
Reviewer 1 

We appreciate the reviewer's insightful and constructive feedback, which has greatly 

enhanced the quality of the manuscript. We believe that the document has been significantly 

strengthened as a result of their thought-provoking questions and valuable remarks. We have 

responded to their key points as follows: 

“In this paper, ridge regression is used to systematically evaluate the addition of five 

candidate cloud controlling factors (CCFs) to previously established core CCFs within 

large spatial domains to predict longwave high-cloud radiative anomalies. The results 

show that upper-tropospheric static stability is an important CCF for high clouds and 

longwave cloud feedback. All combinations of tested CCFs perform quite well for most 

locations at grid-cell scales, while differences between configurations for predicting 

globally-aggregated radiative anomalies are more pronounced. The authors found that 

spatial domain size is more important than the selection of CCFs for predicting local 

anomalies, and there is discrepancy between optimal domain sizes for local and 

globally-aggregated radiative anomalies. 

There are abundant technique details in the paper, and the method is potentially useful 

to evaluate the long-term high-cloud feedback. The paper might be accepted after 

addressing the following comments: 

Specific comments: 

1. In machine learning, the dataset used to test the performance of a machine-learning 

model should be independent from the dataset that is used to train the data. What is 

the training dataset and testing dataset for the metrics of Fig. 2? Ideally, the PI-

control or AMIP simulations might be used as the training dataset, and abrupt4xco2 

simulations might be used as the testing dataset.  

C1. We would like to reassure the reviewer that independent training and test datasets 

have been used throughout our analysis. We have used a rotating 2-year/18-year test/training 

dataset method to construct 20-years of predictions to compare against the full 20-year 

observed record. We have described our process with more clarity in the main text (line 296). 

We have also added a schematic (see Figure R1 below; this has been added to the 

supplementary, Fig. S2) that demonstrates our test/training process. This method is used 

consistently to determine the predictive skill shown in Figures 2 and S7 for both the observed 

and modelled data.  

“For Sect. 5.1, 5.2 and 5.4 we use sensitivities to predict a two years validation dataset. We 

repeat this process, rotating the withheld data every two years resulting in ten unique 

training-validation dataset combinations (see Supplementary Fig. S2 for a schematic of this 

process).  

We use historical observations and historical simulations to assess selections of cloud 

controlling factors instead of AMIP or Pi-control simulations. This is because sensitivities 

derived from historical, observed data have been used to constrain GCM simulated abrupt-

4xCO2 cloud feedback (e.g., Ceppi and Nowack, 2021; Myers et al., 2021, etc.,  see main text 

for others). It is thus important that the sensitivities themselves are validated on the historical 



time series. For the most analogous comparison between observations and atmosphere-ocean 

coupled models, we therefore also use historical CMIP simulations.  

 

R1. Schematic demonstrating the process of rotating test-training datasets. This will be 

included in the supplementary material. 

“For observations or historical simulations, the first several or more years might be 

used to train the ridge regression model, and the last several years might be used to 

test the performance of the model” 

C2. We have chosen to use our rotating test-training dataset method to reduce the 

sensitivity of our skill metrics to outliers. For example, if we test on only the last 2 years, and 

a single extreme is underestimated, the R2 score is affected strongly by the outlier (owing to a 

small sample size of 24 datapoints). Our validation procedure in general allows us to more 

robustly estimate and compare the relative performance of the various controlling factor 

selections. 

“2. R-square and r are highly relevant metrics, so I suggest using only one of them in 

the main text.” 

 C3. We have expunged plots showing combined metrics so that Pearson 𝑟 is the only 

metric shown in the main text.  R2 and RMSE are briefly discussed in Section 5.1 and shown 



in the supplementary (Fig. S4/S5). This is to show that low R2 doesn’t necessarily mean low 

Pearson 𝑟 or high RMSE.  

3. The none-local effect of CCF on high cloud amount might be further explored and 

discussed. The dependence of model performance to domain size might be associated with 

cloud transferring between adjacent grid boxes. In addition, previous studies suggest that 

the surface temperature in the tropics has significant impact on subtropical high cloud 

amount, is this process associated with the domain size dependence? 

C4. We have included further analysis and discussion regarding the non-local effect of 

CCF on high-cloud radiative anomalies. To summarise: 

• Composite sensitivities have been analysed  (with 2 shown in the supplementary 

Fig. S6 and shown below, and Figure R2). Composite sensitivities are 

constructed by  domain-averaging independent local 21x11 sensitivities, where 

the target grid-cell matches some criteria (e.g., averaging all local sensitivities 

for Central Pacific tropical ascent grid-cells). 

• Explained value fraction (EVF) has been assessed at 3 different domain sizes 

(also included in Fig. S6). 

We have visually inspected composite sensitivities in conjunction with the EVF plots 

(see R2 and Fig. S6 shown below). Doing so, we find an emergent distinction between more 

“local” (such as UTRH, ω300 and RH700) and more “non-local” (such as Tsfc, ΔU300 and SUT) 

predictors. We find that our “local” predictors have decreasing EVF with domain size, whilst 

for non-local predictors the EVF increases with domain size. We also notice the non-local 

predictors have more spatially coherent patterns beyond the target grid-cell (e.g. wind shear in 

R2(b)), whereas for local predictors, the sensitivities appear noisier (much like “salt and 

pepper” noise) away from the target grid-cell, with largest magnitude concentrated close to the 

target grid-cell. 

We propose that, while increasing domain size incorporates non-local contributions 

from Tsfc, SUT, and ΔU300, the larger domain adds potentially less relevant information for the 

more localised UTRH, ω300 and RH700 (also contributing a large proportion of the local EVF). 

The resultant predictive skill is thus a trade-off between additional relevant information (e.g., 

from Tsfc) and additional less-relevant information (e.g., from UTRH) which increases the 

domain size and thus the dimensions of the model. We have referenced the findings of this 

analysis in the bullet point list starting at line 412:  

“ 

• There is an emergent distinction between “local” and “non-local” predictors. 

For example, EVF for UTRH decreases with increasing domain size and, 

accordingly, we find that local UTRH sensitivities typically have strong 

magnitudes close to target grid-cell, with noisy, spatially incoherent coefficients 

further afield (see Fig. S6a-b for an example); thus, we describe UTRH as a 

“local” CCF (similarly for 𝜔300 and 𝑅𝐻700). 



• EVF for 𝑇𝑠𝑓𝑐, ∆𝑈300, and 𝑆𝑈𝑇 increases with domain size (i.e., “non-local” 

predictors), and each contribute a greater proportion of the globally-

aggregated predictions compared to local predictions (Fig. S6c-d). 

• Predictive skill is likely a trade-off between adding relevant information from 

“non-local” CCFs while adding superfluous information from “local” CCFs; 

i.e., too distant information does not provide additional predictive skill, at least 

to the degree that it would outweigh the corresponding increase in 

dimensionality of the regression problem. 

• For globally-aggregated predictions, 𝜔300 is the least important predictor 

(compared to the second most important for local predictions), thus explaining 

why the choice of pressure level of 𝜔 is less relevant at global scales (shown in 

Fig. 4) than locally. 

” 

We have also included a new section in the supplementary material that discusses the 

discrepancies in domain size in more detail (Section S3), and we also agree that there are 

several mechanisms that may cause non-local dependence on the CCFs. For example, increased 

static stability to the east of a target grid-cell may be advected locally, or indeed an adjacent 

cloud transferring grid-cells. This is included explicitly in Section S3.  

“Note that there are several mechanisms that may be associated with non-local 

sensitivities, including remote SST pattern effects for deep convection (Fueglistaler, 2019), the 

transferral of cloud from one grid-cell to another within the resolved time interval, or 

upstream/downstream advection of the meteorological drivers”. 

 

“Minor Comments: 

It is recommended to check all instances of italicized text in the manuscript to ensure 

consistency throughout the text: 

Line 99: delete the preposition “in”. 

Line 275: what is the variable “r”? 

Line 287: where the second term on the right-hand side of Eq. (3) ... 

Figure 1: The latitude and longitude coordinates should be marked on the map (and 

similarly for the subsequent figures). 

Table 1: The formatting needs to be unified. For example, there are excessive gaps 

between certain words, and the sixth row of the table ("Key studies") lacks a space 

before it. Moreover, the last row ("Key studies") has a period, while the other rows do 

not.” 



Thank you for pointing out the above corrections, which we have implemented.   

“Figure 9: I suggest adding an additional panel to compare the results with the CN21 

method (i.e., CCFs containing only T_sfc, RH_700, UTRH, and ω_300). This 

comparison will better highlight the advantages of the new method.” 

C5. Thank you for your suggestion. We have broadened the discussion on Figure 9 to 

more directly compare against alternative configurations. Though we have chosen to not 

include an additional panel in Figure 9 showing CN (as visually, the spatial distribution of the 

radiative anomalies are similar between EIS and SUT + ΔU300), we have assessed the absolute 

prediction error for a range of configurations during El Niño (where we calculate error = 

predicted anomaly – observed anomaly, and total tropical absolute error is the absolute sum of 

all tropical error). We look at the absolute anomaly to avoid rewarding configurations that 

produce compensating positive and negative prediction errors which cancel when averaging. 

We have also included an additional panel (panel (c)) showing the spatial distribution of the 

anomalies. 

We find that EIS (ω500 – the CN configuration) has the highest absolute prediction error 

for RLW, RLW,CF and RLW,CTP. In fact, including EIS actually increases the absolute anomaly 

relative to just the core CCFs. Conversely, configuration SUT (with no shear) has the lowest 

absolute error for RLW,CF and RLW,CTP. For RLW and RLW,CTP, SUT is followed by SUT + ΔU300. 

These findings are mentioned in line 663:  

“We also find that configurations 𝑆𝑈𝑇 and 𝑆𝑈𝑇 + ∆𝑈300 predicts the tropical mean El 

Niño 𝑅𝐿𝑊,𝐶𝑇𝑃 with the smallest absolute error (not shown)”. 



 

 

Figure S6. Composite spatial sensitivities using the 21x11 domain and configuration 𝑺𝑼𝑻 + ∆𝑼𝟑𝟎𝟎 (with additional core 

CCFs 𝑻𝒔𝒇𝒄, RH700, UTRH, and ω300) in (a) tropical ascent grid-cells (defined by climatological mean EIS < 1 K, and 

ω500 < 0 hPa s-1) in the East Pacific (130°W to 80°W) and (b) North Atlantic (60°W to 10°E, latitudes north of 30°N) 

midlatitude clouds (climatological mean EIS > 1 K, and ω500 < 1.5x10-4 hPa s-1). Panel (c) shows the global mean EVF 

as a function of cloud controlling factor and domain size for local predictions. Note that the global mean EVF has only 

been weighted based on latitude, and not as a function of 𝑹𝑳𝑾 standard deviation. Panel (d) shows the EVF for globally-

aggregated predictions.  
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R2. Composite spatial sensitivities smoothed using a Gaussian filter (σ = 2) to reduce non-local 

noise. The 21x11 domain and configuration 𝑺𝑼𝑻 + ∆𝑼𝟑𝟎𝟎 has been used (with additional core 

CCFs 𝑻𝒔𝒇𝒄, RH700, UTRH, and ω300) for (a) tropical ascent grid-cells (defined by climatological 

mean EIS < 1 K, and ω500 < 0 hPa s-1) in the East Pacific (130°W to 80°W) and (b) North 

Atlantic (60°W to 10°E, latitudes north of 30°N) midlatitude clouds (climatological mean EIS 

> 1 K, and ω500 < 1.5x10-4 hPa s-1). These regions are the same shown in Figure S6. 

 


