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Abstract 14 

Efficiently detecting large methane point sources (super-emitters) in oil and gas fields is 15 

crucial for informing stakeholders for mitigation actions. Satellite measurements by 16 

multispectral instruments, such as Sentinel-2, offer global and frequent coverage. However, 17 

methane signals retrieved from satellite multispectral images are prone to surface and 18 

atmospheric artifacts that vary spatially and temporally, making it challenging to build a 19 

detection algorithm that applies everywhere. Hence, laborious manual inspection is often 20 

necessary, hindering widespread deployment of the technology. Here, we propose a novel deep-21 

transfer-learning-based methane plume detection framework. It consists of two components: an 22 

adaptive artifact removal algorithm (low reflectance artifact detection, LRAD) to reduce 23 

artifacts in methane retrievals, and a deep subdomain adaptation network (DSAN) to detect 24 

methane plumes. To train the algorithm, we compile a dataset comprising 1627 Sentinel-2 25 

images from 6 known methane super-emitters reported in the literatures. We evaluate the ability 26 
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of the algorithm to discover new methane sources with a suite of transfer tasks, in which training 27 

and evaluation data come from different regions. Results show that the DSAN (average macro-28 

F1 score 0.86) outperforms two convolutional neural networks (CNN), MethaNet (average 29 

macro-F1 score 0.7) and ResNet-50 (average macro-F1 score 0.77), in transfer tasks. The 30 

transfer-learning algorithm overcomes the issue of conventional CNNs that their performance 31 

degrades substantially in regions outside training data. We apply the algorithm trained with 32 

known sources to an unannotated region in the Algerian Hassi Messaoud oil field and reveal 34 33 

anomalous emission events during a one-year period, which are attributed to 3 methane super-34 

emitters associated with production and transmission infrastructure. These results demonstrate 35 

the potential of our deep-transfer-learning-based method towards efficient methane super-36 

emitter discovery using Sentinel-2 across different oil and gas fields worldwide. 37 

 38 
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1 Introduction 41 

As one of the most important greenhouse gases, methane (CH4) constitutes approximately 42 

a quarter of the overall global warming since the preindustrial age as reported by (IPCC, 2013). 43 

Among all the sources, reducing methane emissions from anthropogenic sources, including 44 

from oil and gas (O&G) production, is vital for mitigating near-term climate change (Lauvaux 45 

et al. 2022). Methane emission in the O&G production sector comes from point emitters such 46 

as malfunctioning flares, wells, storage tanks, and gas compressor stations. These point 47 

emissions exhibit to be a long-tailed distribution, that is, a substantial fraction of the total 48 

emissions are contributed by a limited number of anomalous point sources, which often linked 49 

with production equipment malfunctions or abnormal operating conditions (Zavala-Araiza et 50 

al. 2017; Duren et al. 2019). Therefore, efficiently detecting these anomalous methane point 51 

sources is crucial for informing prompt mitigation actions.  52 

Atmospheric methane concentrations can be quantified remotely by measuring 53 

backscattered radiation at wavelengths (e.g., around 1700 nm and 2150 nm) that correspond to 54 

the rotational-vibrational resonances of methane molecular transitions (Ehret et al. 2022). 55 

Recent studies demonstrated that both multispectral and hyperspectral satellite instruments 56 

have the capability to identify anomalous methane point emissions (Guanter et al. 2021; Varon 57 

et al. 2021; Sánchez-García et al. 2022). Hyperspectral instruments (e.g., GHGSat, PRISMA, 58 

EMIT, and GF-5) offer higher sensitivity to CH4 and thus lower point source detection limit 59 

owing to their fine spectral resolution, but hyperspectral observations generally exhibit sparsity 60 

in both spatial and temporal coverage (Naus et al. 2023; Pandey et al. 2023). In comparison, 61 

multispectral satellites (including Landsat-8, WorldView-3, and Sentinel-2) provide global, 62 
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frequent, and spatially continuous observations, though their sensitivity to methane is lower 63 

because of coarse spectral resolution (Varon et al. 2021; Ehret et al. 2022). As an illustration, 64 

Sentinel-2 provides global coverage data on a weekly basis, spanning a period of eight years. 65 

Detection limit of the Sentinel-2 measurements for methane gas in the atmosphere is roughly 66 

5000 kg/h or greater for heterogeneous surfaces (Gorroño et al. 2023). 67 

However, the routine scanning for methane super-emitters across varied O&G areas 68 

remains challenging primarily due to the lack of an efficient automated source detection 69 

algorithm (Fig. 1). Currently, source detection predominantly relies on human visual inspection, 70 

a process that is time- and labor- consuming, thereby impeding the large-scale deployment 71 

(Jongaramrungruang et al. 2022; Schuit et al. 2023). Deep learning techniques have been 72 

proposed to develop point-source detectors for airborne instruments (Jongaramrungruang et al. 73 

2022), satellite area mappers (e.g., TROPOMI) (Schuit et al. 2023), and satellite 74 

hyper/multispectral instruments (e.g., PRISMA, Sentinel-2) (Bruno et al. 2023; Joyce et al., 75 

2023; Vaughan et al. 2023).  76 

One of the key challenges in constructing such an automated detector for multispectral 77 

observations is the low signal-to-noise ratio (SNR) in the retrieved methane signals. Because 78 

of the coarse spectral resolution, methane signals obtained from multispectral observations are 79 

susceptible to diverse artifacts, including interferences from vegetation, water bodies, and 80 

smoke, making source detection a difficult task, especially over heterogenous land surface 81 

(Cusworth et al. 2019). To mitigate these artifacts, several filtering strategies have been 82 

proposed, such as background pixel removal (Guanter et al. 2021; Varon et al. 2021) or worst 83 

predicted pixel removal (Ehret et al. 2022).  84 
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Another challenge arises from the necessity for an efficient detector to rapidly identify 85 

small-scale methane point emissions in satellite data with large-scale (global) coverage. 86 

Existing automated detectors for high-spatial-resolution satellites (Bruno et al. 2023; Joyce et 87 

al., 2023; Vaughan et al. 2023) performed pixel-level detection which classified each pixel in 88 

an image as plume-containing or plume-free. However, multispectral satellites such as Sentinel-89 

2 have high detection limits for methane emissions, even more than 5000 kg/h for 90 

heterogeneous surfaces (Gorroño et al. 2023). This means that the retrieved images containing 91 

methane plumes are extremely rare on both spatial and temporal scales within Sentinel-2 92 

observations, as evidenced by Ehret et al. (2022). So far, a relatively small number of super-93 

emitters have been detected by multispectral satellite, mainly in desertic regions with bright, 94 

uniform surfaces (Varon et al. 2021; Ehret et al. 2022; Irakulis-Loitxate et al. 2022; Sánchez-95 

García et al. 2022; Naus et al. 2023; Pandey et al. 2023). In contrast, O&G production is spread 96 

across ~ 100 countries worldwide, often with distinct environments (EIA; https://www.eia.gov), 97 

resulting in different noise and artifact characteristics. Therefore, an image-level detector is 98 

required to efficiently filter out the myriad of methane-free patches. To this end, deep transfer 99 

learning becomes a valuable strategy towards constructing a data-efficient detection model 100 

using a limited volume of real training data (Jiang et al. 2022), without the need to construct 101 

large simulated datasets (Jongaramrungruang et al. 2022; Radman et al. 2023). Utilizing the 102 

inherent resemblance between the source and target domains, a deep transfer learning technique 103 

can adapt the learned feature distribution acquired from a source data/task to a target data/task 104 

during the training process (Iman et al. 2023). 105 

In this work, we aim to improve methane source detection using Sentinel-2 observations. 106 
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We develop an adaptive artifact detection and masking algorithm that enhances the signal-to-107 

noise ratio for retrieved methane signals, and a deep transfer learning method that improves 108 

detection efficiency and performance of discovering unknown sources, leveraging knowledge 109 

acquired from known methane sources. To train our method, we also construct a dataset of 110 

Sentinel-2 methane retrievals comprising Sentinel-2 detectable super-emitters reported in 111 

literature. Our method is a step forward towards large-scale operational monitoring of methane 112 

super-emitters by multispectral satellite instruments. 113 

 114 

 115 

2 Methodology 116 

2.1 Satellite data 117 

We employ the Sentinel-2 Level 1C (L1C) top-of-atmosphere reflectance product, which 118 

is freely available through [https://dataspace.copernicus.eu]. The Copernicus Sentinel-2 119 

mission is composed of two polar-orbiting satellites: Sentinel-2A, launched on June 23, 2015, 120 

and Sentinel-2B, launched on March 7, 2017.  The mission can provide global coverage data 121 

with a revisit time of 2-5 days and a swath width of 290 km. The MultiSpectral Instruments 122 

(MSIs) onboard Sentinel-2 incorporates 13 channels spanning the visible and near-infrared 123 

spectra, featuring spatial resolutions that vary between 10 to 60 m. Sentinel-2 data have been 124 

used to support a variety of applications including land management, natural resource 125 

monitoring, and risk mapping (Ienco et al. 2019; Ramoelo et al. 2015; Varghese et al. 2021). 126 

Recent studies demonstrated the potential of Sentinel-2 to monitor methane super-emitters 127 

(Ehret et al. 2022; Gorroño et al. 2023; Radman et al. 2023; Varon et al. 2021; Vaughan et al. 128 
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2023). Here, we use bands 11 (1610 nm) and 12 (2190 nm) for methane signal retrieval and 129 

bands 3 (560 nm), 8 (842 nm), and 11 (1610 nm) for artifact filtering. We resample the data to 130 

20-m resolution using the ESA snap-python toolbox and discard scenes with cloud coverage 131 

greater than 80%.  132 

To train our algorithm, we collect Sentinel-2 observations in the vicinity of six O&G 133 

methane sources (indexed as #1-#6) where reoccurring ultra-emissions have been reported 134 

(Irakulis-Loitxate et al. 2022; Sánchez-García et al. 2022; Varon et al. 2021; Zhang et al. 2022). 135 

Table 1 summarizes the information about these methane sources, which are located in five oil 136 

and gas fields differing substantially in surrounding terrain and surface characteristics. These 137 

O&G sources also differ in the types of emitting facilities (e.g., compressor station, flare, well 138 

pad, and pipeline) and the magnitude of emission fluxes (2-100 t/h) (Table 1). To construct our 139 

training dataset, we use Sentinel-2 tile 40SBH during March 2017 to March 2023 for emitter 140 

#1, #2, and #3, tile 32SKA from January 2019 to December 2022 for emitter #4 and #5, and tile 141 

13SGR from January 2018 to December 2020 for emitter #6 (Table 3). We crop the original 142 

Sentinel-2 data to generate patches of 16 km2 in size, which are then used by our algorithm.  143 

Table 1 Reported methane super-emitters detected by multispectral satellite instruments. 144 

Index Emitter a Ordinates 
O&G 

field 
Land cover b Country 

Emission flux range 

(kg/h) c 

Reference

s 

#1 
Compress

or station 

(38.19393°, 

54.19764°) 
Korpeje Barren area 

Turkmenis

tan 

3500-92900 

(08/2015-10/2020) 

(Varon et 

al. 2021) 

#2 Flare 
(38.33078°, 

54.02832°) 
Gamyshlj

a Gunorta 
Barren area 

Turkmenis

tan ≥ 1800 

(01/2017-11/2020) 

(Irakulis-

Loitxate et 

al. 2022) #3 Flare 
(37.90825°, 

53.89857°) 
Keymir 

Barren area and 

Grass land 

Turkmenis

tan 

#4 
Well-pad 

device 

(31.6585°, 

5.9053°) 
Hassi 

Messaoud 
Barren area Algeria 

2600-29100 

(10/2019-09/2020) 

(Varon et 

al. 2021) 

#5 d Pipeline 

(31.778°, 

5.995°) Hassi 

Messaoud 
Barren area Algeria 

3100 (12/29/2020) (Sánchez-

García et 

al. 2022) 
(31.768°, 

6.000°) 
2500 (12/29/2020) 
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#6 
Compress

or station 

(31.7335°, 

-102.0421°) 
Permian 

basin 
Shurbland U.S. 

2360-21830 

(07/2020-09/2020) 

(Zhang et 

al. 2022) 

a Reports of these sources are all based on Sentinel-2 data expect for #5 which is based on Worldview-3. 145 
b Land cover type near the emitter is obtained from the annual ESA/CCI land cover map 2020 146 

[https://maps.elie.ucl.ac.be/CCI/viewer/index.php] as a reference. It is noted that the land cover map has a spatial 147 

resolution of 300 m, which cannot reflect surface features smaller than an area of 300 m2. 148 
c Values in this column represent emission flux during the time range or date studied in literatures. It is noted that the 149 

emission flux of emitter #2-3 has not been reported by (Irakulis-Loitxate et al. 2022), and 1800 kg/h is the detection 150 

limit of Sentinel-2 provided in the literature.  151 
d Emitter #5 contains two pipeline leakage sources approximately 1.2 km apart. They are numbered together since 152 

they are only around 60 pixels apart in the 20m resolution Sentinel-2 image. 153 

2.2 Framework for multispectral satellite point source detection and quantification 154 

Fig. 1 shows the workflow of methane super-emitter monitoring using Sentinel-2 satellite 155 

data, with algorithms developed in this study highlighted in red text. The workflow primarily 156 

includes three steps, methane signal retrieval, source detection, and flux quantification.  157 

First, methane signals are retrieved from satellite measurements. We employ the structural 158 

similarity index measure (SSIM) algorithm (Zhou et al. 2004) to filter out cloudy observations 159 

and the low-reflectance adaptive detection (LRAD) algorithm developed in this study (Section 160 

2.3) to filter out other interference. We then compute fractional methane absorption signal (ΔR, 161 

unitless) using band 11 and 12 from Sentinel-2 (Ehret et al. 2022; Irakulis-Loitxate et al. 2022): 162 

∆R𝑡 =
band12

t band12
ref⁄

band11
t band11

ref⁄
  163 

where band12
t  and band11

t  represent observations on the date of interest (t) and band12
ref and 164 

band11
ref represent reference conditions without any methane enhancement. We borrow the idea 165 

of sliding time window in Ehret et al. (2022) to predict band12
ref and band11

ref by the multivariate 166 

linear regression (MLR) model trained on band 11 and 12 observations in the time window 167 

(within 60 days prior to date t). Data excluded by SSIM and LRAD are not used for the MLR 168 

model training. See Text S1 for detailed information on the methane signal retrieval step.  169 

Second, we train an automated detector to detect potential methane super-emitters based on 170 
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retrieved ΔR, in place of human inspection. We annotate ΔR images retrieved from Sentinel-2 171 

observations of 6 methane super-emitters (Table 1). The dataset is then used to train and 172 

evaluate a deep subdomain adaptation network (DSAN) (Section 2.4) to detect whether an 173 

image contains methane plumes. Our work demonstrates that the DSAN detector, trained with 174 

a relatively small number of annotated ΔR images, shows promising performance in unknown 175 

source detection. 176 

Finally, we quantify emission fluxes (kg/h) of detected methane plumes by employing the 177 

Integrated Mass Enhancement (IME) method (Frankenberg et al. 2016; Varon et al. 2018). See 178 

Text S2 for detailed descriptions about the flux quantification method.  179 

 180 

Fig. 1. The methane super-emitter monitoring workflow (from Sentinel-2 L1C product to emission 181 

flux of the detected methane point emission signal). Text in red highlights the novel algorithms 182 

developed in this study. 183 

2.3 Low reflectance artifact detection (LRAD) algorithm for artifact removal 184 

To increase the signal-to-noise ratio of Sentinel-2 methane retrieval, we develop a low 185 

reflectance artifacts detection (LRAD) algorithm to identify and remove varied artifacts 186 
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associated with low reflectance in the methane-sensitive band by surface features. Figure 2 (a) 187 

and (b) show examples of these potential artifacts resulting from varied surface elements 188 

including smoke (from burning flare), rocky soil (with high mineral content), dark soil (with 189 

high organic matter or water content), water body, cloud shadow, and vegetation (Gorroño et 190 

al. 2023; Naus et al. 2023). These artifacts in the SWIR bands may be filtered out by leveraging 191 

additional bands that are sensitive to the artifacts but insensitive to methane (Figure 2(c)). 192 

Fig. 3 shows the pseudocode of the LRAD algorithm, which creates a surface artifact mask 193 

using Band 3 (560 nm), 4 (665 nm), and 8 (842 nm), in addition to Band 11 and 12. For 194 

combustion-related artifacts, the algorithm first filters out pixels with saturated reflectance in 195 

Band 11 and 12, which are related to thermal anomalies from high-temperature combustion 196 

(Liu et al. 2021). The algorithm then filters out pixels affected by heavy smoke, identifiable by 197 

extraordinarily low visible-band reflectance in Band 3 (the 5% lowest values of the scene). We 198 

calculate the standard deviation σ and then apply the 2σ (around 95% confidence interval) as 199 

the masking threshold. The above mask is then dilated to ensure that interference from 200 

combustion sources is removed.  201 

Additionally, the LRAD algorithm filters out pixels with concurrent negative values of the 202 

Normalized Difference Vegetation Index (NDVI) (Band 8 and Band 4) and the Normalized 203 

Difference Built-up Index (NDBI) (Band 8 and Band 11), which are related to low-reflectance 204 

objects in SWIR such as water bodies (Biermann et al. 2020; Fan et al. 2020; Purio et al. 2022). 205 

Positive values of these indices have been used in literature to detect healthy vegetation and 206 

urban areas (Kuc and Chormański 2019). 207 
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 208 

Fig. 2. Examples of varied artifacts in Sentinel-2 (S2) L1C reflectance images. (a) S2L1C band 12 209 

(b12) reflectance images in Hassi Messaoud (20190117T32SKA), Gamyshlja Gunorta 210 

(20200404T40SBH), and Permian basin (20190126T13SGR). (b) Representative RGB images of 211 

the artifacts presenting low reflectance in b12. (c) Pixel-wise S2L1C reflectance spectrum of the 212 

background and representative artifacts. Bands used for identifying artifacts are shown in blue 213 

shadings.  214 

 215 

Fig. 3. LRAD algorithm to generate the mask for low reflectance artifacts in methane retrieval bands 216 

(Band 11 and 12) using data in Band 3, 4, and 8. 217 

2.4 Deep transfer learning for methane source detection 218 

We employ the deep subdomain adaptation network (DSAN) (Zhu et al. 2021) to detect 219 

the presence of methane plumes in retrieved ΔR images (Fig. 4). DSAN is a transfer learning 220 
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algorithm that leverages feature representations acquired from a labeled source domain to 221 

enhance performance on the unlabeled target domain (Pan and Yang 2010). By using DSAN, 222 

we attempt to address the challenge that a methane-source classifier trained with labeled data 223 

in one location (source domain) tends to perform inadequately in another location where labeled 224 

data are unavailable (target domain), because of great differences in surface characteristics 225 

between regions (domain shift).  226 

Fig. 4 illustrates the structure of DSAN applied in this study. DSAN consists of deep 227 

feature extraction blocks and a domain adaptation module. Feature extraction is done by 228 

adapting a pre-trained residual neural network (ResNet-50) as the backbone of DSAN. ResNet-229 

50 has demonstrated exceptional performance in various image classification tasks, especially 230 

those based on spatial context, largely because of its strong feature mining capability enabled 231 

by shortcut connections (Burke et al. 2021) (see Fig. S2). ResNet-50 consists of 16 residual 232 

blocks that contain a series of convolutional layers and shortcut connections. Following each 233 

convolutional layer, there is a subsequent batch normalization layer and a Rectified Linear Unit 234 

(ReLU) activation function. 235 

The domain adaptation module transforms deep features extracted by ResNet-50 to align 236 

the feature distributions between source and target domains. The alignment is performed based 237 

on local maximum mean discrepancy (LMMD), which measures the distance between feature 238 

distributions (Zhu et al. 2021). The general form of LMMD is presented as: 239 

𝐿𝑀𝑀𝐷(𝑃, 𝑄) =
1

𝑁
∑‖𝐸𝑃

𝑖 [𝜙(𝐷𝑠
𝑖)] − 𝐸𝑄

𝑖 [𝜙(𝐷𝑡
𝑖)]‖

𝛨

2
𝑁

𝑖=1

 240 

Where 𝐷𝑠  and 𝐷𝑡  are the samples in source and target domain, 𝑃  and 𝑄  are the probability 241 

distribution of  𝐷𝑠 and 𝐷𝑡, and 𝑖 is the class of the sample (plume-containing or plume-free). 242 
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LMMD is designed to capture both global (whole dataset) and local (each class) domain 243 

differences, and therefore is sensitive to variability within each class. This property is important 244 

for our application because the difference between the two classes (plume-containing and 245 

plume-free ΔR images) are more subtle compared to a typical image classification task. 246 

The DSAN is first trained using labelled ΔR images in the source domain and unlabeled 247 

ΔR images in the target domain, before it is used to predict labels for target-domain images. 248 

The input ΔR imagery is transformed to match the ResNet-50 (which serves as the backbone of 249 

DSAN) input format. Before feeding into the network (Fig. 4), the input image was resized to 250 

224*224, augmented by randomly flipping the images horizontally during the training process, 251 

and then normalized to ensure that the three channels had a consistent scale. The model is 252 

trained with a learning rate of 0.001 using stochastic gradient descent (SGD) optimizer over 253 

100 epochs. 254 

 255 

Fig. 4. The architecture of DSAN. DSAN employs ResNet-50 to learn features from labeled (green) 256 

and unlabeled (blue) data, and then the domain adaptation module (red) to reduce the domain 257 

distribution discrepancy. 258 

2.5 Experiment design 259 

2.5.1 Performance evaluation on transfer tasks 260 

We design two experiments (Fig. S4) to evaluate the performance of the DSAN framework 261 
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in detecting unknown sources, using 6 ΔR datasets corresponding to the 6 super-emitters 262 

(denoted as #1-6; Table 1) for training and evaluation. Table 2 describes the training, validation, 263 

and test subsets separation ways. In the first experiment (‘1→1’ task), we use one of the six 264 

datasets as the source domain (labels available to the algorithm) and another dataset as the target 265 

domain (labels unavailable to the algorithm and to be predicted). In total, there are 6×5=30 266 

‘1→1’ tasks to be evaluated. In the second experiment (‘5→1’ task), we use five of the six 267 

datasets as the source domain and the remaining one as the target domain, which yields six 268 

‘5→1’ tasks. The ‘1→1’ tasks examine how well a detector constructed based on data from a 269 

known source can discover unknown sources, while the ‘5→1’ tasks evaluate whether and to 270 

what degree performance can be enhanced by including training data from multiple sources.  271 

To compare, we also build two convolutional neural networks (CNNs) (Fig. S3) based on 272 

MethaNet (Jongaramrungruang et al. 2022) and ResNet-50, which, unlike DSAN, do not 273 

contain a domain adaptation module. For each ‘1→1’ or ‘5→1’ task, a CNN methane-source 274 

detector is trained with the labeled source-domain dataset(s) before being applied to predict the 275 

labels for the target domain. We train the MethaNet model from scratch and the ResNet-50 276 

model with a fine-tuning strategy demonstrated by (Radman et al. 2023).  277 

Table 2 Training, validation, and test subsets separation for different types of models and tasks. 278 

Model Task Training set Validation set Test set 

DSAN ‘1→1’, ‘5→1’ source domain --- target domain 

MethaNet and ResNet-50 
‘1→1’, ‘5→1’ 80% source domain 20% source domain target domain 

non-transfer 80% source domain 20% source domain --- 

The performance is assessed for each task with accuracy, precision, recall, and the macro-279 

F1-score using the scikit-learn package (Pedregosa et al. 2011). The main metric we use is the 280 

macro-F1 score, computed as the average of F1 scores for each class (harmonic mean of 281 

precision and recall). The macro-F1 score has a range of 0-1, suitable for datasets with 282 
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imbalanced positive and negative samples. A higher macro-F1 score indicates a better overall 283 

performance. Additional metrics encompass accuracy, representing the ratio of correctly 284 

predicted instances to the total instances; precision, calculated as the number of true positive 285 

predictions divided by the total number of positive predictions; and recall, determined by 286 

dividing the number of true positive predictions by the total number of actual positive instances. 287 

2.5.2 Real-world application for new source discovery  288 

 To test in a real-world scenario, we apply the proposed workflow (Fig. 1) to the Hassi 289 

Messaoud O&G field in Algeria. We randomly select an orbit (for tile T32SKA) in this region 290 

which covers an area of 4×108 km2 during July 2019-June 2020. The original data are 291 

segmented and converted into 200px × 200px patches (an area of ~16 km2), generating a total 292 

of 3537 cloud-free ΔR images in the region. We use these unannotated data as the target domain 293 

for DSAN and the labeled datasets described above (#1-#6) as the source domain. Finally, the 294 

results predicted by the detector are evaluated against manually determined labels.  295 

3. Methane retrieval (ΔR) imagery dataset 296 

We compile ΔR datasets containing six super-emitters reported in the literatures (Table 1) 297 

using Sentinel-2 L1C observations. Each sample in the dataset consists of a ΔR image retrieved 298 

from the original satellite data (Step 1 in Fig.1) and a label determined manually indicating the 299 

presence or absence of methane sources (plume-containing or plume-free).  300 

The ΔR images of the dataset are processed with the LRAD algorithm (Section 2.4). Fig. 5 301 

shows examples of artifact masks generated by LRAD and compares the ΔR images with and 302 

without applying the masks. This result demonstrates that the algorithm can detect and remove 303 

varied types of surface artifacts, including dark soil, rocky soil, water body, burning flare, 304 
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smoke plume, vegetation, and cloud shadow. Fig. S6 presents additional examples that LRAD 305 

generates masks that are adaptive to temporal changes in land covers, thus capable of detecting 306 

seasonally varying artifacts. As shown in Fig. 5, removing of these artifacts by the LRAD 307 

algorithm enhances signal-to-noise ratios (SNRs) (defined as 𝑆𝑁𝑅 = 20 ∗ log10(𝑎𝑣𝑔./𝑠𝑡𝑑. ),  308 

𝑎𝑣𝑔.  and 𝑠𝑡𝑑.  are calculated from the entire ΔR image) in ΔR images by 12.12-42.30%, 309 

facilitating the following source detection step. Fig. S7 compares the averaged SNRs of the six 310 

ΔR datasets before and after deploying the LRAD algorithm. 311 

 312 

Fig. 5. Examples of the ΔR images and masks. The first row showed the raw ΔR images outputted 313 

by Step 1 procedures (Fig. 1) without LRAD deployed, the second row displayed the latent artifacts 314 

masks generated by LRAD algorithm, and the third row exhibited the denoised ΔR images outputted 315 

by Step 1 procedures (Fig. 1) with the LRAD performed. White arrows indicated true methane 316 

plumes, and red arrow indicated plume-like artifacts. Blue characters and arrows in the binary masks 317 

pointed to different types of the latent artifacts. 318 

We label the ΔR image following the decision rule as described in Fig. 6 and Text S3. Table 319 

3 summarizes the information of the methane imagery dataset retrieved from Sentinel-2 L1C 320 
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data. The dataset consists of subsets of 6 super-emitters reported in the literature (Table 1). Each 321 

subset contains 200-400 samples. These subsets differ greatly in the ratio between positive 322 

(plume-containing) and negative (plume-free) samples, ranging from 8.1% in #6 to 81.95% in 323 

#1, reflecting large variations in emission frequencies among varied sources. Most of the 324 

positive samples contain one methane plume, except for #5 in which occasionally two methane 325 

plumes are present simultaneously. We quantify the emission rates of positive samples using 326 

the IME method (Text S2) (Fig. S5). The average emission flux varies from 1952 kg/h in #5 to 327 

17122 kg/h in #3. Moreover, the background noises exhibit considerable variations among the 328 

six subsets (Fig. 7). Subsets #1, #4, and #5 present uniform noises originating from 329 

homogeneous surfaces yet subsets #2, #3, and #6 have greater heterogeneity resulting in a 330 

higher occurrence of artifacts.   331 

 332 

Fig. 6. A flowchart of the labeling decision rule of ΔR imagery (Detailed description is provided in 333 

Text S3). 334 

Table 3 Description of the six labelled ΔR datasets. 335 

Index 
Sentinel-2 

tile ID 
Time span 

Number of plume-

containing observations 

Number of plume-

free observations 

Average emission 

flux (kg/h) 

#1 

T40SBH 03/2017-03/2023 

109 133 11076 

#2 95 164 8826 

#3 66 186 17122 

#4 
T32SKA 01/2019-12/2022 

92 233 5717 

#5 128 181 1952 

#6 T13SGR 01/2018-12/2020 18 222 14443 
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 336 

Fig. 7. Examples of the plume-containing and plume-free images in ΔR datasets #1-#6. 337 

4. Performance evaluation of the DSAN model 338 

Fig. 8 evaluates the ability of the DSAN model to detect a methane source in an unannotated 339 

region (transferability) with the macro-F1 scores achieved for varied ‘1→1’ or ‘5→1’ transfer 340 

tasks (Section 2.5.1). To compare with conventional CNNs, Fig. 9 shows results of MethaNet 341 

and ResNet-50 for the same tasks. In addition to macro-F1 scores, Table S1-S3 also tabulate 342 

other performance metrics from the experiments including accuracy, precision, and recall.  343 

The DSAN model achieves average macro-F1 scores of 0.86 (0.69 to 0.93) for the ‘1→1’ 344 

tasks and 0.89 (0.77 to 0.94) for the ‘5→1’ tasks (Fig. 8), which consistently outperforms both 345 

MethaNet (0.70 for ‘1→1’ tasks and 0.76 for ‘5→1’ tasks) (Fig. 9(a)) and ResNet-50 (0.77 for 346 

‘1→1’ tasks and 0.81 for ‘5→1’ tasks) (Fig. 9(b)). The performance of conventional CNN 347 

models degrades substantially in these transfer tasks (off-diagonal of Fig. 9), compared to non-348 

transfer tasks (training and validation data from the same locations) (average macro-F1 scores 349 

are 0.87 for MethaNet and 0.95 for ResNet-50) (diagonal of Fig. 9), demonstrating the 350 

challenges of transfer tasks. Moreover, the performance of CNNs in ‘5→1’ tasks (rightmost 351 

column of Fig. 9), only marginally improved over their performance in ‘1→1’ tasks (left six 352 

columns of Fig. 9), is still inferior to DSAN’s performance in most ‘1→1’ tasks (Fig. 8), which 353 
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indicates that including a limited number of training samples from diverse regions is insufficient 354 

for conventional CNNs to enhance their transferability, underscoring the value of the transfer 355 

learning algorithm such as DSAN. 356 

The disparity of the performance presented above can be interpreted by comparing the deep 357 

features extracted by MethaNet, ResNet-50, and DSAN. Fig. 10 maps high-dimensional deep 358 

features to a 2-dimentional plot generated by the t-distributed stochastic neighbor embedding 359 

(t-SNE) algorithm (Laurens van der Maaten and Hinton 2008). Blue points are source domain 360 

samples and orange points are target domain samples. DSAN exhibits better alignment between 361 

the source and the target domains compared to MethaNet and ResNet-50. In the DSAN 362 

subfigures, it is evident that not only are the source and target points well-aligned, but samples 363 

belonging to different classes also exhibit noticeable distinctions. This result is consistent with 364 

our understanding that the domain transfer module in the DSAN model can effectively close 365 

background differences between different regions (domain shift), enhancing the ability of the 366 

algorithm to identify methane plumes at a new location. 367 

Fig. 8 and Fig. 9 also indicates that some of the datasets appear more difficult to predict 368 

than others. The DSAN’s performance for dataset #2 and #6 is not as good as for other datasets 369 

(Fig. 8), while MethaNet performs poorly for dataset #2, #5, and #6 and ResNet-50 performs 370 

poorly for dataset #2 and #6 (Fig. 9). Some dataset characteristics may have contributed to 371 

lower performance. Dataset #2 is marked by highly heterogeneous surface, Dataset #5 by 372 

smaller methane fluxes and plume sizes, and Dataset #6 by higher surface complexity and 373 

imbalanced positive / negative classes (Fig. 7 and Table 3).  374 

Increasing the source domain from one dataset (‘1→1’ tasks) to five (‘5→1’ tasks) slightly 375 
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improves the performance of the DSAN model (Fig. 8), demonstrating the benefit of including 376 

more and diverse training samples. However, #6 remains the most difficult dataset with no 377 

improvement. 378 

 379 
Fig. 8. Macro-F1 scores on the transfer tasks given by DSAN. Each square represents a transfer task. 380 

‘5→1’ represents the source domain is fused by five datasets except for the target domain dataset. 381 

 382 

Fig. 9. Macro-F1-scores given by (a) MethaNet and (b) ResNet-50. Each square represents a task. 383 

Tasks on the diagonal pertain to non-transfer tasks, with each dataset partitioned into a training set 384 

(80%) and a validation set (20%). Tasks outside the diagonal are transfer tasks. ‘5→1’ denotes that 385 

the source domain is fused by five datasets except for the target domain dataset. 386 

 387 
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 388 
Fig. 10. t-SNE visualizations of the learned feature representations of the ΔR datasets across 389 

different models and transfer tasks, providing insights into domain shift and how well the well-390 

trained models identify different classes in the target domain. From the left to right column: 391 

MethaNet, ResNet-50, and DSAN on three ‘1→1’ transfer tasks (#1→#2, #3→#4, and #6→#1). 392 

Each point represents a data sample. The number in each subfigure denotes the macro-F1 score of 393 

the target domain label predicted by the model. 394 

5. Real-world application for methane source discovery 395 

We apply the proposed AI-assisted monitoring workflow (Fig. 1), including the LRAD and 396 

DSAN algorithms, to a 432 km2 area (Fig. 11) in the Hassi Messaoud O&G field in Algeria 397 

(Section 2.5.2). The algorithm processed in total 3527 images (200 pixel by 200 pixel) for one 398 

year, yielding 3168 negative (plume-free) and 369 positive (plume-containing) detections.  399 

We manually verified that 33 out of the 369 positive detections contain true methane plumes 400 

from three methane super-emitters (denoted as P(1), P(2), and P(3) in Fig. 11) and that 1 false 401 
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negative detection was identified at P(2) (see Fig. S8). Using the Google Earth Map, we 402 

attributed P(1) to a production well (31.8651°N, 6.1683°E) and P(2) to pipeline leakage 403 

(31.7566°N, 6.1864°E). We did not identify OG infrastructure associated with P(3) 404 

(31.5846°N, 6.4878°E) from the Google Earth Map. Fig. 11 presents visual imagery of each 405 

source and the true positive plumes detected by our method. These super-emitters were not 406 

known at the time of our experiment. Two recent studies reported P(1) based also on Sentinel-407 

2 data (Naus et al. 2023; Pandey et al., 2023).  408 

Methane plumes are detected twice at P(1), 30 times at P(2), and twice at P(3) during July 409 

2019 to June 2020 (Fig. 12), resulting in respective detection frequencies of 1.6%, 24%, and 410 

1.6% for the three sources after cloudy days are excluded. Meanwhile, the LRAD algorithm 411 

detects flaring as a byproduct (Fig. S9). We detected 67 flaring events at P(1) and one flaring 412 

event at P(2) (Fig. 12). Flaring detection at P(1) occurs primarily during July to August 2019 413 

and January to May 2020.  414 

We quantified the emission fluxes of the three sources using the IME method (Varon et al. 415 

2021) (see Text S2 for details about the method). The average emission rate is 31133 kg h-1 416 

for P(1), 3990 kg h-1 for P(2), and 8210 kg h-1 for P(3) (Fig. 12). The largest emissions were 417 

found at P(1) due to a blowout event with 18421±6575 kg h-1 on January 4, 2020 and 43845418 

±9169 kg h-1 on January 7, 2020. This result is generally comparable to estimates given by 419 

Pandey et al. (2023) (21000±6000 kg h-1 on January 4) and Naus et al. (2023) (29800±14900 420 

kg h-1 on January 4 and 68400±34200 kg h-1 on January 7). 421 
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 422 

Fig. 11. From left to right: Application area (the rectangular area within the white dotted line) 423 

extracted from Sentinel-2 data, RGB images of the positive patches containing methane point 424 

sources (P(1)-P(3)), and examples of the methane plume-containing ΔR images detected by our 425 

method. The white pin in ΔR image points to the source location. 426 
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 427 

Fig. 12. Time series of the detected methane leaking events, flaring, and the retrieved emission flux 428 

of the methane plumes for P(1), P(2) and P(3). It is noted that detected methane leaks and flaring 429 

come from different facilities, and the flare burn dates do not coincide with the leak dates. No 430 

detections indicate methane-free and flaring-free. Bad data mainly indicates cloudy data or data that 431 

is fully covered by artifacts.  432 

Table 4 summarizes the performance metrics for the real-world application. Our algorithm 433 

demonstrates a good detection capability with an accuracy of 0.90, consistent with the averaged 434 

value for the 36 transfer tasks (section 4.1.1). This performance surpasses the detection 435 

accuracy of approximately 0.80 reported by the CH4Net which used Sentinel-2 for the west 436 

coast of Turkmenistan (Vaughan et al. 2024). For 3168 plume-free images, the DSAN detector 437 
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achieves a false positive rate of 0.096 (FP / TN+FP), higher than the results of existing detectors 438 

tested on synthetic datasets (Zortea et al. 2023; Rouet-Leduc and Hulbert 2024). Nonetheless, 439 

this rate is lower than the 0.14 reported by the U-Plume detector on GHGSat-C1 observations 440 

(Bruno et al. 2023) and the 0.18 reported by (Vaughan et al. 2024). 441 

Additionally, our detector shows the macro-F1 score of 0.56, which is lower than that 442 

reported in Section 4 for the evaluation tasks primarily due to the 336 false positive detections. 443 

Further analyses suggest that these false positives are related to smoke, built-up, land surface, 444 

and cloud/cloud-shadow (Fig. 13(a)). We categorize these false positives based on the type of 445 

main artifacts (Fig. 13(b)). Artifacts related to land-surface variability accounts for 77.61% of 446 

the false positives, followed by those related to cloud or cloud shadow (19.10%), and smoke 447 

(3.28%). These results indicate that some artifacts remain after processed by the artifact-448 

removal algorithm LRAD. Investigation into these artifacts, particularly those by land surfaces, 449 

is key to further improving the performance. 450 

Table 4 Manual validation of detections by the AI-assisted framework. 451 

07/2019 - 06/2020 TPa FPb TNc FNd Precision Recall Macro-F1 score Accuracy 

All 3537 patches 

of the swath  
33 336 3167 1 

0.09 0.97 
0.56 0.90 

1.00 0.90 

a-d TP (true positive), FP (false positive), TN (true negative), and FN (false negative) represent specific 452 

categories of predictions 453 
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 454 

Fig. 13. False positive detection in the real-world application. (a) Representative examples of the 455 

false positive results, and the corresponding RGB images extracted from Sentinel-2 L1C product; 456 

(b) Contributions of various artifact types to false positive detections. 457 

 458 

6. Discussion 459 

6.1 Comparison with existing denoising methods 460 

Noise and artefacts in retrieved ΔR imagery poses significant challenges to real-world 461 

image classification tasks such as satellite-based methane plume detection, impacting the 462 

convergence and generalization of deep neural networks (Dodge and Karam 2016). Table 5 463 

summarizes existing denoising methods. To reduce noises, Varon et al. (2021) proposed to 464 

remove outliers using 3×3 median filter algorithm and remove background noises below 95% 465 

confidence interval. Similarly, Ehret et al. (2022) discarded the 5% worst predicted pixels 466 

obtained from methane-free background estimation and then apply a Gaussian filter. 467 

Furthermore, Zortea et al. (2023) generated a binary mask to exclude the water-body-related 468 

artifacts using the MNDWI. These denoising methods performed well on relatively 469 

homogeneous surfaces, where noise is uniformly distributed and artefacts are small in area and 470 

infrequent in time. However, in heterogeneous regions, such as those shown in the first and last 471 

columns of Fig. 5, artifacts are more prominent and often cover areas larger than those of the 472 
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methane plumes, making them more challenging to address by existing denoising methods. 473 

Utilizing additional spectral bands, our LRAD algorithm is designed to address multiple types 474 

of artifacts and is adaptive to different types of land surfaces. As illustrated in Fig. S6, LRAD 475 

generates large-area denoising masks for heterogeneous surfaces and small-area or even no 476 

masks for homogeneous regions. The effectiveness of this approach is further demonstrated by 477 

the SNR improvements shown in Fig. S7. 478 

Table 5 Summary of existing denoising methods. 479 

References Denoising method Used Sentinel-2 band 

Varon et al. (2021) 
3×3 median filter & background mask: [methane 

enhancement > 95th percentile]  
--- 

Ehret et al. (2022) Gaussian filter & 5% worst prediction pixels b11, b12 

Zortea et al. (2023) 
Gaussian filter &  

water body mask: [MNDWI >0.2] 
b3, b12 

This study LRAD b4, b8, b11, b12 

 480 

6.2 Comparison with existing methane detectors 481 

Multispectral satellite instruments such as Sentinel-2 record high-spatial-resolution global 482 

data, potentially capturing methane plume signals from numerous super-emitters. It poses great 483 

challenges to detect methane plumes from vast areas with various background noises relying 484 

on visual inspection, as well as to extensively annotate real-world training data for constructing 485 

automated detectors. Recently, various deep learning architectures have demonstrated 486 

feasibility for the automated detection of methane super-emissions in satellite imagery, 487 

including the vision transformer based network (Rouet-Leduc and Hulbert 2024), U-Net based 488 

models (Bruno et al., 2023; Vaughan et al., 2024), ResNet-50 (Zortea et al., 2023), EfficientNet-489 

V2L (Radman et al., 2023), and MethaNet (Jongaramrungruang et al., 2022), a specialized 490 

network for methane detection. Most existing detectors require huge-volume simulated or 491 

synthetic datasets, the size of which is more than 100 times larger than the real data used to 492 
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train our methane detector.  493 

While works in a data-efficient manner, our transferable DSAN method demonstrates 494 

lower false positive rates than existing detectors also trained with real data (Section 5). These 495 

detectors possibly degrade performances on test sets, due to the potential domain shift arising 496 

from spatiotemporal variations in real environment (Fig.10). In contrast, the specialized domain 497 

adaptation architecture in our detector can bridge such domain shift, making it promising for 498 

cost-effective and large-scale methane super-emitters detection. Once ΔR imagery with labeled 499 

information from one methane point source is available, the DSAN model can learn the 500 

plume/noise feature representation and transfer to other geographic regions with similar or even 501 

different environmental conditions. 502 

 503 

6.3 Limitations and future enhancements 504 

It should be noted that while the LRAD algorithm could effectively remove most artifacts 505 

presenting low reflectance values in methane-sensitive bands, but its robustness to remove 506 

plume-like artifacts in complex situations (see Fig. 13(a)) needs to be improved in future studies. 507 

Our real-world application in Hassi Messaoud reported a relatively high number of 336 false 508 

positive out of 3527 classifications. Most false positives were caused by artifacts that spectrally 509 

overlapped with methane absorption. This result suggests that more work is needed to eliminate 510 

these artifacts, especially those originating from surface features (account for 77.61%), to 511 

reduce the false positive rate of the Sentinel-2 monitoring workflow. Considering that land-512 

surface type artifacts (from built-up areas and natural low-reflectivity surfaces) are spatially 513 

invariant, hyperspectral or radar satellite observations can be used to pre-identify potential 514 
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artifacts in oil and gas fields. Both of them excel at discriminating among various built-up 515 

structures and materials properties (Kuras et al. 2021). For key oil and gas fields with high 516 

emission frequencies, an artifact library can even be constructed so that Sentinel-2 can directly 517 

look up for regional masking when detecting methane sources. Furthermore, applications in 518 

more O&G fields would be needed for methane ultra-emitter monitoring. Augmentation of the 519 

true and diverse methane plume datasets can lead to better generalization capabilities of the 520 

detection model, while the time and labor costs of annotating plume-containing images need to 521 

be considered. 522 

 523 

7. Conclusions 524 

Here, we proposed a novel deep-transfer-learning-based approach that combined an 525 

adaptive artifacts removal algorithm (LRAD) with a transferable plume detector (DSAN), to 526 

identify methane-plume-containing images retrieved from Sentinel-2 observations. Our 527 

evaluation demonstrated that the proposed method efficiently detects plumes in different O&G 528 

fields. Applying the method to the Hassi Messaoud O&G field over a 1-year period discovered 529 

33 anomalous emission events from three methane super-emitters, which were attributed to well 530 

blowout, pipeline leak, and unknown facility with average emission rates of 31133 kg/h, 3990 531 

kg/h and 8210 kg/h, respectively. 532 

The LRAD algorithm utilized Sentinel-2 bands 3, 8, 11, and 12 to remove multi-type 533 

artifacts associated with low reflectance in methane-sensitive bands, which greatly improved 534 

feature extraction by the deep model especially in heterogeneous regions of O&G fields. We 535 

applied the LRAD algorithm to ΔR retrieval from Sentinel-2 observations and compiled ΔR 536 
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datasets (1627 images in total) that include six different O&G super-emitters. The six labelled 537 

datasets have various ratios of positive (plume-containing) to negative (plume-free) sample size, 538 

plume sizes, and background noises.  539 

The DSAN model was used to detect methane point sources based on ΔR images, aiming 540 

to resolving challenges arising from the domain shift between Sentinel-2 ΔR images for 541 

methane sources in different regions. For transfer detection tasks across six known methane 542 

sources, the DSAN model achieved an average macro-F1 score of 0.86, outperforming 543 

MethaNet and ResNet-50. Without a need for a huge volume of training data, our DSAN model 544 

operated in a data-efficient manner which leveraged knowledge acquired from a source domain 545 

during the training process to perform plume classification in a target domain. 546 

Moving forward, the developed workflow can be modified to detect methane from other 547 

multispectral instruments, including Sentinel-2, LandSat-8, and WorldView-3. Also, it has the 548 

potential for detecting plumes of other pollutants observable by satellites such as NO2 or CO2. 549 

Moreover, while this study made efforts to develop a labelling decision rule, the confidence of 550 

the labels determined by human analysts was difficult to quantify. To facilitate robust algorithm 551 

development, we recommend the development of standards for plume identification and 552 

construction of benchmark plume datasets for varied satellite instruments.  553 

 554 

Data availability  555 

The six compiled methane retrieval ΔR datasets will be made available through a public 556 
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