
Authors’ reply to RC2 by Anonymous Referee #2 

We would like to thank Anonymous Referee 2 for the constructive and encouraging review of our 
manuscript. Please find our point-by-point replies below. The Referee’s comments are printed in blue, and 
our replies in black.


Review of Kuhn et al., “NitroNet- A deep-learning NO2 profile retrieval prototype for the TROPOMI satellite 
instrument”


Reviewer suggestion: minor revisions.


This paper presents a new NO2 retrieval model to produce vertical profiles from satellite observations, using 
a machine learning approach. In my opinion, this is an impressive piece of work, thoroughly explained, well 
executed, and producing impressive results. The results of NitroNet comparisons to vertical columns and 
surface values, within and outside of the training times/regions, shows very good promise.


I think that the main weakness of the paper lies in the challenge of verifying the NO2 vertical profiles, not 
just columns and surface values. This is inherent to the point of the paper of course, i.e., that NO2 vertical 
profile measurements are sparse. The authors tackle this by comparison to the FRM4DOAS MAX-DOAS 
dataset, and results are promising. I think it would improve the paper to include comparison to more MAX-
DOAS datasets if possible, outside the European domain and over more seasons. Perhaps this could be 
achieved by looking at a few discrete layers in the profile, not necessarily full profile comparison plots. I also 
think the authors should consider whether verification against cloud-sliced NO2 data, or aircraft campaign 
NOx measurements, are an option to demonstrate the capability of NitroNet to provide information on free- 
and upper-tropospheric NO2 tropospheric profile.


We acknowledge, that the validation against NO2 profile observations is of high importance. However, the 
required reference data are hard to obtain. For example:


- NO2 profiles from cloud slicing are usually reported on coarse spatio-temporal grids due to averaging 
(e.g. seasonal means with 1° x 1° horizontal resolution and 5 tropospheric layers, see Marais et al., 2021).


- A reasonable validation against aircraft measurements would require data recorded on the central 
European domain after TROPOMI went operational (2017). There are datasets which meet these criteria, 
(see e.g. Riess et al., 2023; Brenninkmeijer et al., 2007), but these are just as sparse as the FRM4DOAS 
measurements used in our manuscript.


- NO2 sonde measurements are equally sparse, and should be considered immature compared to other 
measurement methods.


The possibility of using such reference data for validations in the future was added to the outlook. The 
following sentence was added to sect. 5: NO2 profile observations from cloud-slicing (see e.g. Marais 
(2021)) or aircraft measurements (see e.g. Riess (2023); Brenninkmeijer (2007)) may be used for further 
validation of NitroNet at various altitudes.


Based on the Referee’s suggestions, the validation against FRM4DOAS profiles was extended. More details 
are given further below in the reply to the Referees comment referring to l. 425 at the bottom.


I have listed some specific minor revisions below.


Introduction:


It is worth mentioning that there are methods of determining some vertically-resolved NO2 information from 
satellite observations, e.g. cloud-slicing, and also there are aircraft campaigns providing vertically-resolved 
NOx information. 
 
See the answer above. Cloud slicing was added to the introduction. Aircraft measurements were already 



mentioned there. 
 
The following paragraph was added to sect. 1: Although further measuring platforms (e.g. sondes, aircraft) 
and methods (e.g. Light Detection and Ranging instruments (LIDAR), or "cloud-slicing") exist, these are not 
routinely deployed (see e.g. Sluis et al. (2010); Bourgeois et al. (2022); Lange et al. (2023); Riess et al. (2023); 
Volten et al. (2009); Berkhout et al. (2018); Su et al. (2021), Marais et al.(2021)). Particularly aircraft 
measurements and cloud slicing are appreciated for resolving along the vertical axis, although at lower 
spatio-temporal resolutions (e.g. cloud slicing: seasonal means with 1° × 1° horizontal resolution and 5 
tropospheric layers, see Marais et al. (2021)) or sparse spatio-temporal coverage (aircraft measurements).


You mention that TROPOMI NO2 relies on a priori profiles, but it is also worth noting in your initial 
comments that the same is true for MAX-DOAS NO2 vertical profiles. 
 
Please note, that only MMF (not MAPA) depends directly on an a priori profile. MAPA depends implicitly on 
a priori assumptions, e.g. in the form of the profile parametrization. 


The following sentence was added to sect. 1: Additionally, the commonly used retrieval algorithms suffer 
from significantly reduced sensitivity at higher altitudes (> 2 km), and depend on a priori assumptions.


Line 89: ‘cannot’ rather than ‘can not’, and later in the sentence I think you mean ‘inherent to the training 
data’ not ‚immanent…’


We have replaced this occurrence (and several others) of „can not“ with „cannot“. Also, „immanent“ was 
replaced with „inherent“.


Line 110: it would be helpful to the reader to include a brief comment on why the O3 VCDs are included in 
NitroNet.


The following sentence was added to sect. 2.2: Additionally, although much less influential, total O3 VCDs 
are used, assuming they are also informative of the tropospheric O3 column, and thus of the tropospheric 
NOx photochemistry.


Line 137: MAX-DOAS measurements are strongly influenced by clouds. You mention the filtering of clouds 
by virtue of the selected TROPOMI QA flag: is there a similar filtering for cloudy results for FRM4DOAS 
MAX-DOAS results?


According to Beirle et al. (2019), MAPA does not provide automatic cloud flagging yet. However, MAPA 
provides three quality flags („valid“, „warning“, „error“), which were also shown to be sensitive to cloud 
effects. In our analysis, we removed all MAPA profiles flagged with „error“. No other filter criteria were used.


The following sentence was added to sect. 2.3: All profiles flagged as "erroneous" by MAPA were 
discarded. Note, that although MAPA does not support automatic cloud filtering yet, the described „error“ 
flagging was shown to be sensitive to cloud effects, as well (see Beirle et al. (2019)).


Line 176: A reference for Shapley scores would be good here.


We have added the following reference:


Štrumbelj, E., Kononenko, I. Explaining prediction models and individual predictions with feature 
contributions. Knowledge and Information Systems 41, 647–665 (2014). https://doi.org/10.1007/
s10115-013-0679-x.


Line 191: This statement is a little unclear to me: ‘The learning rate was halved whenever training progress 
had stalled over several epochs’. Perhaps you could clarify? 
 
Close to the loss minima, training can stall if the learning rate is chosen too large. This is because the 
parameter updates can overshoot, thereby missing the ideal solution to the optimization problem. This can 
be solved by using a learning rate scheduler, which decreases the learning rate upon stagnation of the loss. 
In our routine, the learning rate was halved, whenever the validation loss had not decreased over 20 



epochs. More information on learning rate schedulers can be found e.g. in the torch documentation 
(https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html).

The following paragraph was added to sect. 3.2: In order to reduce early stagnation of the training process 
as a result of too large learning rates, a simple learning rate scheduler was used (ReduceLROnPlateau, see 
Paszke et al. (2019)). The learning rate was halved whenever the training progress, as measured by the 
validation loss, had stalled over several epochs (meaning full iterations over the training set).


Line 211: Is the low bias you mentioned improved or worsened if the filtering criteria are relaxed from the 
tuned DVCD and DPBLH?


The bias is given in reference to training the neural network on un-filtered data. Relaxation of the filter 
criteria would lead to a reduced bias. Note, that the bias can be immediately corrected for, because it is 
already quantified during training (before „prediction time“), which is already mentioned in the manuscript.


Line 251: high NO2 in the upper troposphere is also linked to long lifetime of NOx reservoirs, lightning and 
subsidence from the stratosphere.


The following sentence was added to sect. 4.1: (…) which could be linked e.g. to aircraft emissions, decay 
of NOx reservoirs, lightning, or stratosphere-troposphere exchange.


Line 254: Could you provide a brief comment on why the model performs better at high NO2 concentration 
than low? Is this largely due to the better agreement in the lower troposphere/more polluted layers?


The following paragraph was added to sect. 4.1: The relative prediction errors are smaller at higher NO2 
concentrations. This is because the high NO2 concentrations at the surface are more strongly correlated to 
the NO2 VCD, which is the main model input. Vice versa, the correlation is weaker in higher layers, where the 
concentration tends to be lower. Therefore, the combined input variables are more descriptive of the lower, 
more polluted layers, and allow the neural network to make a more precise prediction.


Figure 5: I presume that the WRF-Chem comparison to Airbase is achieved with in-situ bias correction (F 
factor) calculated by WRF-Chem, and that the NitroNet comparison is achieved with F calculated by 
NitroNet? How well do the F factors agree between WRF-Chem and NitroNet? Could any discrepancies in F 
factor help explain any of the observed in-situ NO2 biases in Fig 5?


The comparison is made as described by the Referee. When training NitroNet on the F targets, a relative 
test error (note: not a bias) of 5 % was determined (this was already mentioned in sect. 3.5). Therefore, 
discrepancies in F are most likely not the reason for the observed biases.


The following paragraph was added to sect. 4.1: As mentioned before, NitroNet is able to reproduce the 
NOz correction factors of WRF-Chem with a relative precision of   5 % and no bias. Due to the good 
agreement between WRF-Chem and NitroNet in this regard, the prediction of the NOz correction factors 
cannot explain the low-biases observed in Fig. 5.


Figure 9: Is it possible to show the standard deviation of the mean monthly profiles for each technique? It 
would be interesting to know how significant the profile differences are given the in relation to the variability 
across the month. Just to clarify, have you only taken MAX-DOAS profiles from FRM4DOAS at the 
TROPOMI overpass time?


The standard deviations were added to Fig. 9 as requested by the Referee, and an explanatory sentence 
was added to its caption. The updated Fig. 9 is also shown below.


The following sentence was added to sect. 4.2.2: A temporal threshold of 60 minutes is used, meaning that 
each NitroNet NO2 profile is associated with the average over all colocated MAX-DOAS profiles recorded 
within 60 minutes of the corresponding satellite overpass.


±



Line 375: You say in relation to profiles with elevated layers of NO2 that ‘NitroNet is unable to reproduce this 
profile type, most likely because the training dataset contains very few corresponding examples’. Is this 
something that can be rectified? In principal, or even better if you’re able to show it, is it possible to provide 
more elevated layer examples in the synthetic training data to address this problem?


At the moment, we cannot overcome this obstacle. As described in our preceding publication (Kuhn et al., 
2024), the WRF-Chem model struggles to reproduce such elevated layers in many cases (except close to 
very strong point sources, e.g. power plants). Because NitroNet is trained on WRF-Chem data, it suffers 
from the same limitations.


In the future, we can attempt to improve NitroNet’s profile diversity by


- producing WRF-Chem training data on significantly higher resolution


- attempting to train NitroNet with a weighted training set, where profiles with elevated layers are given 
larger weights


Figure 9. Comparison of monthly-mean FRM4DOAS NO2 profiles against NitroNet profiles (May 2022). 
The monthly standard deviations of the profiles are drawn as shaded regions in the background. Where 
available, colocated AirBase measurements of the surface NO2 concentration within a radius of 5 km were 
drawn at 0 m altitude.



The following sentence was added to sect. 4.2.2: As shown in Kuhn et al. (2024), the WRF-Chem model, 
which provides NitroNet’s training data, also struggles to reproduce elevated layers in some locations.  

The following sentence was added to sect. 5: Similarly, NitroNet could benefit from training data of higher 
horizontal resolution, which might improve its ability to reproduce more complex NO2 profile shapes, e.g. 
with elevated layers.


Line 400-401: There are a number of outstanding research questions related to NOx over the oceans, for 
example the contribution of ship emissions in the lower troposphere, and the role of lightning in upper 
tropospheric NOx over the ocean. Is your hypothesis here that NitroNet performs worse over the oceans 
because the model gets ship NOx emissions wrong, biasing your training set? Rather than state that the 
oceanic regions are less relevant, it would be good to understand your thoughts on how NitroNet could be 
improved over the oceans.


We acknowledge the importance of NO2 retrievals over water in relation to the research questions 
mentioned by the Referee. The relevance of oceanic regions was emphasized in the outlook and the 
paragraph in question was changed accordingly.


To clarify, our hypothesis is the following: Fig. 10b and Fig. 12a show an abrupt jump in NitroNet’s 
prediction errors at the land-water boundaries. However, this is not observed in Fig. 4. If NitroNet’s 
predictions work well on the training domain, but poorly on foreign domains, it indicates that the foreign 
domains are characterized by qualitative differences in the combination of features (inputs) and targets 
(outputs). Such differences could be caused, e.g. by an unrepresentative amount of shipping routes on the 
training domain.


The following paragraph was added to sect. 4.3: The most likely explanation is that the training dataset does 
not contain enough representative examples of NO2 profiles over water. The water regions of the training set 
must be assumed less representative, e.g. because they are pervaded by unusually many shipping routes, 
which may lead NitroNet to overestimate NO2 over more remote water bodies. 

The following paragraph was added to sect. 5: In particular, it might also help to resolve the prediction 
errors over water, which could be useful in addressing some of the outstanding research questions related to 
NO2 over the oceans (e.g. the contribution of ship emissions and lightning to the lower / upper troposphere).


Line 425: In terms of seasonal performance of the vertical profiling capability, it would be really valuable to 
assess NitroNet against the FRM4DOAS network over seasonal timescales. Seasonal comparison at a few 
specific altitudes, e.g. 0, 1, 3 km, would give an indicator of whether NitroNet consistently achieves its aim 
of providing NO2 vertical profiles.


We reply to this comment together with the Referee’s suggestions in the initial general comment above.


We acknowledge, that the comparison to FRM4DOAS data should be more detailed, with specific focus on 
the assessment of NitroNet’s ability to predict realistic NO2 profiles. As suggested by the Referee, an 
evaluation at individual altitudes over the period of one year was added to the manuscript, and is also 
shown below in Fig. 14. The altitude ranges (0 - 200 m, 200 - 400 m, 400 - 600 m, 600 - 1000 m, 1000 m - 
2000 m) were chosen based on the limited vertical sensitivity of the MAX-DOAS retrievals beyond.


The following paragraphs were added to sect. 4.3: 
 
Figure 14 shows a full-year evaluation of NitroNet against NO2 concentrations from FRM4DOAS in selected 
altitude ranges. For this analysis, NitroNet’s average bias (left panel) and absolute error (right panel) over all 
previously shown FRM4DOAS instruments were computed for a full year of data, with either MMF or MAPA 
used as reference. Each subplot of Fig. 14 is restricted to a specific altitude range (0 - 200 m, 200 - 400 m,  
400 - 600 m, 600 - 1000 m, 1000 - 2000 m). In the lowest evaluation layer, at 0 - 200 m, there is particularly 
good agreement between MAPA and MMF, with NitroNet biases between -70 % and +20 % over the course 
of the year. Here, a similar tendency as in Fig. 13 can be observed, with low biases occurring during winter, 
and high biases during summer. The summertime high biases are of similar magnitude than in the 
comparison to TROPOMI VCDs and AirBase surface measurements (approximately + 15 % vs. + 23 %, and 



+ 10 %, respectively). Particularly in the higher layers, the validation against MMF yields far lower mean 
biases, mostly in the range from -30 % to + 30 %, while the validation against MAPA result in larger biases of 
~ 100 % at 600 - 1000 m, and ~ 200 % at 1000 - 2000 m. This owes to the steeper vertical concentration 
gradients of the MAPA profiles due to their assumed profile shape, and aligns well with the profiles shown in 
Fig. 9. The large relative biases of NitroNet in relation to MAPA might appear concerning at first, and should 
be put into perspective based on the following considerations: 

First, it is hard to assess, which of the two retrieval algorithms yields more trustworthy results. Although 
conceptionally different, MAPA and MMF both suffer from increasingly poor sensitivity at higher altitudes. 
This is also the case here, as exemplified by the MMF averaging kernels shown in Fig. C6, which indicate an 
effective vertical sensitivity of up to 1.5 km in Heidelberg, May 2022. In consequence, the retrieval results are 
considerably affected by a priori assumptions. In the case of MMF, an a priori profile is taken from a WRF-
Chem simulation over Mexico (see Friedrich et al. (2019)), which might be entirely unrepresentative of the 
central European domain investigated here. Parametrized retrievals such as MAPA do not require a priori 
profiles, which is an advantage in this context. Nonetheless, MAPA still depends on other a priori 
assumptions, e.g. in the form of the assumed profile shape by the choice of parametrization. In particular, 
the exponential tail of the MAPA profiles towards higher altitudes, which is the dominant characteristic here, 
is prescribed. 

Second, computing the relative biases of NitroNet involves division of the absolute errors by the NO2 
concentrations of MMF, and MAPA, respectively. In the case of MAPA, these can be considerably small (e.g. 
~ 0.1  1010 molec. cm-3 for 1000 - 2000 m, see Fig. 9 for reference), for the reasons discussed above. 
Thereby, even moderate absolute errors (see right-side panel of Fig. 14) can result in large relative biases. 
Thus, the assessment of model performance by means of the prediction biases is informative in the lowest 3 
evaluation layers (up to 600 m), but not beyond. 

Another important finding of Fig. 14 is that the seasonal trends observed in Fig. 13 are represented in the 
lowest layer (0 - 200 m), but not the higher ones. This indicates, that the seasonal biases of NitroNet (and the 
underlying WRF-Chem training data) might be rooted in the lower regions of the troposphere. 

We appreciate the reviewer’s suggestion to include FRM4DOAS data from other regions of the world as well. 
However, the remaining FRM4DOAS instruments are located far away from the central European training 
domain of NitroNet (e.g. in Ny-Alesund, Norway). As shown in the manuscript, NitroNet’s prediction quality 
can vary under such conditions. Many of these instruments are also operated in remote locations and / or 
have no colocated AirBase measurements. A validations against these instruments would require 
considerable additional efforts, introduce new uncertainties, and most likely contribute little to the overall 
assessment of NitroNet’s performance.


⋅



Figure 13: I may be missing something here, but I’m unsure how the monthly mean correlation coefficients 
can be almost all above the daily mean correlation coefficients, and the monthly mean RMSE can often be 
below all the daily RMSE values for a given month (e.g. Apr-Jul 2022)?


In this context, it is important to distinguish between the monthly mean of a diagnostic, and a diagnostic 
computed on monthly means. Here, „diagnostic“ refers to bias, RMSE, or correlation coefficient.


Figure 13 shows the diagnostics computed on monthly-mean data. It does not show the monthly means of 
the diagnostics computed on daily data. Monthly-mean data has significantly reduced noise compared to 
unaveraged data, resulting in larger correlation coefficients and lower RMSE. The bias is unaffected by this, 
because it is insensitive to (centered) noise.


(a)  0 - 200 m

(b)  200 - 400 m

(c)  400 - 600 m

(d)  600 - 1000 m
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Figure 14. Seasonal evaluation of NitroNet against NO2 concentrations from the FRM4DOAS dataset. 
The left panel shows NitroNet’s monthly-mean biases averaged over all available MAX-DOAS 
instruments. The right panel shows the corresponding absolute concentration errors. Each subplot 
refers to a specific altitude range, namely (a) 0 - 200 m, (b) 200 - 400 m, (c) 400 - 600 m, (d) 600 - 1000 
m, and (e) 1000 - 2000 m.



We wish to keep the evaluation this way, and refer to our reply to RC 1. Please note, that the monthly 
means of the diagnostics computed on daily data can be directly obtained from Fig. 13 as shown. This is 
not the case for the diagnostics computed on monthly means.
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