1 Consistency evaluation of tropospheric ozone from ozonesonde and

2 IAGOS aircraft observations: vertical distribution, ozonesonde types

3 and station-airport distance

Honglei Wang^{1, 2}, David W. Tarasick^{3*}, Jane Liu^{2*}, Herman G.J. Smit⁴, Roeland Van Malderen⁵,
Lijuan Shen⁶, Romain Blot⁷, Tianliang Zhao¹

6 ¹ China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of

7 Information Science and Technology, Nanjing, 210044, China

8 ² Department of Geography and Planning, University of Toronto, Toronto, M5S 3G3, Canada

³ Environment and Climate Change Canada, 4905 Dufferin Street, Downsview, M3H 5T4, Canada

10 4 Institute for Energy and Climate Research: Troposphere (IEK-8), Research Centre Juelich (FZJ), Juelich, Germany

- ⁵ Royal Meteorological Institute of Belgium, Brussels, Belgium
- 12 ⁶ School of Atmosphere and Remote Sensing, Wuxi University, Wuxi, 214105, China
- 13 ⁷ Laboratoire d'Aérologie (LAERO), Université de Toulouse, CNRS, Toulouse, France
- 14 * Corresponding authors: David.Tarasick@ec.gc.ca and janejj.liu@utoronto.ca
- 15

Abstract: The vertical distribution of tropospheric O₃ from ozonesondes is compared with that from 16 In-service Aircraft for a Global Observing System (IAGOS) measurements at 23 pairs of sites 17 18 between about 30°S and 55°N, from 1995 to 2021. Profiles of tropospheric O₃ from IAGOS aircraft are in generally good agreement with ozonesonde observations, for Electrochemical concentration 19 20 cells (ECC), Brewer-Mast, and Carbon-Iodine sensors, with average biases of 2.58 ppb, -0.28 ppb, 21 and 0.67 ppb, and correlation coefficients (R) of 0.72, 0.82, and 0.66, respectively. Agreement 22 between the aircraft and Indian-sonde observations is poor, with an average bias of 15.32 ppb and 23 R of 0.44. The O₃ concentration observed by ECC sondes is on average higher by 5-10% than that 24 observed by IAGOS aircraft, and the relative bias increases modestly with altitude. For other sonde 25 types, there are some seasonal and altitude variations in the relative bias with respect to IAGOS 26 measurements, but these appear to be caused by local differences. The distance between station and 27 airport within 4° has little effect on the comparison results. For the ECC ozonesonde, the overall 28 bias with respect to IAGOS measurements varies from 5.7 to 9.8 ppb, when the station pairs are 29 grouped by station-airport distances of $<1^{\circ}$ (latitude and longitude), 1-2°, and 2-4°. Correlations for these groups are R = 0.8, 0.9 and 0.7. These comparison results provide important information for merging ozonesonde and IAGOS measurement datasets. They can also be used to evaluate the relative biases of the different sonde types in the troposphere, using the aircraft as a transfer standard. **Key words:** WOUDC; IAGOS; tropospheric O₃; vertical distribution; ozonesonde; aircraft

34

35 1 Introduction

Ozone (O₃) is a trace gas with small concentrations in the atmosphere (Ramanathan et al., 1985). It is an important greenhouse gas in the upper troposphere. In the planetary boundary layer, it is a major air pollutant (Lefohn et al., 2018; Monks et al., 2015). It can endanger human health, damage ecosystems, and affect climate change (Fu and Tai, 2015; Lefohn et al., 2018; Percy et al., 2003). Therefore, it is of importance to study the temporal and spatial variations in tropospheric O₃ including near-surface O₃ and mechanisms affecting the variations (Logan, 1985; Ma et al., 2020; Sharma et al., 2017; Young et al., 2018).

43 A large number of studies have been carried out on the spatiotemporal distribution, formation 44 mechanisms, and transport characteristics of tropospheric O₃ (Li et al., 2020, 2021; Vingarzan, 2004; 45 Wang et al., 2017, 2023; Xu et al., 2021; Yu et al., 2021). However, due to the limitation of observations, there are many unknowns on tropospheric O₃, especially the vertical distribution of 46 47 tropospheric O₃. Satellites provide an effective platform for measuring O₃ globally. Satellite O₃ 48 instruments, including TES, GOME, GOME-2, SCIAMACHY, OMI, and TROPOMI, have been in 49 operation for decades (David et al., 2013; Ebojie et al., 2016; Hegarty et al., 2009; Hoogen et al., 50 1999; Hubert et al., 2021; Miles et al., 2015). Although satellite observations can provide detailed 51 temporally- and horizontally-resolved maps of tropospheric O₃ columns, in general satellite data 52 lack vertical resolution. While tropospheric differential absorption lidar can also provide vertical 53 distribution information for tropospheric O₃ (Keckhut et al., 2004; Yang et al., 2023), there are very 54 few routinely operating stations.

The principal sources of vertically-resolved, trend-quality observations of tropospheric O_3 are therefore balloon-borne ozonesondes, and IAGOS aircraft observations. The World Ozone and Ultraviolet Radiation Data Centre (WOUDC) and the In-service Aircraft for a Global Observing System database (IAGOS) house the data from these two observation programs with the longest

59	duration and the most global stations, which are the most widely used for tropospheric O3 studies
60	(Gaudel et al., 2020; Liao et al., 2021; Tarasick et al., 2019; Wang et al., 2022; Zang et al., 2024).
61	These two datasets are used to study the distribution, variability and trends of tropospheric O ₃ , and
62	its sources and transport, as well as satellite and model validation (Hu et al., 2017; Gaudel et al.,
63	2018; 2020; Wang et al., 2022; Zhang et al., 2008). The first phase of the Tropospheric Ozone
64	Assessment Report (TOAR-I), initiated in 2014, utilized available surface, ozonesonde, aircraft, and
65	satellite observations to assess tropospheric O ₃ trends from 1970 to 2014 (Schultz et al., 2017). Hu
66	et al. (2017) found that the largest bias in a chemical transport model, GEOS-Chem, with respect to
67	ozonesondes and IAGOS observations, is in high northern latitudes in winter-spring, where the
68	simulated O3 is 10-20 ppb lower. Wang et al. (2022) examined observed tropospheric O3 trends,
69	their attributions, and radiative impacts from 1995 to 2017, using aircraft observations from IAGOS,
70	ozonesondes, and a multi-decadal GEOS-Chem chemical model simulation, and found increases in
71	tropospheric $O_3~(950\mathchar`-250\mbox{ hPa})$ of 2.7 ± 1.7 ppbv per decade from IAGOS observations in the
72	Northern Hemisphere and at 19 of 27 global ozonesonde sites averaging 1.9 ± 1.7 ppbv per decade.
73	There are also a number of comparative studies on these two datasets (Zbinden et al., 2013; Staufer
74	et al., 2013, 2014; Tanimoto et al., 2015; Tarasick et al., 2019). Staufer et al. (2013, 2014) used
75	trajectory calculations to match air parcels sampled by both sondes and aircraft. Zbinden et al. (2013)
76	compared coincidences (±24 hours) at three site pairs, while Tanimoto et al. (2015) examined
77	simultaneous observations (±3 hours for sonde versus aircraft) at several site pairs less than 100 km
78	apart. In general, these studies show small (6% or less) negative biases of aircraft measurements
79	against ECC sondes. Tarasick et al. (2019) compared trajectory-mapped averages over 20°-70° N
80	of ozonesonde and MOZAIC/IAGOS profiles and concluded that over 1994-2012 ozonesonde
81	measurements were about 5 \pm 1% higher in the lower troposphere and 8 \pm 1% higher in the upper
82	troposphere.
83	As shown above, the global O ₃ vertical distribution datasets observed by WOUDC and IAGOS have
84	been widely used in various studies. Still, a long-term and multi-site systematic comparison of these
85	two datasets is rare, especially for the observations in the past three decades. In this study, we

- 86 attempt to make the most comprehensive evaluation to date of the relative biases of IAGOS and
- 87 sonde profiles, using as many station pairs as possible. We identify 23 suitable pairs of sites in the

- WOUDC and IAGOS datasets from 1995 to 2021, compare the average vertical distribution of
 tropospheric O₃ shown by ozonesonde and aircraft measurements, and analyze their differences by
 ozonesonde type and by station-airport distance.
- 91

92 2 Data and methods

93 2.1 MOZAIC-IAGOS observations

94 The MOZAIC (Measurements of OZone and water vapor on Airbus In-service airCraft) program, 95 initiated in 1994 and incorporated into the IAGOS (In-service Aircraft for a Global Observing 96 System; www.iagos.org) program since 2011, takes advantage of commercial aircraft to provide 97 worldwide in-situ measurements of several trace gases (e.g., O₃ and CO) and meteorological 98 variables (e.g., water vapor) throughout the troposphere and the lower stratosphere (Marenco et al., 99 1998; Petzold et al., 2015; Nédélec et al., 2015). O₃ measurements are performed using a dual-beam 100 UV-absorption monitor (time resolution of 4 seconds) with an instrumental uncertainty of ± 2 101 ppbv+2% (Thouret et al., 1998; Blot et al., 2021). It should be noted that this is only the instrumental 102 uncertainty, and does not include sampling uncertainties (possible losses) caused by the inlet line 103 and the compressor before the UV-photometric measurements are made. Loss of O_3 on the inlet 104 pump was an issue in earlier aircraft O₃ sampling programs (Brunner et al., 2001; Dias-Lalcaca et al., 1998; Schnadt Poberaj et al., 2007; Thouret et al., 2022), but Thouret et al. (1998) found it 105 106 negligible for MOZAIC/IAGOS.

107 More details on the new IAGOS instrumentation can be found in Nédélec et al. (2015). The 108 continuity of the dataset between the MOZAIC and IAGOS programs has been demonstrated based 109 on their 2-year overlap (2011-2012) (Nédélec et al., 2015). Blot et al. (2021) evaluated the internal 110 consistency of the O₃ measurements since 1994, which confirmed the instrumental uncertainty of 111 \pm 2 ppb. Moreover, they found no bias drift amongst the different instrument units (six O₃ IAGOS-112 MOZAIC instruments, nine IAGOS-Core Package1 and the two instruments used in the IAGOS-113 CARIBIC aircraft).

114 **2.2 WOUDC ozonesonde observations**

115 The World Ozone and Ultraviolet Radiation Data Centre (WOUDC) is part of the Global 116 Atmosphere Watch (GAW) program of the World Meteorological Organization 117 (https://woudc.org/data/explore.php). The WOUDC is operated by Environment and Climate Change Canada. WOUDC ozonesonde data have been evaluated in a number of WMO-sponsored 118 119 international field intercomparisons (Attmannspacher and Dütsch, 1970, 1981; Kerr et al, 1994) and 120 more recently in laboratory simulation chamber experiments using a standard reference photometer 121 (Smit et al., 2007, 2024; Thompson et al., 2019). In the global ozonesonde network, while different 122 ozonesonde types were common in the past, more than 95% of current sounding stations use 123 electrochemical concentration cells (ECC). ECC ozonesondes have a precision of 3-5% (1- σ) while 124 the precision of other sonde types is somewhat poorer, at about 5-10% for Brewer-Mast and the 125 Japanese KC (Carbon-Iodine) sonde, and somewhat larger for the Indian-sonde (Kerr et al., 1994; 126 Smit et al., 2007). Biases with respect to UV reference spectrometers have been estimated for ECC 127 sondes at 1-5% in the troposphere (Smit et al., 2021; Tarasick et al., 2019, 2021).

128 2.3 Data processing

129 The two datasets were first screened for airport-sonde station pairs within a latitude separation of <4° and a longitude separation of <4°. Many sonde stations have observational records that do not 130 131 overlap with the IAGOS period (1994-present). In addition, the IAGOS dataset has large gaps at 132 many airports, because the frequency of visits to airports by aircraft that take part in IAGOS depends 133 on commercial airlines' operating constraints. In total, 23 station pairs (Fig. 1) were identified with a separation of less than 4° in both latitude and longitude, and coincident observations over at least 134 135 nine months. The majority of the 23 ozonesonde site records are ECC (17), while four are Indian-136 sonde, one Brewer-Mast, and one Carbon-Iodine (the Japanese KC sonde). These stations were 137 divided into 3 groups according to the distance (D) between the ozonesonde station and the airport: $D<1^{\circ}$, $1^{\circ}<D<2^{\circ}$, and $2^{\circ}<D<4^{\circ}$. Specific information on the comparison stations is shown in Table 138 139 1.

The observation times of the ozonesonde and aircraft are generally not the same. Ozonesondes are typically launched once a week, although a few stations have more frequent launches. The aircraft records generally contain more frequent observations, but observation times vary. For the selected 23 stations, we calculated the mean O₃ vertical profiles at 1km resolution (the first layer is from the surface to 1 km above sea level) for each month during the observational period for the two datasets. A minimum of four aircraft profiles were required to estimate a monthly mean profile; because ozonesonde launches are typically only a few times per month, no minimum was required to estimate a monthly mean profile. Only data with monthly means in both datasets were included for further analysis. Comparisons between the two datasets were made by ozonesonde type and by station-airport distance.

150

151 **3. Results and discussion**

3.1 Comparison of the vertical profiles of tropospheric O₃ from four types of ozonesondes and aircraft observations

154 Previous intercomparisons of sondes launched on the same balloon (Attmannspacher and Dütsch, 1970, 1981; Beekmann et al, 1994, 1995; Deshler et al., 2008; Hilsenrath et al., 1986; Kerr et al, 155 156 1994; Smit et al., 2007) have shown that sondes of different types respond somewhat differently to 157 the same O₃ vertical profile; that is, they have relative biases, that vary with altitude. Fig. 2 therefore 158 compares the mean vertical profiles of tropospheric O₃ from ozonesonde and aircraft measurements, 159 separated by ozonesonde type. Both O3 concentrations and absolute differences between 160 ozonesonde and aircraft increase with altitude, especially above 9 km. Average tropospheric O_3 161 profiles observed by ECC, Brewer-Mast, and Carbon-Iodine sondes are in good agreement with aircraft measurements, with biases of 2.58 ppb, -0.28 ppb and 0.67 ppb, while the agreement with 162 the Indian-sonde is poorer, with a bias of 15.32 ppb. The Indian-sonde average also shows a linear 163 164 increase with altitude, while the aircraft measurements indicate an O₃ decrease with altitude above 165 8 km (Fig. 2b). This behavior is most clearly related to the comparisons of stations $2^{\circ}-4^{\circ}$ apart in 166 spring (Fig. S9).

167 These results are broadly consistent with those from JOSIE 1996 (Smit et al. 1996; Smit and Kley,

168 1998; Thompson et al., 2019), and with the northern hemisphere average result from Tarasick et al.

169 (2019). (Their Figure 20b; note that it is largely based on ECC sondes, and the scale is inverted

170 (IAGOS-sondes) from the sense we use here.)

Fig. 3 shows correlation plots of monthly mean O_3 at 1 km vertical intervals for months when both IAGOS and ozonesonde data are available at the same location. While these monthly averages are of data not necessarily coincident in time, Fig. 3 indicates that the data compare well on this timescale, with correlation coefficients (R) of 0.71, 0.88 and 0.66, respectively (Fig. 3a-3c). The 175 agreement between the Indian-sonde and aircraft observations is poor, however, with an R of only 0.44 (Fig. 3d). The RMSE of O₃ observed with the four types of ozonesondes (ECC, Brewer-Mast, 176 177 Carbon-Iodine and Indian-sonde) and the aircraft is 15.99 ppb, 14.15 ppb, 16.26 ppb and 29.85 ppb, 178 respectively. After calculation, we obtained the slopes and offsets of ECC, Brewer-mast, Carbon-179 iodine and Indian-sonde without forcing the fitted lines through zero, the slope is 0.71, 0.88, 0.56 180 and 0.74, respectively, and the offset is 18.94 ppb, 6.89ppb, 27.48ppb and 27.84ppb. When we force 181 the intercept to zero for the regressions, the slope is larger than the slope without forcing the fitted 182 lines through zero (fig. 3). In generally, when O_3 is zero both the ozonesondes and the aircraft will measure zero. However, there is an offset in the fit of the two data sets due to potential causes for 183 184 systematic differences during the observation measurement process, e.g., high background current 185 in the sonde data.

Fig. 2 shows that the mean differences between ozonesonde and aircraft measurements vary 186 187 significantly with altitude. This can also be observed clearly from the relative differences (RD), 188 expressed as (O3-ozonesonde - O3-aircraft)/ O3-aircraft × 100% (Fig. 4). O3 concentrations from ECC 189 measurements are higher than those from aircraft measurements in all altitudes except at the surface. 190 Mean O₃ concentrations reported by Brewer-Mast sondes are lower than those from IAGOS below 191 7 km, but higher between 7 and 12 km. O₃ concentrations reported by Carbon-Iodine sondes are 192 higher than those observed from aircrafts below 2 km, but significantly lower above 8 km. In relative 193 terms, the bias between ECC sonde and aircraft measurements varies little with altitude, except near 194 the ground. The mean relative bias for Brewer-Mast measurements is at an absolute maximum of -195 19 % near the ground, but increases slowly above 3 km, and is positive above 7 km, reaching more 196 than +10 % at 10-11 km. The relative bias for Carbon-Iodine measurements is about 8% below 2 197 km, becomes quite small from 2 - 8 km, and becomes large and negative above 8 km. 198 The Indian-sonde observations show much larger mean differences from the aircraft measurements.

Biases are everywhere positive, and as high as nearly 60% or 30 ppb, with much higher uncertainty

200 (standard errors) at each altitude as well (Fig. 2b, Fig. 4).

201 The region below 3 km has many local ozone sources and sinks (cities, airports, rural environment,

- etc). In comparison, the region above 8 km is significantly influenced by stratosphere-troposphere
- 203 exchange, jet streams, and tropopause folds. Fig. S1 shows that the R between ozonesondes and

aircraft observations is higher near the ground (< 2 km) and at high altitudes (> 10 km). This shows that although the influencing factors of O_3 near the ground and at high altitudes are more complex, their long-term temporal variation characteristics are similar. The influences of cities, airports, rural environment, stratosphere-troposphere exchange, jet streams, tropopause folds, etc., have a more significant impact on the concentration of O_3 in the short term.

209 The correlation between four types of ozonesondes and aircraft observations also varies with altitude (Fig. S1). From 0-8 km, the correlation between ECC and aircraft observations decreases with 210 211 altitude, with R being 0.71 at 0-1 km and reaching a minimum of 0.29 at 8-9 km; from 8-12 km, R 212 increases with altitude, reaching 0.49 at 11-12 km. The correlation between the other three 213 ozonesondes (Brewer-mast, Indian-sonde and Carbon-iodine) and the aircraft observations all vary 214 with altitude, with different inflection points. The number of stations for these three types of 215 ozonesondes is small (Table 1). Therefore, local variable influences on O_3 are more important, so 216 R varies more with altitude.

The bias and RMSE with respect to the aircraft observations of the four types of ozonesondes at 8-12 km are higher than that at other altitudes. In contrast, the bias and RMSE values below 8 km are smaller and vary less with altitude, consistent with the vertical distribution characteristics of O_3 concentration in Fig. 2. This is likely due to the higher concentration of O_3 and the typically larger difference in spatial distance between ozonesonde and aircraft observations at 8-12km.

222 In addition, the bias and RMSE relative to the aircraft observations at different altitudes for ECC,

223 Carbon-iodine and Brewer-mast sondes are lower than those for the Indian-sonde, which is similar 224 to the results of the above analysis of O_3 concentration.

It should be noted that these comparisons only give an average relative bias between sondes and IAGOS. The true value of the ozone profile remains unknown, as do the absolute biases of sondes and IAGOS.

228

229 **3.2** Seasonal variations in relative biases between ozonesondes and IAGOS

Fig. 5 compares mean profiles observed by ECC ozonesondes and IAGOS, separated by season.
There are modest seasonal differences in the relative bias profiles, with somewhat larger average

biases in winter and spring, but average biases are all positive (ECC sondes higher) and at all levels

233 the average seasonal biases are not statistically different.

234 The modest seasonal differences that are apparent in Fig. 5 and in Figs. S2-S4 are likely due to the 235 modest sample size (for ECC sondes) and small sample sizes (for other types). The actual 236 coincidence in time for profiles can range from less than one day to about 1-3 weeks, depending on 237 the number of ozonesonde and aircraft O3 profiles collected within each month-bin. This means the 238 larger the atmospheric variability of O_3 is, the larger the real differences between ozonesonde and 239 aircraft O₃ can become, particularly when the number of profiles within a month-bin are small. In 240 addition, there are errors due to variations in the aircraft take-off and landing trajectories and the 241 balloon rise rate, the geographical location of the observation stations (and any associated 242 meteorological differences) and any systematic difference in standard observational times.

Table 2 indicates that in all four seasons ECC data correlate well with aircraft observations, with R ranging from 0.71 to 0.76, but with larger average biases in winter and spring, as noted. It is not clear if these seasonal average differences in bias are significant, as the uncertainty ranges on the seasonal averages (lower plot of Fig. 5) overlap.

247 The vertical distribution of tropospheric O₃ observed by Brewer-Mast and IAGOS aircraft in the 248 four seasons is similar (Fig. S2). Differences are also similar, except above 7 km, where the 249 uncertainties are larger, and in general the uncertainty ranges on the seasonal difference averages 250 overlap. Since these comparisons come from only one station pair, some of the differences may be 251 attributable to local differences in topography and meteorology. Table 2 shows that correlations for 252 the ensemble of Brewer-Mast stations are higher than those for ECC stations. Like the ECC sondes, 253 average biases are all positive, but this is determined by the biases above 7 km (Fig. 4); unlike the 254 ECCs, biases are negative in the lowest 3 km.

The vertical distribution of tropospheric O_3 concentrations observed by Carbon-Iodine sondes and IAGOS aircraft in the four seasons are similar, except in summer when the tropopause is high (Fig. S3). The difference plots are fairly similar, except in the lowest 3 km, where differences become quite large in summer. Like the previous comparison for Brewer-Mast sondes, these comparisons come from only one station pair, and so the large differences in the boundary layer in summer are likely due to local O_3 production sampled by the sonde but not the aircraft. Likely for this reason, the consistency between Carbon-Iodine and aircraft observations is poor in summer, with R being 262 only 0.46 (Table 2). For the other three seasons it is fairly good.

263 The tropospheric O_3 observed by Indian-sondes displays a consistently high bias relative to IAGOS 264 in all seasons, and the seasonal difference plots are quite similar, except in the lowest 3 km in winter 265 (Fig. S4). This different behavior in winter is likely due to local ozone production sampled by the 266 aircraft but not the sonde. Temperature inversions are common in the winter in northern India and 267 trap local pollution. The very low values registered by the aircraft near the surface in summer also 268 suggest local effects, in this case titration by NO_x .

269 The tropospheric O₃ observed by Indian-sonde in the four seasons is 43.3-79.4 ppb, 31.4-80.2 ppb, 270 42.2-69.6 ppb and 51.5-87.5 ppb, and that observed by aircraft in the four seasons is 22.8-60.1 ppb, 271 14.8-47.1 ppb, 25.0-44.1 ppb and 35.6-53.3 ppb (Fig. S4). The tropospheric O₃ observed in Indian-272 sonde in the four seasons increases with height almost linearly. The tropospheric O_3 observed by 273 aircraft first increases and then decreases with altitude in spring, summer and autumn, while in 274 winter, it first decreases and then increases with altitude. The tropospheric O_3 observed by the Indian-sonde and the aircraft is quite different, and the RD in the four seasons is 6.3% to 47.5%, 275 276 22.6% to 52.9%, 26.4% to 40.6% and 5.13% to 39.13%. Table 2 indicates poor consistency between 277 Indian-sonde and aircraft observations in all four seasons, with R in winter only 0.18. The bias and RMSE in winter are the largest, at 40.07 ppb and 64.99 ppb. The bias, R and RMSE in the other 278 279 three seasons are smaller, and the differences between them slight.

280 **3.3 Dependence of relative biases on station-airport distances**

281 A major concern with comparing IAGOS and ozonesonde observations is that the stations and 282 airports are not generally co-located, and even where they are close, the flight paths taken by balloon 283 and aircraft are quite different. Fig. 6 compares the average vertical distribution of tropospheric O_3 284 observed at different station-airport distances by ECC sondes and IAGOS aircraft. Note that we 285 continue to separate sonde station data by type --- only ECC data are used here. Sonde-aircraft pairs 286 have been grouped by station-airport distance (Table 1). The differences in average bias vary only 287 very modestly between the different station-airport distance categories, and those differences are 288 not statistically different at the 95% confidence level (Fig. 6d). This, partially owing presumably to 289 the use of mean monthly averages, is encouraging, as this provides further evidence that the average 290 bias we have derived is an artifact strictly of instrument differences.

- 291 Table 3 indicates that the bias variation between ECC and aircraft observations at different station-
- airport distances is small, ranging from 5.7 ppb to 9.8 ppb. Correlations for these groupings are also

293 fairly similar, at R = 0.8, 0.9 and 0.7.

- 294 Compared with ECC sondes, the consistency between the Indian-sonde and aircraft observations is
- poor at all station-airport distances, with much larger biases, and poor correlations, with R = 0.2 to
- 296 0.4. Nevertheless, Fig. S5 shows that the profiles of average differences are quite similar for station-
- 297 airport distances $< 1^{\circ}$, and distances of $2^{\circ}-4^{\circ}$ (Fig. S5c).
- 298 Fig. 7 and Figs. S6-S8 examine possible seasonal variation in the differences at different station-
- airport distances, for ECC sondes. The mean differences for the different station-airport distance
 categories are larger than for the annual averages (Fig. 6), but in general those differences are not
 statistically different at the 95% confidence level (Figs. 7d and S6d-S8d).
- 302

303 3.4 Comparison of ozonesonde relative biases under operational conditions using IAGOS 304 observations as a transfer standard

The foregoing discussion demonstrates that, consistent with previous work, there is a fairly constant relative bias between IAGOS and sondes, with considerable dependence on sonde type, as expected from previous sonde intercomparisons like JOSIE 1996. Although uncertainties are sizeable due to the relatively sparse nature of the available data, we find consistent differences at all sites, with little

- 309 dependence on season or on station-airport separation, and little regional dependence (not shown).
- 310 Notwithstanding this overall sonde-IAGOS bias, we can use these station-airport comparisons to

derive relative biases of the different sonde types in use in the global network.

312 This does not assume that the aircraft data are unbiased. The true value of the O₃ profile (or even its

- 313 average) remains unknown, as do the absolute biases of sondes and IAGOS. It does assume:
- 314 1. That the measurement errors are random and normally distributed;

315 2. That there is one, constant bias for each measurement type (that is, if, for example, the Indian

- 316 sonde has changed over the period of comparison, or the IAGOS instruments have different biases,
- 317 there would be additional error that is not included in our uncertainty estimate);
- 318 3. That the measurement biases are not dependent on the geographic location or other variability of
- 319 the O₃ profile. This does not assume that the average O₃ profile is the same, just that the instruments

320 respond in the same way.

321 With these assumptions we can use the results of Fig. 2 to estimate the relative biases of each sonde 322 type to each other. The uncertainty of the comparisons will be the quadratic sum of the uncertainties 323 of the two IAGOS-sonde comparisons. The results are shown in Table 4. This intercomparison of 324 the different sonde types has an important advantage: it compares ozonesonde relative biases under 325 operational conditions, as it compares the data that are actually in databases like the WOUDC. It 326 also fills a gap, as the last WMO international intercomparison involving all four sonde types was 327 JOSIE 1996. These results are broadly consistent with those from JOSIE 1996 (Smit and Kley, 1998; 328 their Table 8 and Fig. 11).

329 In fact, the types of ozonesonde have changed during long-term observations at some stations (e.g. 330 Uccle and Payerne). De Backer et al. (1998) showed that with the use of an appropriate correction 331 procedure, accounting for the loss of pump efficiency with decreasing pressure and temperature, it 332 is possible to reduce the mean difference between O_3 profiles obtained with both types of sondes 333 below 3%, which is statistically insignificant over nearly the whole operational altitude range (from 334 the ground to 32 km). Stübi et al. (2008) also found that the O_3 difference between the Brewer-Mast 335 and the ECC ozonesonde data shows good agreement between the two sonde types, and the profile 336 of the O₃ difference is limited to $\pm 5\%$ (± 0.3 mPa) from the ground to 32 km. The results for Brewer-337 Mast sondes in Table 4 should also be applicable to the older Payerne and Uccle records, and are 338 generally consistent with these results and with those for the older Canadian records (Tarasick et al., 339 2002; 2016).

340 The results in Table 4 will be quite valuable for addressing the problem of relative biases when

341 merging ozonesonde data into global climatologies (e.g. McPeters et al., 2007; McPeters and Labow,

342 2012; Bodeker et al., 2013; Liu et al., 2013; Hassler et al., 2018;).

343 4 Conclusions

344 The vertical distribution of tropospheric O₃ observed by ozonesondes and IAGOS aircraft sensors

are compared at 23 pairs of sites between about 30°S and 55°N from 1995 to 2021. Overall, ECC,

- 346 Brewer-Mast, and Carbon-Iodine sondes agree reasonably well with aircraft observations, with
- 347 average biases of 2.58 ppb, -0.28 ppb, and 0.67 ppb, and correlation coefficients of 0.72, 0.82, and
- 348 0.66, respectively. The agreement between the aircraft and Indian-sonde observations is poor, with

an average bias of 15.32 ppb and R of 0.44. Ozonesondes and aircraft observations have smaller R
in the middle troposphere, but larger bias and RMSE in the upper troposphere. The bias and RMSE
relative to the aircraft observations at different altitudes for ECC, Carbon-iodine and Brewer-mast
sondes are lower than those for the Indian-sonde.

353 Notwithstanding this general agreement, all sonde types show significant average biases with 354 respect to IAGOS. The O₃ concentration observed by ECC sondes is on average higher by 5-10% 355 than that observed by IAGOS aircraft, and the relative bias increases modestly with altitude. 356 Seasonal variations in the relative bias are not in general statistically significant. The distance 357 between station and airport within 4° also has little effect on the comparison results. When the ECC station pairs are grouped by station-airport distances of <1° (latitude and longitude), 1-2°, and 2-4°, 358 359 biases with respect to IAGOS measurements vary from 5.7 to 9.8 ppb, and correlations from 0.7 to 360 0.9.

361 Thus, the observed average relative bias between sondes and IAGOS found in this study, also noted 362 by previous authors (Zbinden et al., 2013; Staufer et al., 2013, 2014; Tanimoto et al., 2015; Tarasick et al., 2019), is a robust result. Possible reasons for the difference include: side reactions that cause 363 364 sondes to produce excess iodine (Saltzman and Gilbert, 1959), and/or loss of O₃ on the inlet pump 365 that could cause IAGOS monitors to read low at pressures below 800 hPa. The latter was an issue 366 in earlier aircraft O₃ sampling programs (Schnadt Poberaj et al., 2007; Dias-Lalcaca et al., 1998; 367 Brunner et al., 2001), but Thouret et al. (1998) found it negligible for MOZAIC/IAGOS. A recent intercomparison campaign at the World Calibration Centre for Ozone Sondes (WCCOS) in Julich 368 369 in June 2023 indicates that the pumps do not greatly influence the ozone IAGOS measurements 370 between 1000 and 200 hPa. The IAGOS-CORE O₃ measurements (Package 1 with pressurization 371 pumps) and IAGOS-CARIBIC O3 measurements differ by less than 2%, and the WCCOS reference 372 UV photometer measurements are usually higher by 1-2% (to a maximum of 5%) compared to both 373 IAGOS instruments (Blot et al., 2021; Nédélec et al., 2015; Thouret et al., 2022). IAGOS-CARIBIC 374 does not have pressurization system, so that's why the good comparison between both IAGOS 375 systems means a lot.

However, as noted by Saltzman and Gilbert (1959), the differences in stoichiometry found at
different pH values imply that the chemistry of reaction of O₃ with KI is complex, involving

378 reactions that cause loss of iodine, as well as reactions other than the principal one that produce additional iodine. Several authors have noted the existence of slow side reactions involving the 379 380 phosphate buffer, with a time constant of about 20 minutes, that may also increase the stoichiometry 381 from 1.0 (Tarasick et al., 2021, Smit et al., 2024). Furthermore, evaporation causes the concentration 382 of the sensing solution to increase, which can further enhance the stoichiometry, by concentrating 383 the phosphate buffer, and to a lesser degree, by increasing the concentration of the KI itself (Johnson 384 et al., 2002). These factors could contribute to the observed average relative bias between sondes 385 and IAGOS found in this study.

This result implies that care must be taken when merging ozonesonde and IAGOS measurement datasets. While the aircraft and sonde measurements are often complementary, filling in important spatial gaps that would otherwise exist if only one type were used, the records are not typically over the same period, and so merging can introduce spurious jumps if relative biases are not taken into account.

The importance of O_3 in the troposphere as an air pollutant and a greenhouse gas, and therefore of accurate measurements of its temporal and spatial distribution implies that it will be important to resolve the causes of this bias, and so further research involving more direct comparisons of IAGOS instrumentation and ozonesondes, e.g. in the WCCOS chamber, are strongly recommended.

These results are also useful to evaluate the relative biases of the different sonde types in the troposphere, using the aircraft as a transfer standard. This intercomparison of the different sonde types has the advantage that it compares ozonesonde relative biases under operational conditions; that is, the data that are actually in databases like the WOUDC. These results will be invaluable for addressing relative biases when merging ozonesonde data into global climatologies (e.g. Bodeker et al., 2013; Hassler et al., 2018; Liu et al., 2013; McPeters et al., 2007; McPeters and Labow, 2012).

401

402 Competing interests. The contact authors have declared that none of the authors has any competing403 interests.

404 **Data availability.** The global ozone sounding data were acquired from the World Ozone and 405 Ultraviolet Radiation Data Center (http://www.woudc.org) operated by Environment Canada. The 406 IAGOS data are created with support from the European Commission, national agencies in Germany 407 (BMBF), France (MESR), and the UK (NERC), and the IAGOS member institutions 408 (http://www.iagos.org/partners).

409 Author contributions. HW: Data curation, Methodology, Validation, Visualization, Writing -410 original draft preparation, Writing - review & editing, Funding acquisition. LS: Methodology, Investigation, Writing - original draft. DWT: Data curation, Resources, Conceptualization, 411 412 Supervision, Writing - original draft preparation, Writing - review & editing. JL: Data curation, Resources. Methodology, Conceptualization, Supervision, Writing - original draft preparation, 413 414 Writing - review & editing, Funding acquisition. TZ: Funding acquisition, Writing - review & 415 editing. HGJS and RVM: Writing - review & editing. HGJS and RB: Acquisition of IAGOS data, 416 Quality assessment IAGOS data.

417

418 Acknowledgments. We thank many whose dedication makes datasets used in this study possible. 419 The global O₃ sounding data were acquired from the World Ozone and Ultraviolet Radiation Data 420 Center (http://www.woudc.org) operated by Environment Canada, Toronto, Canada, under the 421 auspices of the World Meteorological Organization. Flight-based atmospheric chemical 422 measurements are from IAGOS. IAGOS is funded by the European Union projects IAGOS-DS and 423 IAGOS-ERI. The IAGOS data are created with support from the European Commission, national agencies in Germany (BMBF), France (MESR), and the UK (NERC), and the IAGOS member 424 425 institutions (http://www.iagos.org/partners). The participating airlines (Lufthansa, Air France, 426 Austrian, China Airlines, Iberia, Cathay Pacific, Air Namibia, Sabena) supported IAGOS by carrying the measurement equipment free of charge since 1994. We are also thankful to the Digital 427 428 Research Alliance of Canada at the University of Toronto for facilitating data analysis.

429

Financial support. This study was supported by the Natural Science and Engineering Council of
Canada (Grant No. RGPIN-2020-05163), the National Key Research and Development Program of
China (Grant No., 2022YFC3701204), the National Natural Science Foundation of China
(42275196 and 41830965), the Natural Science Foundation of Jiangsu Province (BK20231300), and

434 Wuxi University Research Start-up Fund for Introduced Talents (2023r035).

435

436 References

- 437 Attmannspacher, A., and Dütsch, H.U., 1970. International ozone sonde intercomparison at the
 438 Observatory Hohenpeissenberg, Ber. Dtsch. Wetterdienstes, 120, 1-85.
- Attmannspacher, A., and Dütsch, H.U., 1981. Second international ozone sonde intercomparison at
 the Observatory Hohenpeissenberg, Ber. Dtsch. Wetterdienstes, 157, 1-64.
- 441 Beekmann, M., Ancellet, G., Megie, G., Smit, H.G.J., Kley, D., 1994. Intercomparison campaign of
- 442 vertical ozone profiles including electrochemical sondes of ECC and Brewer-Mast type and a
- ground based UV-differential absorption lidar. Journal of Atmospheric Chemistry, 19, 259-288.
 19.
- Beekmann, M., Ancellet, G., Martin, D., Abonnel, C., Duverneuil, G., Eideliman, F., Bessemoulin,
 P., Fritz, N., Gizard, E., 1995. Intercomparison of tropospheric ozone profiles obtained by
 electrochemical sondes, a ground based lidar and an airborne UV-photometer. Atmospheric
 Environment, 29(9), 1027-1042.
- Bernhard, G.H., Bais, A.F., Aucamp, P.J., Klekociuk, A.R., Liley, J.B., McKenzie, R.L., 2023.
 Stratospheric ozone, UV radiation, and climate interactions. Photochemical and
 Photobiological Sciences, 1-53.
- Blot, R., Nedelec, P., Boulanger, D., Wolff, P., Sauvage, B., Cousin, J.-M., Athier, G., Zahn, A.,
 Obersteiner, F., Scharffe, D., Petetin, H., Bennouna, Y., Clark, H., Thouret, V., 2021. Internal
 consistency of the IAGOS ozone and carbon monoxide measurements for the last 25 years.
- 455 Atmospheric Measurement Techniques, 14, 3935-3951, https://doi.org/10.5194/amt-14-3935456 2021.
- Bodeker, G. E., Hassler, B., Young, P. J., Portmann, R. W., 2013. A vertically resolved, global, gapfree ozone database for assessing or constraining global climate model simulations. Earth
 System Science Data, 5, 31-43, https://doi.org/10.5194/essd-5-31-2013.
- Brunner, D., J. Staehelin, D. Jeker, H., Wernli, U. Schumann, 2001. Nitrogen oxides and ozone in
 the tropopause region of the Northern Hemisphere: Measurements from commercial aircraft in
 1995/96 and 1997. Journal of Geophysical Research: Atmospheres, 106, 27673-27699.
- 463 Callis, L.B., Boughner, R.E., Natarajan, M., Lambeth, J.D., Baker, D.N., Blake, J.B., 1991. Ozone
- depletion in the high latitude lower stratosphere: 1979-1990. Journal of Geophysical Research:

- 465 Atmospheres, 96(D2), 2921-2937.
- 466 David, L.M. and Nair, P.R., 2013. Tropospheric column O₃ and NO₂ over the Indian region observed
 467 by Ozone Monitoring Instrument (OMI): Seasonal changes and long-term trends. Atmospheric
 468 Environment, 65, 25-39.
- 469 De Backer, H., De Muer, D., De Sadelaer, G., 1998. Comparison of ozone profiles obtained with
 470 Brewer-Mast and Z-ECC sensors during simultaneous ascents. Journal of Geophysical
 471 Research: Atmospheres, 103(D16), 19641-19648.
- Deshler, T., Mercer, J.L., Smit, H.G., Stubi, R., Levrat, G., Johnson, B.J., Oltmans, S.J., Kivi, R.,
 Thompson, A.M., Witte, J., Davies, J., 2008. Atmospheric comparison of electrochemical cell
 ozonesondes from different manufacturers, and with different cathode solution strengths: The
 Balloon Experiment on Standards for Ozonesondes. Journal of Geophysical Research:
 Atmospheres, 113(D4), D04307, doi:10.1029/2007JD008975.
- Dias-Lalcaca, P., Brunner, D., Imfeld, W., Moser, W., Staehelin, J., 1998. An automated system for
 the measurement of nitrogen oxides and ozone concentrations from a passenger aircraft:
 Instrumentation and first results of the NOXAR project. Environmental Science and
 Technology, 32(20), 3228-3236.
- Ebojie, F., Burrows, J.P., Gebhardt, C., Ladstätter-Weißenmayer, A., Von Savigny, C., Rozanov, A.,
 Weber, M., Bovensmann, H., 2016. Global tropospheric ozone variations from 2003 to 2011
 as seen by SCIAMACHY. Atmospheric Chemistry and Physics, 16(2), 417-436.
- Fu, Y. and Tai, A.P.K., 2015. Impact of climate and land cover changes on tropospheric ozone air
 quality and public health in East Asia between 1980 and 2010. Atmospheric Chemistry and
 Physics, 15(17), 10093-10106.
- García, O.E., Sanromá, E., Schneider, M., Hase, F., León-Luis, S.F., Blumenstock, T., Sepúlveda,
 E., Redondas, A., Carreño, V., Torres, C., Prats, N., 2022. Improved ozone monitoring by
 ground-based FTIR spectrometry. Atmospheric Measurement Techniques, 15(8), 2557-2577.
- 490 García, O.E., Schneider, M., Sepúlveda, E., Hase, F., Blumenstock, T., Cuevas, E., Ramos, R., Gross,
- J., Barthlott, S., Röhling, A.N., Sanromá, E., 2021. Twenty years of ground-based NDACC
 FTIR spectrometry at Izaña Observatory-overview and long-term comparison to other
 techniques. Atmospheric Chemistry and Physics, 21(20), 15519-15554.

17 / 34

- 494 Gaudel, A., Cooper, O.R., Ancellet, G., Barret, B., Boynard, A., Burrows, J.P., Clerbaux, C., Coheur,
- 495 P.F., Cuesta, J., Cuevas, E., Doniki, S., 2018. Tropospheric Ozone Assessment Report: Present-
- day distribution and trends of tropospheric ozone relevant to climate and global atmospheric
 chemistry model evaluation. Elementa: Science of the Anthropocene, 6.

- Gaudel, A., Cooper, O.R., Chang, K.L., Bourgeois, I., Ziemke, J.R., Strode, S.A., Oman, L.D.,
 Sellitto, P., Nédélec, P., Blot, R., Thouret, V., 2020. Aircraft observations since the 1990s reveal
 increases of tropospheric ozone at multiple locations across the Northern Hemisphere. Science
- 501 Advances, 6(34), eaba8272.
- Gebhardt, C., Rozanov, A., Hommel, R., Weber, M., Bovensmann, H., Burrows, J.P., Degenstein,
 D., Froidevaux, L., Thompson, A.M., 2014. Stratospheric ozone trends and variability as seen
 by SCIAMACHY from 2002 to 2012. Atmospheric Chemistry and Physics, 14(2), 831-846.
- 505 Hassler, B., Kremser, S., Bodeker, G. E., Lewis, J., Nesbit, K., Davis, S. M., Chipperfield, M. P.,
- 506 Dhomse, S. S., Dameris, M., 2018, An updated version of a gap-free monthly mean zonal mean
 507 ozone database. Earth System Science Data, 10, 1473-1490.
- Hegarty, J., Mao, H., Talbot, R., 2009. Synoptic influences on springtime tropospheric O₃ and CO
 over the North American export region observed by TES. Atmospheric Chemistry and
 Physics, 9(11), 3755-3776.
- Hilsenrath, E., Attmannspacher, W., Bass, A., Evans, W., Hagemeyer, R., Barnes, R., Komhyr, W.,
 Mauersberger, K., Mentall, J., Proffitt, M., Robbins, D., 1986. Results from the balloon ozone
- 513 intercomparison campaign (BOIC). Journal of Geophysical Research: Atmospheres, 91(D12),
 514 13137-13152.
- Hoogen, R., Rozanov, V.V., Burrows, J.P., 1999. Ozone profiles from GOME satellite data:
 Algorithm description and first validation. Journal of Geophysical Research:
 Atmospheres, 104(D7), 8263-8280.
- 518 Hu, L., Jacob, D.J., Liu, X., Zhang, Y., Zhang, L., Kim, P.S., Sulprizio, M.P., Yantosca, R.M., 2017.
- 519 Global budget of tropospheric ozone: Evaluating recent model advances with satellite (OMI), 520 aircraft (IAGOS), and ozonesonde observations. Atmospheric Environment, 167, 323-334.
- 521 Hubert, D., Heue, K.P., Lambert, J.C., Verhoelst, T., Allaart, M., Compernolle, S., Cullis, P.D., Dehn,
- 522 A., Félix, C., Johnson, B.J., Keppens, A., 2021. TROPOMI tropospheric ozone column data:

- geophysical assessment and comparison to ozonesondes, GOME-2B and OMI. Atmospheric
 Measurement Techniques, 14(12), 7405-7433.
- Johnson, B.J., Oltmans, S.J., Vömel, H., Smit, H.G.J., Deshler, T., Kroeger, C., 2002. ECC
 Ozonesonde pump efficiency measurements and tests on the sensitivity to ozone of buffered
 and unbuffered ECC sensor cathode solutions. Journal of Geophysical Research: Atmospheres,
 107(4393), 10-1029. doi: 10.1029/2001JD000557.
- Keckhut, P., McDermid, S., Swart, D., McGee, T., Godin-Beekmann, S., Adriani, A., Barnes, J.,
 Baray, J.L., Bencherif, H., Claude, H., di Sarra, A.G., 2004. Review of ozone and temperature
- lidar validations performed within the framework of the Network for the Detection of
 Stratospheric Change. Journal of Environmental Monitoring, 6(9), 721-733.
- Kerr, J.B., Fast, H., McElroy, C.T., Oltmans, S.J., Lathrop, J.A., Kyro, E., Paukkunen, A., Claude,
 H., Köhler, U., Sreedharan, C.R., Takao, T., 1994. The 1991 WMO international ozonesonde
 intercomparison at Vanscoy, Canada. Atmosphere-Ocean, 32(4), 685-716.
- Lefohn, A.S., Malley, C.S., Smith, L., Wells, B., Hazucha, M., Simon, H., Naik, V., Mills, G.,
 Schultz, M.G., Paoletti, E., De Marco, A., 2018. Tropospheric ozone assessment report: Global
 ozone metrics for climate change, human health, and crop/ecosystem research. Elementa:
 Science of the Anthropocene, 6.
- Li, K., Jacob, D.J., Liao, H., Qiu, Y., Shen, L., Zhai, S., Bates, K.H., Sulprizio, M.P., Song, S., Lu,
 X., Zhang, Q., 2021. Ozone pollution in the North China Plain spreading into the late-winter
 haze season. Proceedings of the National Academy of Sciences, 118(10), e2015797118.
- Li, K., Jacob, D.J., Shen, L., Lu, X., De Smedt, I., Liao, H., 2020. Increases in surface ozone
 pollution in China from 2013 to 2019: anthropogenic and meteorological
 influences. Atmospheric Chemistry and Physics, 20(19), 11423-11433.
- Liao, Z., Ling, Z., Gao, M., Sun, J., Zhao, W., Ma, P., Quan, J., Fan, S., 2021. Tropospheric ozone
 variability over Hong Kong based on recent 20 years (2000-2019) ozonesonde
 observation. Journal of Geophysical Research: Atmospheres, 126(3), e2020JD033054.
- 549 Liu, G., Liu, J., Tarasick, D.W., Fioletov, V.E., Jin, J.J., Moeini, O., Liu, X., Sioris, C.E., Osman,
- 550 M., 2013. A global tropospheric ozone climatology from trajectory-mapped ozone soundings.
- 551 Atmospheric Chemistry and Physics, 13(21), 10659-10675.

- Logan, J.A., 1985. Tropospheric ozone: Seasonal behavior, trends, and anthropogenic
 influence. Journal of Geophysical Research: Atmospheres, 90(D6), 10463-10482.
- Ma, Y., Ma, B., Jiao, H., Zhang, Y., Xin, J., Yu, Z., 2020. An analysis of the effects of weather and
 air pollution on tropospheric ozone using a generalized additive model in Western China:
 Lanzhou, Gansu. Atmospheric Environment, 224, 117342.
- McPeters, R.D., Labow, G.J., Logan, J.A., 2007. Ozone climatological profiles for satellite retrieval
 algorithms. Journal of Geophysical Research: Atmospheres, 112(D5), D05308.
 doi:10.1029/2005JD006823.
- McPeters, R.D. and Labow, G.J., 2012. Climatology 2011: An MLS and sonde derived ozone
 climatology for satellite retrieval algorithms. Journal of Geophysical Research: Atmospheres,
 117(D10), D10303. doi:10.1029/2011JD017006.
- Miles, G.M., Siddans, R., Kerridge, B.J., Latter, B.G., Richards, N.A.D., 2015. Tropospheric ozone
 and ozone profiles retrieved from GOME-2 and their validation. Atmospheric Measurement
 Techniques, 8(1), 385-398.
- Meng, K., Zhao, T., Xu, X., Zhang, Z., Bai, Y., Hu, Y., Zhao, Y., Zhang, X., Xin, Y., 2022. Influence
 of stratosphere-to-troposphere transport on summertime surface O₃ changes in North China
 Plain in 2019. Atmospheric Research, 276, 106271.
- 569 Monks, P.S., Archibald, A.T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier,
- 570 C., Law, K.S., Mills, G.E., Stevenson, D.S., 2015. Tropospheric ozone and its precursors from
- 571 the urban to the global scale from air quality to short-lived climate forcer. Atmospheric 572 Chemistry and Physics, 15(15), 8889-8973.
- 573 Nédélec, P., Blot, R., Boulanger, D., Athier, G., Cousin, J.M., Gautron, B., Petzold, A., Volz-Thomas,
- A., Thouret, V., 2015. Instrumentation on commercial aircraft for monitoring the atmospheric
- 575 composition on a global scale: the IAGOS system, technical overview of ozone and carbon
- 576 monoxide measurements. Tellus B: Chemical and Physical Meteorology, 67(1), 27791.
- 577 https://doi.org/10.3402/tellusb.v67.27791@zelb20.2016.68.issue-s1
- 578 Percy, K.E., Legge, A.H., Krupa, S.V., 2003. Tropospheric ozone: a continuing threat to global
 579 forests? Developments in Environmental Science, 3, 85-118.
- 580 Perlwitz, J., Pawson, S., Fogt, R.L., Nielsen, J.E., Neff, W.D., 2008. Impact of stratospheric ozone

- 581 hole recovery on Antarctic climate. Geophysical Research Letters, 35(8).
 582 https://doi.org/10.1029/2008GL033317.
- Ramanathan, V., Cicerone, R.J., Singh, H.B., Kiehl, J.T., 1985. Trace gas trends and their potential
 role in climate change. Journal of Geophysical Research: Atmospheres, 90(D3), 5547-5566.
- Saltzman, B.E. and Gilbert, N., 1959. Iodometric microdetermination of organic oxidants and ozone.
 Resolution of mixtures by kinetic colorimetry. Analytical Chemistry, 31(11), 1914-1920.
- 587 Schnadt Poberaj, C., Staehelin, J., Brunner, D., Thouret, V., Mohnen, V., 2007. A UT/LS ozone
- climatology of the nineteen seventies deduced from the GASP aircraft measurement program.
 Atmospheric Chemistry and Physics, 7(22), 5917-5936.
- Schultz, M.G., Schröder, S., Lyapina, O., Cooper, O.R., Galbally, I., Petropavlovskikh, I., Von
 Schneidemesser, E., Tanimoto, H., Elshorbany, Y., Naja, M., Seguel, R.J., 2017. Tropospheric
 Ozone Assessment Report: Database and metrics data of global surface ozone
 observations. Elementa: Science of the Anthropocene, 5.
- Sharma, S., Sharma, P., Khare, M., 2017. Photo-chemical transport modelling of tropospheric ozone:
 A review. Atmospheric Environment, 159, 34-54.
- 596 Smit, H.G.J., Sträter, W., Helten, M., Kley, D., Ciupa, D., Claude, H.J., Köhler, U., Hoegger, B.,
- 597 Levrat, G., Johnson, B., Oltmans, S.J., Kerr, J.B., Tarasick, D.W., Davies, J., Shitamichi, M.,
- 598 Srivastav, S.K., Vialle, C., 1996. JOSIE: The 1996 WMO international intercomparison of
- 599 ozonesondes under quasi-flight conditions in the environmental chamber at Jülich, *Proc.*
- 600 Quadrennial Ozone Symposium 1996, l'Aquila, Italy, edited by R. D. Bojkov and G. Visconti,

601 pp. 971-974, Parco Sci. e Tecnol. d'Abruzzo, Italy, 1996.

- Smit, H.G., Straeter, W., Johnson, B.J., Oltmans, S.J., Davies, J., Tarasick, D.W., Hoegger, B., Stubi,
 R., Schmidlin, F.J., Northam, T., Thompson, A.M., 2007. Assessment of the performance of
- 604 ECC-ozonesondes under quasi-flight conditions in the environmental simulation chamber:
- 605 Insights from the Juelich Ozone Sonde Intercomparison Experiment (JOSIE). Journal of
- 606 Geophysical Research: Atmospheres, 112(D19), D19306, doi:10.1029/2006JD007308.
- 607 Smit, H.G.J., 2014. Ozonesondes, in Encyclopedia of Atmospheric Sciences, Second Edition, edited
- by G.R. North, J.A. Pyle, and F. Zhang, Vol 1, pp. 372–378, Academic Press, London.
- 609 Smit, H. G. J., Poyraz, D., Van Malderen, R., Thompson, A. M., Tarasick, D. W., Stauffer, R. M.,

- Johnson, B. J., and Kollonige, D. E., 2024. New insights from the Jülich Ozone Sonde
 Intercomparison Experiment: calibration functions traceable to one ozone reference instrument.
 Atmospheric Measurement Techniques, 17, 73–112, https://doi.org/10.5194/amt-17-73-2024.
- Smit, H.G.J., Thompson, A.M., and the ASOPOS 2.0 Panel, 2021. Ozonesonde Measurement
 Principles and 1300 Best Operational Practices, WMO Global Atmosphere Watch Report
 Series, No. 268, World Meteorological Organization, 1301 Geneva, [Available online at
 https://library.wmo.int/doc num.php?explnum id=10884].
- Solomon, S., 1999. Stratospheric ozone depletion: A review of concepts and history. Reviews of
 Geophysics, 37(3), 275-316.
- Staehelin, J., Harris, N.R., Appenzeller, C. and Eberhard, J., 2001. Ozone trends: A review. Reviews
 of Geophysics, 39(2), 231-290.
- Staufer, J., Staehelin, J., Stübi, R., Peter, T., Tummon, F., Thouret, V., 2013. Trajectory matching of
 ozonesondes and MOZAIC measurements in the UTLS Part 1: Method description and
 application at Payerne, Switzerland. Atmospheric Measurement Techniques, 6, 3393-3406.
 doi:10.5194/amt-6-3393-2013.
- Staufer, J., Staehelin, J., Stübi, R., Peter, T., Tummon, F., Thouret, V., 2014. Trajectory matching of
 ozonesondes and MOZAIC measurements in the UTLS Part 2: Application to the global
 ozonesonde network. Atmospheric Measurement Techniques, 7, 241-266. doi:10.5194/amt-7241-2014.
- Stübi, R., Levrat, G., Hoegger, B., Viatte, P., Staehelin, J., Schmidlin, F.J., 2008. In-flight
 comparison of Brewer-Mast and electrochemical concentration cell ozonesondes. Journal of
 Geophysical Research: Atmospheres, 113(D13). https://doi.org/10.1029/2007JD009091.
- Tanimoto, H., Zbinden, R.M., Thouret, V., Nédélec, P., 2015. Consistency of tropospheric ozone
 observations made by different platforms and techniques in the global databases. Tellus B:
 Chemical and Physical Meteorology, 67(1), 27073.
- Tarasick, D. W., Davies, J., Anlauf, K., Watt, M., Steinbrecht, W., Claude, H. J., 2002. Laboratory
 investigations of the response of Brewer-Mast ozonesondes to tropospheric ozone. Journal of
 Geophysical Research: Atmospheres, 107(D16), ACH-14,
 https://doi.org/10.1029/2001JD001167.

- 639 Tarasick, D. W., Davies, J., Smit, H. G., Oltmans, S. J., 2016. A re-evaluated Canadian ozonesonde
- record: measurements of the vertical distribution of ozone over Canada from 1966 to 2013.
 Atmospheric Measurement Techniques, 9(1), 195-214.
- 642 Tarasick, D.W., Galbally, I., Cooper, O.R., Schultz, M.G., Ancellet, G., LeBlanc, T., Wallington, T.J.,
- 643 Ziemke, J., Liu, X., Steinbacher, M., Stähelin, J., Vigouroux, C., Hannigan, J., García, O., Foret,
- 644 G., Zanis, P., Weatherhead, E., Petropavlovskikh, I., Worden, H., Neu, J.L., Osman, M., Liu, J.,
- 645 Lin, M., Granados-Muñoz, M., Thompson, A.M., Oltmans, S.J., Cuesta, J., Dufour, G., Thouret,
- V., Hassler, B., Thompson, A.M., Trickl, T., 2019. TOAR- Observations: Tropospheric ozone
 from 1877 to 2016, observed levels, trends and uncertainties. Elementa: Science of the
 Anthropocene, 7(1), 39. DOI: http://doi.org/10.1525/elementa.376.
- Tarasick, D.W., Smit, H.G., Thompson, A.M., Morris, G.A., Witte, J.C., Davies, J., Nakano, T., Van
 Malderen, R., Stauffer, R.M., Johnson, B.J., Stübi, R., Oltmans, S.J., Vömel, H., 2021.
 Improving ECC ozonesonde data quality: Assessment of current methods and outstanding

652 issues. Earth and Space Science, 8, e2019EA000914. <u>https://doi.org/10.1029/2019EA000914</u>.

- Thouret, V., Clark, H., Petzold, A., Nédélec, P., Zahn, A., 2022. IAGOS: Monitoring Atmospheric
 Composition for Air Quality and Climate by Passenger Aircraft. In Handbook of Air Quality
 and Climate Change (pp. 1-14). Singapore: Springer Nature Singapore.
- Thouret, V., Marenco, A., Logan, J.A., Nédélec, P., Grouhel, C., 1998. Comparisons of ozone
 measurements from the MOZAIC airborne program and the ozone sounding network at eight
 locations. Journal of Geophysical Research: Atmospheres, 103(D19), 25695-25720. doi:
 10.1029/98JD02243.
- Thompson, A. M., Smit, H. G. J., Witte, J. C., Stauffer, R. M., Johnson, B. J., Morris, G., von der
 Gathen, P., Van Malderen, R., Davies, J., Piters, A., Allaart, M., Posny, F., Kivi, R., Cullis, P.,
- 662 Hoang Anh, N. T., Corrales, E., Machinini, T., da Silva, F. R., Paiman, G., Thiong'o, K., Zainal,
- 663 Z., Brothers, G. B., Wolff, K. R., Nakano, T., Stübi, R., Romanens, G., Coetzee, G. J. R., Diaz,
- J. A., Mitro, S., Mohamad, M., Ogino, S., 2019. Ozonesonde quality assurance: The JOSIE-
- 665 SHADOZ (2017) experience. Bulletin of the American Meteorological Society, 100(1), 155666 171.
- 667 Vingarzan, R., 2004. A review of surface ozone background levels and trends. Atmospheric

- Vömel, H., Smit, H. G. J., Tarasick, D., Johnson, B., Oltmans, S. J., Selkirk, H., Thompson, A. M.,
 Stauffer, R. M., Witte, J. C., Davies, J., van Malderen, R., Morris, G. A., Nakano, T., Stübi, R.,
- 671 2020. A new method to correct the electrochemical concentration cell (ECC) ozonesonde time 672 response and its implications for "background current" and pump efficiency, Atmospheric
- 673 Measurement Techniques, 13, 5667-5680, https://doi.org/10.5194/amt-13-5667-2020.
- 674 Wang, H., Ke, Y., Tan, Y., Zhu, B., Zhao, T., Yin, Y., 2023. Observational evidence for the dual roles
- of BC in the megacity of eastern China: Enhanced O₃ and decreased PM_{2.5}
 pollution. Chemosphere, 327, 138548.
- 677 Wang, H., Lu, X., Jacob, D.J., Cooper, O.R., Chang, K.L., Li, K., Gao, M., Liu, Y., Sheng, B., Wu, K.,
- Wu, T., 2022. Global tropospheric ozone trends, attributions, and radiative impacts in 1995-2017:
 an integrated analysis using aircraft (IAGOS) observations, ozonesonde, and multi-decadal
 chemical model simulations. Atmospheric Chemistry and Physics, 22(20), 13753-13782.
- Wang, T., Xue, L., Brimblecombe, P., Lam, Y.F., Li, L., Zhang, L., 2017. Ozone pollution in China:
 A review of concentrations, meteorological influences, chemical precursors, and
 effects. Science of the Total Environment, 575, 1582-1596.
- Williamson, C.E., Neale, P.J., Hylander, S., Rose, K.C., Figueroa, F.L., Robinson, S.A., Häder, D.P.,
 Wängberg, S.Å., Worrest, R.C., 2019. The interactive effects of stratospheric ozone depletion,
- 686 UV radiation, and climate change on aquatic ecosystems. Photochemical and Photobiological
 687 Sciences, 18(3), 717-746.
- Ku, J., Huang, X., Wang, N., Li, Y., Ding, A., 2021. Understanding ozone pollution in the Yangtze
 River Delta of eastern China from the perspective of diurnal cycles. Science of the Total
 Environment, 752, 141928.
- Yang, T., Li, H., Wang, H., Sun, Y., Chen, X., Wang, F., Xu, L., Wang, Z., 2023. Vertical aerosol
 data assimilation technology and application based on satellite and ground lidar: A review and
 outlook. Journal of Environmental Sciences, 123, 292-305.
- Young, P.J., Naik, V., Fiore, A.M., Gaudel, A., Guo, J., Lin, M.Y., Neu, J.L., Parrish, D.D., Rieder,
 H.E., Schnell, J.L., Tilmes, S., 2018. Tropospheric Ozone Assessment Report: Assessment of
 global-scale model performance for global and regional ozone distributions, variability, and

⁶⁶⁸ Environment, 38(21), 3431-3442.

- trends. Elementa: Science of the Anthropocene, 6.
- Yu, R., Lin, Y., Zou, J., Dan, Y., Cheng, C., 2021. Review on atmospheric Ozone pollution in China:
 Formation, spatiotemporal distribution, precursors and affecting factors. Atmosphere, 12(12),
 1675.
- Zang, Z., Liu, J., Tarasick, D., Moeini, O., Bian, J., Zhang, J., Thompson, A. M., Van Malderen, R., Smit,
 H. G. J., Stauffer, R. M., Johnson, B. J., Kollonige, D. E., 2024. An improved Trajectory-mapped
 Ozonesonde dataset for the Stratosphere and Troposphere (TOST): update, validation and
 applications, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-800, 2024.
- Zbinden, R.M., Thouret, V., Ricaud, P., Carminati, F., Cammas, J.P., Nédélec, P., 2013. Climatology of
 pure tropospheric profiles and column contents of ozone and carbon monoxide using MOZAIC in
 the mid-northern latitudes (24° N to 50° N) from 1994 to 2009. Atmospheric Chemistry and Physics,
- 708 13(24), 12363-12388, https://doi.org/10.5194/acp-13-12363-2013, 2013.
- Zhang, L., Jacob, D.J., Boersma, K.F., Jaffe, D.A., Olson, J.R., Bowman, K.W., Worden, J.R., Thompson,
 A.M., Avery, M.A., Cohen, R.C., Dibb, J.E., 2008. Transpacific transport of ozone pollution and the
 effect of recent Asian emission increases on air quality in North America: an integrated analysis
 using satellite, aircraft, ozonesonde, and surface observations. Atmospheric Chemistry and
 Physics, 8(20), 6117-6136.
- Zhao, K., Huang, J., Wu, Y., Yuan, Z., Wang, Y., Li, Y., Ma, X., Liu, X., Ma, W., Wang, Y., Zhang,
 X., 2021. Impact of stratospheric intrusions on ozone enhancement in the lower troposphere
- and implication to air quality in Hong Kong and other South China regions. Journal of
- 717 Geophysical Research: Atmospheres, 126(18), e2020JD033955.

Figures

Figure 1. Map of 23 pairs of sites used in this study. Red circle markers are IAGOS sites, blue triangle markers are WOUDC sites.

Figure 2. Comparison of the vertical profiles of tropospheric O_3 observed between aircraft measurements and four types of ozonesondes, ECC, Indian-sonde, Brewer-mast, and Carbon-iodine. The error bar length is 4 times the standard error (SE) of the mean (equivalent to 95% confidence limits on the averages).

Figure 3. Correlation (*R*) of monthly mean ozone mixing ratios between ozonesonde and aircraft measurements. While IAGOS does measure in the lower stratosphere these values are usually far from the airport, so the sonde-aircraft distance will be large, we only plots data below 150 ppb. The black dashed line shows the 1:1 axis, the red line shows the linear fit (with the intercept set to 0), the color bar shows the data counts. Correlations are significant at the 99% level (p < 0.01). *N* denotes the number of data points, R is the correlation coefficient, Bias is the overall average difference in monthly mean values [Ozonesonde ozone – Aircraft ozone, in ppb], RMSE is the root mean square error, slope is the slope of the linear fit line. All data points are based on the monthly mean.

Figure 4. Mean relative difference (RD) between the ozonesonde O_3 and aircraft O_3 data. RD is calculated from ($O_{3-ozonesonde} - O_{3-aircraft}$)/ $O_{3-aircraft}$ ×100%. The green dashed line is the zero line.

28 / 34

Figure 5. The mean difference in vertical profiles of the tropospheric O₃ between ECC ozonesonde and aircraft observations in four seasons (a-d) and their mean relative difference, the black dashed line is the zero line (e-h).

Figure 6. The annual mean vertical profiles of tropospheric O₃ between ECC ozonesonde and aircraft observations at station-pair distances (D) of D<1° (a), 1°< D <2° (b), and 2°< D <4°. The relative differences for the three categories are shown in (d), the black dashed line is the zero line.

Figure 7. The seasonal mean vertical profiles of tropospheric O_3 in spring between ECC ozonesonde and aircraft observations at station-pair distances (D) of D<1° (a), 1°< D <2° (b), and 2°< D <4°. The relative differences for the three categories are shown in (d), the black dashed line is the zero line.

Tables

Table 1. Summary of the station information, including station's name, geolocation, the number of profiles, observational period, and the station-pair distance used in

this study.											
N	IOZAIC-IA	VGOS			MO	UDC			Station- airport	E:1IN	
Station name	Lon	Lat	No. profiles	Station name	Lon	Lat	No. profiles	Type	distance (km)	no. value data months	period
Toronto	-78.50	44.58	321	Egbert	-79.78	44.23	181	ECC	108.87	33	2004-2008
Dusseldorf	4.96	51.82	412	De Bilt	5.18	52.10	333	ECC	34.59	63	1995-2013
Munich	11.78	48.35	2136	Hohenpeissenberg	11.02	47.81	1032	Brewer-mast	82.42	67	1996-2006
Johannesburg	28.07	-25.32	199	Irene	28.22	-25.91	135	ECC	67.30	26	1998-2003
Nairobi	36.33	-0.94	114	Nairobi	36.75	-1.30	42	ECC	61.50	10	1997-1998
Mumbai	73.26	19.05	122	Pune	73.85	18.53	56	Indian-sonde	84.85	35	1996-2003
Delhi	76.65	28.73	342	New Delhi	77.18	28.63	88	Indian-sonde	52.88	50	1995-2016
Hongkong	114.11	22.10	123	King's Park	114.17	22.31	115	ECC	24.15	25	2000-2005
Taipei	121.08	24.59	2115	Taipei	121.48	25.02	58	ECC	62.58	31	2014-2018
Tokyo	139.73	36.33	1342	Tateno (Tsukuba)	140.13	36.05	655	Carbon-iodine	47.52	116	1995-2006

31 / 34

Calgary	-113.25	52.03	170	Edmonton	-114.10	53.55	112	ECC	178.41	17	2009-2011
Brussels	3.24	51.21	2412	Uccle	4.36	50.80	736	ECC	148.40	55	1997-2009
Honolulu	-158.33	21.66	169	Hilo (HI)	-155.07	19.58	107	ECC	410.56	16	2015-2017
Vancouver	-123.14	49.95	595	Kelowna	-127.38	50.69	594	ECC	312.01	68	2003-2015
m-Francisco	-122.50	38.30	34	Trinidad Head (CA)	-124.15	41.05	53	ECC	336.78	10	1999-2001
Portland	-122.06	46.76	385	Kelowna	-119.38	49.97	317	ECC	408.08	45	2003-2009
Atlanta	-83.28	34.78	34	Huntsville (AL)	-86.58	35.28	85	ECC	305.54	10	1999-2006
Vashington	-75.59	40.52	610	Wallops Island (VA)	-75.46	37.94	616	ECC	287.09	80	1994-2014
Cayenne	-51.78	5.75	200	Paramaribo	-55.21	5.81	64	ECC	379.50	6	2002-2013
Frankfurt	8.30	50.16	12742	Payerne	6.94	46.81	2673	ECC	385.72	204	2002-2020
uwait-City	48.01	29.52	105	Esfahan	51.43	32.48	34	ECC	463.15	17	2001-2004
Male	73.51	5.00	76	Trivandrum	76.95	8.48	45	Indian-sonde	543.73	24	1997-2000
Colombo	80.41	7.79	31	Trivandrum	76.95	8.48	37	Indian-sonde	388.49	11	1998-2000

32 / 34

Туре	Season	Bias (O3-ozonesonde - O3-aircraft) (ppb)	R	RMSE (ppb)
	Spring	17.34	0.76	65.52
FOO	Summer	1.96	0.76	40.15
ECC	Autumn	1.75	0.71	34.47
	Winter	7.61	0.71	51.74
	Spring	10.22	0.94	43.51
D	Summer	2.99	0.83	48.79
Brewer-mast	Autumn	6.53	0.79	29.40
	Winter	6.11	0.88	45.45
	Spring	-9.19	0.84	38.34
	Summer	3.83	0.46	29.31
Carbon-iodine	Autumn	2.33	0.68	15.10
	Winter	-16.68	0.88	44.72
	Spring	19.64	0.44	44.30
T 1' 1	Summer	19.58	0.57	37.44
Indian-sonde	Autumn	20.38	0.45	37.30
	Winter	40.07	0.18	64.99

1 Table 2. Bias, correlation coefficient (R), and RMSE for four types of ozonesonde and aircraft

4 Table 3. Bias, correlation coefficient(R) and RMSE for ECC and Indian-sonde ozonesonde and

•	5	aircraft	observation	s at different	station-a	airport	distance
---	---	----------	-------------	----------------	-----------	---------	----------

Type	Station-pair	Bias (O2 grangende - O2 givent) (ppb)		RMSE (nnh)
Type	distance	Dias (05-ozonesonde - 05-aircran) (pp0)	К	KWOL (PPO)
	<1°	9.78	0.78	47.46
ECC	1°-2°	8.91	0.90	40.73
	2°-4°	5.65	0.67	51.00
T	<1°	26.71	0.37	49.54
Indian-sonde	2°-4°	15.35	0.24	30.86

² observations in four seasons.

³

6

7 **Table 4**. Comparison of the sondes of each type to IAGOS. (average ± 2 times the standard error

nast/IAGOS)/(E	CC/IAGOS), Carb	on-iodine/ECC is (C	arbon-iodine /IAGO	S)/(ECC/IAGOS)
Altituda (Irma)	Indian-	Brewer-	Carbon-	
Altitude(km)	sonde/ECC	mast/ECC	iodine/ECC	ECC/ IAGOS
0-1	$1.59 \pm \! 1.74$	0.83 ± 0.96	$1.10\pm\!\!1.36$	0.98 ± 1.28
1-2	$1.31 \pm \! 1.83$	$0.81 \pm \! 0.90$	$1.00 \pm \! 1.05$	$1.07 \pm \! 1.58$
2-3	$1.20 \pm \! 1.62$	$0.89 \pm \! 0.97$	$0.93 \pm \! 0.85$	1.08 ± 1.54
3-4	$1.14 \pm \! 1.57$	$0.88 \pm \! 0.94$	$0.90 \pm \! 0.87$	$1.10 \pm \!\! 1.48$
4-5	1.13 ± 1.61	$0.89 \pm \! 1.02$	$0.91 \pm \! 0.99$	1.10 ± 1.44
5-6	1.18 ± 1.76	0.91 ± 1.05	$0.92 \pm \! 1.04$	1.08 ± 1.37
6-7	$1.20 \pm \! 1.89$	0.91 ± 1.00	$0.92 \pm \! 0.82$	1.09 ± 1.54
7-8	$1.22 \pm \! 1.92$	$0.92 \pm \! 0.94$	$0.90 \pm \! 0.64$	1.11 ± 1.69
8-9	1.29 ± 2.09	0.95 ± 0.99	$0.85\pm\!\!0.55$	1.12 ± 1.61
9-10	1.35 ± 2.35	$0.97 \pm \! 1.09$	$0.79 \pm \! 0.62$	1.11 ± 1.46
10-11	1.41 ± 3.26	0.98 ± 1.21	$0.70\pm\!\!0.68$	1.12 ± 1.37
11-12	1.39 ± 4.61	0.97 ± 1.19	0.67 ± 0.72	1.12 ± 1.42

8 (SE)) Indian-sonde/ECC is (Indian-sonde/IAGOS)/(ECC/IAGOS), Brewer-mast/ECC is (Brewer 9 mast/IAGOS)/(ECC/IAGOS), Carbon-iodine/ECC is (Carbon-iodine /IAGOS)/(ECC/IAGOS)