wide range of literature values of 𝑏𝑏𝐻𝐻2𝑂𝑂, we thus opted for a 
broad prior range (0-1 mol m−2 s−1) and performed the Monte Carlo simulations. Certainly, 
we acknowledge that the setting of prior ranges for parameters involves subjective decisions, 
and the prior range of 𝑏𝑏𝐻𝐻2𝑂𝑂  may be overestimated. Indeed, the involvement of subjective 
decisions is the primary reason for the controversy surrounding GLUE (Beven and Binley, 
2014). In response, we have provided clarification regarding the subjectivity controversy 
surrounding Monte Carlo-based model calibration method. “However, the Monte Carlo-
based parameter optimization approach subject to controversy (Sambridge and 
Mosegaard, 2002) due to the numerous subjective decisions involved in its implementation, 
such as the selection of parameter range, sample size and performance metric, etc. 
Further research is needed to investigate the impact of these factors on the parameter 
optimization results related to COS and the assessment of model prediction uncertainty.” 
(line 571-575) 

3.2 Posterior parameter distributions 



 

 

L252: The authors should explain what they call “the grouping value”. 

Response: Thank you for your comments. In Miner et al. (2017), the literature-documented 
values of 𝑚𝑚𝐻𝐻2𝑂𝑂  were grouped by plant function type (PFT). Thus, we reorganized the 
sentences as: “Nevertheless, the optimization of 𝒎𝒎𝑯𝑯𝟐𝟐𝑶𝑶 is generally achievable through 
COS assimilation, as supported by our results in good agreement with the compilation of 
Miner et al. (2017), in which the average historical values of 𝒎𝒎𝑯𝑯𝟐𝟐𝑶𝑶  grouped by PFT 
(referred to as the PFT-grouping values below) are provided.” (line 314-316). 

Figure2. The authors should add ‘COS’ somewhere in the legend, document the boxplot (say it 
describes the posterior distribution), and explain axes, colours, title (PI). 

Response: Thanks for your comment. We have revised the legend, as follows: “Figure 3. 
Cumulative frequency distributions and boxplots for the posterior model parameters 
obtained by COS assimilation. The grey area represents uniform parameter distributions, 
while the colored areas denote posterior CDF distributions, with parameters for different 
sites represented using different colors. The box extends from the first quartile to the third 
quartile of the parameter values, with a line at the median. "×" markers denote outliers, 
and the whiskers represent the lowest or highest parameter values excluding any outliers. 
The black square represents the prior parameter value, and the axis ranges denote the 
prior ranges of the parameters. PI denote parameter identifiability, defined as the 
reduction of the parameter range width.” (line 333-348) 

3.3 The optimization performance in COS fluxes 

L300-301: “despite remarkable improvement is attached by the posterior simulations” -> This 
is a weird formulation, to be rephrased. 

Response: Thanks for your comment. The revised sentence reads as: “Particularly, significant 
underestimation is found in the posterior simulations in 2017 for FI-Hyy, despite the 
posterior simulations shows a remarkable improvement in reproducing COS fluxes over 
the entire period (2013-2017).” (line 364-376) 

Figure 3/Figure 4: “The means and uncertainties of these observations and simulations are 
calculated and plotted on a daily or monthly scale” -> Do the authors compute the standard 
deviation of hourly values for daily means and over daily means for monthly means? Do they 
compute the standard error of the mean (SEM), defined as the standard deviation (SD) divided 
by the square root of the number of observations, and which would be more appropriate than 
SD to estimate the uncertainty of the mean? 

Response: Thanks for your comments. Here the standard deviation of hourly values for daily 
means or monthly means were calculated.  

The standard error of the mean (SEM) quantifies uncertainty in the estimate of the mean (Barde 
and Barde, 2012). However, our intention here is to quantify the uncertainties of the hourly 
observations on a daily or monthly scale, which does not align with the definition of SEM. 
Certainly, standard deviation (SD) quantifies the variability, which is also distinct with 



 

 

uncertainty. Therefore, we have modified the corresponding sentence to clarify this. “The mean 
observed COS and its uncertainty (estimated by the standard deviation) are represented by 
black dots with error bars. The means and uncertainties of these hourly observations and 
simulations are calculated and plotted on a daily or monthly scale.” (line 386-388 and line 418-
420) 

4.2 Parameter interactions 

L407: “their weak equivalence” -> What do the authors mean? Equivalence to what? 

Response: Thanks for your comment. The sentence is unnecessary, and we have deleted it. 

Figure 6 is a bit difficult to interpret, I’m not sure it brings something, could it be moved to the 
Supplementary part? 

Response: Thanks for your comments. The design of this figure is inspired by Figure 4 from 
Beven and Binley (2014). Similar to Beven and Binley (2014), we employ 3D plots to further 
explore, visually, the parameter space. Following your suggestion, we have relocated this figure 
to the appendix. 

4.3 Parameter identifiability 

L442: “the sensitivity of the input data to the parameter” -> This should rather be “the 
sensitivity of the modeled output to the parameter”. 

Response: Thanks for your comments. As you mentioned, it should rather be "the sensitivity of 
the modeled output to the parameter". More specifically, "modeled output" here refers to COS 
simulation. Therefore, we have revised the original sentence accordingly, and the modified 
sentence is as follows: “In this study, the identifiability of a parameter closely related to 
the sensitivity of COS simulations to the parameter, although it is known to be influenced 
by model over-parameterization and parameter interactions (Gan et al., 2014).” (line 497-
498)  

L446-447: “However, our findings indicate that the sensitivity of 𝑉𝑉𝑉𝑉max25, 𝑁𝑁𝑁𝑁eaf is much 
greater than that of 𝑏𝑏𝑏𝑏2O, yet the latter is much more identifiable” -> An alternative 
explanation is once again the overestimated prior range of 𝑏𝑏𝑏𝑏2O. 

Response: Thanks for your comment. We acknowledge that the prior range of 𝑏𝑏𝐻𝐻2𝑂𝑂 may be 
overestimated and the overestimation of the prior range of 𝑏𝑏𝐻𝐻2𝑂𝑂  can be an alternative 
explanation of 𝑏𝑏𝐻𝐻2𝑂𝑂  being more identifiable (having larger PIs) as PI is defined as the 
reduction of the parameter range width. A detailed explanation of why we chose such a broad 
prior range for 𝑏𝑏𝐻𝐻2𝑂𝑂 has been provided previously, along with clarification of the drawback 
(i.e., involving subjective decisions) of the Monte Carlo-based parameter optimization 
approach.  

L448: “as parameter interaction is a primary contributor to parameter unidentifiability” -> But 
then, this should also apply to 𝑏𝑏𝑏𝑏2O, as it is highly correlated to fleaf and mH2O, as shown in 
Figure 5. 



 

 

Response: Thanks for your comment. As shown in Figure 5 and Figure C1 of the original 
manuscript, there are complex correlations between the 9 pre-selected parameters, and 𝑏𝑏𝐻𝐻2𝑂𝑂 
is indeed highly correlated to 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and 𝑚𝑚𝐻𝐻2𝑂𝑂 at AT-Neu. But as mentioned in the original 
manuscript, 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  and 𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is the only parameter combination that is significantly 
correlated at all sites.  

L456-457: “It has been previously demonstrated that soil hydrology-related parameters exert a 
minimal impact on COS simulations and cannot be effectively constrained through COS 
assimilation” -> That would depend on whether soil water stress conditions are present or not. 

Response: Thanks for your comment. We agree with your point that the impact of soil 
hydrology-related parameters on COS simulations may vary depending on the presence of soil 
water stress conditions. We have revised the sentence as follows: “It has been previously 
demonstrated that soil hydrology-related parameters exert a minimal impact on COS 
simulations (Figure 2) and cannot be effectively constrained through COS assimilation in 
general (Figure 3)” (line 514-515) 

4.4 Relationship between COS and GPP simulation performance -> performances 

Response: Corrected 

L464: “respond to RMSE” -> This seems awkward, to be rephrased. 

Response: Thank you for your comment. We have revised the sentence as follows: “Therefore, 
it is necessary to investigate the distribution of RMSEs for COS simulations and GPP 
simulations, and to understand the relationship between the model performance of COS 
and that of GPP.” (line 517-519) 

Figure 7: “Each data point represents a parameter set, with color indicating data density” -> 
That does not seem possible, some binning has to be made to get a density. 

Response: Thank you for your comment. At each site, we actually obtained 20,000 discrete 
points distributed in a two-dimensional space of RMSE for COS (RMSECOS) and GPP (RMSEGPP), 
and some binning has to be made to get a density. In this study, we utilized kernel density 
estimation (https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html) 
to estimate the probability density of each scatter point. Subsequently, we assigned colors to 
each scatter based on the estimated density, and plotted the scatter plots. 

5 Conclusions 

L485-486: “within the Monte Carlo-based methodology base on the coupling of COS modeling 
and the BEPS model” -> “with a Monte Carlo approach using COS modeling within BEPS” 

Response: Thanks for your comment. We have revised the sentence accordingly. (line 577-578) 

L486-487: “Global parameter sensitivity analysis was conducted to identify the sensitive 
parameters” -> “A global parameter sensitivity analysis was conducted to identify the most 
sensitive ones among a set of 9 pre-selected parameters.”  

Response: Thanks for your comment. We have revised the sentence accordingly. (line 578-579) 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html


 

 

The conclusion is a bit abrupt. The authors should develop some outlooks. What are the 
consequences of this study? Is there a need to acquire more COS fluxes observations, or a need 
to improve the COS vegetation model? What will be the next steps with BEPS? 

Response: Thank you for your valuable comment. As you mentioned, conducting more 
observations, developing advanced COS models (as done by Cho et al. (2023)), and utilizing 
varying COS concentrations for COS simulations are indeed our goals. Inevitably, this study 
was constrained by these factors. Regarding this, we have added a new section (Section 4.5 
Caveats and implication) to discuss these issues and provide an outlook for our future work. 
Specifically, we have conducted COS simulations based on the two-leaf model at the site scale 
and utilized COS to optimized GPP. However, at the global scale, the scientific community is 
grappling with the COS missing sink issue, and the two-leaf model holds promise for 
addressing this problem. Thus, global COS simulations within two-leaf model are the next step 
awaiting our investigation. For a more detailed discussion on this aspect, please refer to Section 
4.5 in the revised manuscript. 

A2 BEPS leaf COS modeling approach 

L568: “where COS𝑎𝑎 represents the COS mole fraction in the bulk air” -> Did the authors use a 
variable atmospheric COS mole fraction as it has been shown important (Kooijmans et al., 2021; 
Abadie et al., 2022)? 

Response: Thank you for your valuable comment. We have revised the manuscript to include a 
more detailed description of the data used in this study. The revised sentence reads as follows: 
“Data used in this study include LAI, land cover type, meteorological and soil data, as well 
as CO2 and COS mole fraction data. The CO2 and COS mole fractions in the bulk air were 
assumed to be spatially invariant over the globe but to vary annually. The CO2 mole 
fraction data in this study are taken from the Global Monitoring Laboratory 
(https://gml.noaa.gov/ccgg/trends/global.html). For the COS mole fraction, we utilized the 
average of observations from sites SPO (South Pole) and MLO (Mauna Loa, United States) 
to drive the model. These data are publicly available online at: 
https://gml.noaa.gov/hats/gases/OCS.html.” (line 153-158) 

L572: How did the authors derive the empirical relationship expressed in equation (A19)? 

Response: Thanks for your comment. Here we adapted the COS leaf uptake modeling approach 
from SiB4 (Equation 175 in Haynes et al. (2020)). Now, a more detailed description of the 
modeling approach is provided in the main manuscript (line 122-139): 

The leaf-level COS uptake rate 𝑭𝑭𝒄𝒄𝒄𝒄𝒄𝒄,𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 is determined by the formula (Berry et al., 2013): 

𝑭𝑭𝒄𝒄𝒄𝒄𝒄𝒄,𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 = 𝑪𝑪𝑪𝑪𝑪𝑪𝒂𝒂 �
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where 𝑪𝑪𝑪𝑪𝑪𝑪𝒂𝒂 represents the COS mole fraction in the bulk air. 𝒈𝒈𝒔𝒔𝒔𝒔 and  𝒈𝒈𝒃𝒃𝒃𝒃 are the 
stomatal conductance and leaf laminar boundary layer conductance to water vapor (𝐇𝐇𝟐𝟐𝐎𝐎). 
The factors 1.94 and 1.56 account for the smaller diffusivity of COS with respect to 𝐇𝐇𝟐𝟐𝐎𝐎. 
𝒈𝒈𝑪𝑪𝑪𝑪𝑺𝑺 indicates the apparent conductance for COS uptake from the intercellular airspaces, 
which combined the mesophyll conductance (Evans et al., 1994) and the biochemical 

https://gml.noaa.gov/ccgg/trends/global.html
https://gml.noaa.gov/hats/gases/OCS.html


 

 

reaction rate of COS and carbonic anhydrase (Badger and Price, 1994). It can be 
calculated as : 

𝒈𝒈𝑪𝑪𝑪𝑪𝑪𝑪 =  𝜶𝜶 𝑽𝑽𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 (𝟔𝟔) 
Where 𝜶𝜶 is a parameter that is calibrated to observations of simultaneous measurements 
of COS and CO2 uptake (Stimler et al., 2012). 𝑽𝑽𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 is the maximum carboxylation rate 
of Rubisco. Analysis of these measurements yield estimates of α of ∼1400 for C3 and 
∼7500 for C4 species. With reference the COS modelling scheme of the Simple biosphere 
model (version 4.2) (Haynes et al., 2020), 𝒈𝒈𝒄𝒄𝒄𝒄𝒄𝒄 can be calculated as  

𝒈𝒈𝑪𝑪𝑪𝑪𝑪𝑪 = 𝟏𝟏.𝟒𝟒 ∗ 𝟏𝟏𝟏𝟏𝟑𝟑 ∗ (𝟏𝟏.𝟎𝟎 + 𝟓𝟓.𝟑𝟑𝟑𝟑 ∗ 𝑭𝑭𝑪𝑪𝑪𝑪) ∗ 𝟏𝟏𝟏𝟏−𝟔𝟔𝑭𝑭𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝒇𝒇𝒘𝒘𝑽𝑽𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 (𝟕𝟕) 
where 𝑭𝑭𝑪𝑪𝑪𝑪 denotes the C4 plant flag, taking the value of 1 for C4 plants and 0 otherwise. 
𝒇𝒇𝒘𝒘  is a soil moisture stress factor describing the sensitivity of 𝒈𝒈𝒔𝒔𝒔𝒔  to soil water 
availability (Ju et al., 2006). 𝑭𝑭𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 is the scaling factor for leaf radiation (Smith et al., 
2008), calculated as: 

𝑭𝑭𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 = 𝟏𝟏 −  𝒆𝒆(−𝟎𝟎.𝟒𝟒𝟒𝟒 𝑳𝑳𝑳𝑳𝑳𝑳) (𝟖𝟖) 
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Response: Corrected. 

L535: “(𝑔𝑔𝑔𝑔w in)” -> The unit is missing.  
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