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Abstract. The 2021 Chamoli ice-rock landslide formed a landslide-flood hazard chain by claiming 200 lives and destroying 

two hydroelectric power plants. The reason for this landslide has been elusive due to difficulty in retrieving reliable 

deformation time series before the landslide. Here we proposed a histogram-based method to reconcile deformation 

inconsistencies measured in different optical sensors. We find the Chamoli ice-rock deformed >80 m from 2013 to 2021 with 

exceptionally high deformations in summers of 2017/18, which were related to high summer temperatures. Final collapse in 15 

February 2021 is also related to high temperature. Rising temperatures weakened shear strength of the ice on the sliding plane 

triggering the Chamoli landslide to move. With climate warming, more similar, hard to predict ice-rock landslides in 

deglaciating high mountains are inevitable, posing new challenges to local communities and beyond. Optical remote sensing 

images provide an indispensable data in deciphering early precursors of similar hazards. 

1 Introduction 20 

Landslides in deglaciating high Asia mountains are more disastrous to local communities than other environments (Shugar et 

al., 2021; Cook et al., 2018). Extremely high local relief of these deglaciating mountains means tremendous kinetic energy 

after slope collapses. These mountains are abundant of unvegetated, loose sediments (moraines), which are more erodible than 

low mountains (Gruber and Haeberli, 2007). Widespread and persistent warming of permafrost has been observed in polar 

regions and at high elevations since about 1980; trends in permafrost warming are consistent with trends in air temperature 25 

(Smith et al., 2022).Given the phenomenon of global warming, rising temperatures have led to rapid melting of glaciers, 

shrinking glacier cover, warmer permafrost, and deeper active layers, resulting in many cracks and U-shaped bedrock slopes 

that are unsupported and could collapse at any time (Biskaborn et al., 2019; Lacroix et al., 2022). 

The changing climate should play a pivotal role in initiating landslides in these deglaciating high Asia mountains, yet direct 

observations at slope scale are scarce. Most existing works are regional analysis of the relationships between climate change 30 

and landslide inventory changes (Emberson et al., 2021; Pei et al., 2023; Kirschbaum et al., 2020) and in other parts of the 

https://doi.org/10.5194/egusphere-2024-2786
Preprint. Discussion started: 14 October 2024
c© Author(s) 2024. CC BY 4.0 License.



2 

 

world (Deline et al., 2021; Coe et al., 2018; Lewkowicz and Way, 2019). However, these landslide inventories are mainly 

interpreted from relatively low elevations, where vegetations are abundant and landslides stand out distinctly from background 

ground features in remote sensing images (Larsen and Montgomery, 2012). In contrast, landslides in unvegetated, high 

deglaciating mountains are much more difficult to interpret and are therefore largely overlooked. Unfortunately, climate 35 

warming is elevation dependent, which means warming temperature has been disproportionately influencing higher than lower 

mountains (Mountain Research Initiative EDW Working Group 2015). Lack of observations hinder understanding of these 

processes and in particular its response to climate change (Sæmundsson et al., 2018). Most observations in high deglaciating 

mountains are in European. A recent work by Bast et al. (2024) with multiple in-situ methods found deceleration of an ice-

rich rock glaciers was associated with low winter snowfall and cool summer temperatures. Their analysis did not consider 40 

changes of ice strength in the sliding zone, because cooler summer temperatures could increase ice strength leading to slower 

rock glacier deformation than warmer summers. 

Recent disasters that originated from harsh, extremely high Asian mountains draw our attention to examine these slope 

stabilities beforehand (Shugar et al., 2021; Cook et al., 2018; Guo et al., 2020). The 7 February 2021 Chamoli landslide-flood 

hazard chain is such a prominent event. The ice-rock blocked failed from an elevation of ~5500 m to the bottom of the valley 45 

~1800 m below (Shugar et al., 2021). Extremely high relative relief (~1800 m) of the block bear very high gravitational 

potential energy, which transformed to tremendous kinetic energy (Jiang et al., 2021). The ice-rock block smashed into the 

valley bottom and run a long distance entering the Ronti Gad–Rishiganga River confluence leading to a surged flood that 

destroyed two hydropower plants about 15km and 24 km far from the landslide source, claiming ~200 lives. Previous works 

showed clear precursors of > 10m horizontal displacements in the last few years (Qi et al., 2021; Van Wyk de Vries et al., 50 

2022). However, observations on these deglaciating mountain environments are always challenging. First, deformations of 

similar magnitude (>10 m in 2~5 years) before landslides are beyond the capability of mainstream SAR interferometry (InSAR) 

measurements. Second, these extremely high mountain environments are very complex terrains frequently influenced by 

mountain shadows and snows. There are high uncertainties among different datasets and a lack of intra-annual deformation 

measures for the Chamoli landslide in previous studies hindering a holistic assessment of climate change’s impact and the 55 

reason of the ice-rock collapse remains largely unknown (Qi et al., 2021; Van Wyk de Vries et al., 2022). 

The aims of this work are 1) to reconcile deformation measures from different optical sensors, 2) to derive inter- and intra-

annual deformations for the Chamoli ice-rock landslide, and 3) to disentangle mechanisms that lead to this landslide. Findings 

of this work would help understand hazard chain processes in deglaciating high mountain Asia. 

2 Study area 60 

On 7 February 2021, at 4:51 UTC [10:21am. Indian Standard Time (IST)], a catastrophic ice-rock landslide occurred in the 

Chamoli district of the North Arkhand, India (30.38˚N, 79.75˚E, 5000~5600 m). A large chunk of ice-rock (~27 × 106 cubic 
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meters, Shugar et al., 2021) dislodged from the steep north face of the Ronti Peak at an altitude of about 5500 m (as shown in 

Fig. 1) and rapidly descended 1800 m reaching the bottom of the Gonti Gad valley, triggering a massive flood. 

 65 

Figure 1: The study area is located on the southwest of the Tibet Plateau (a). ALOS 30m DEM topographic map (Provided by Japan 

Aerospace Exploration Agency) in (b) highlights the blue line, which was the travelling path of the hazard chain initiated by the 

landslide. The Rishiganga HPP (hydro power plants) and Tapovan HPP are two major affected infrastructures. The grey smaller 

rectangular in (b) is the stable area used in Exp 1-3 in Table 1. (c) Location of the Chamoli landslide in the glacier (from © Google 

Earth 2024). (d to e) Pre-event and post-event satellite imagery of the site of the collapsed rock and glacier block, and the resulting 70 
scar. The red arrows in (d) indicate the fracture that became the headscarp of the landslide.  Satellite imagery in (d) to (e) is from 

Sentinel-2 (Copernicus Sentinel Data) 

This region is a tectonically active zone that is dominated by high relative relief glacial landform. It has rich permafrost. In 

many areas of the alpine environment, the past 50 years have seen a reduction in the amount of glacier cover, a rise in 

permafrost temperature, deeper active layers (Biskaborn et al., 2019). Many fissures have been created in permafrost locations 75 

as a result of rock/ice separating due to climate factors. There was no feelable earthquake in the region and around in the past 

ten years based on the USGS earthquake catalogue. The area is mainly composed of metamorphic rocks, which are dominated 

by mixed rock gneisses. The area around the destroyed Tapovan Vishnugad Hydropower Station is characterized by 

metasedimentary blueschist schist, quartzite, marble, gneiss and calc-silicates (Valdiya & Goel, 1983). Non-tectonic joints in 

layered bedrocks make it susceptible to glaciation and neotectonics (McColl, 2012; Sahoo et al., 2000). There are many types 80 

of natural hazards around the study area (e.g., flash floods, mudslides, landslides and earthquakes) (Bhambri et al., 2016). The 

climate of the region is characterized by warm humid summers and cold humid winters. The difference between the average 

monthly maximum and minimum temperatures is about 20°C, with the highest temperatures occurring in summer monsoon 
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months (Shrestha et al., 2021). Mean annual precipitation is more than 1,000 mm, two-thirds of which occurs in summer 

months (June to September) brought by the southwest monsoon. Winter months (between November and March) precipitation 85 

is brought by the western disturbances (Das et al., 2019). 

3 Material and methods 

3.1 Data 

To detect the slope deformation that occurred before the landslide, we used the red band of the Sentinel-2 (10m resolution) 

level-1C images referring to (Yang, 2020; Yang et al., 2020a, 2020b). We used the 15m resolution panchromatic band of the 90 

Landsat 8 Tier 1 TOA reflectance images. We visually checked all Landsat 8 images in the Chamoli area and obtained 71 clear 

images without clouds and haze from 2013 to 2021. As the Chamoli landslide is located on a north-facing slope, it is partially 

or totally covered by mountain shadows in some periods of the year. Among these 71 clear Landsat 8 images, the landslide in 

35 images is not affected by mountain shadows. Similarly, 43 clear Sentinel-2 images without mountain shadows from 2016 

to 2021 were used in this work (Supplement 1). We used historical monthly temperature data from the European Centre for 95 

Medium-Range Weather Forecasts (ECMWF) ERA5 dataset (Hersbach et al., 2023) from 1979 to 2020 to analyse the impacts 

of temperature data on landslide deformations. The ERA5 in complex terrain (e.g., high mountain regions of Asia) has been 

investigated in several studies and validated for several regions of HMAs (Khanal et al., 2023). Because the spatial resolution 

of the EAR5 is much too coarse (0.25˚), we used a nearest meteorological station that is available to us, ~170 km from the 

landslide to validate the EAR5 temperature data (Supplement 3). We used NASA's monthly Global Precipitation 100 

Measurements (GPM) data (Skofronick-Jackson et al., 2017) from 2013 to 2020 to investigate the effect of precipitation on 

the landslide deformation. 

3.2 Method 

We can compare two optical images of different dates to derive deformation of the Chamoli landslide with pixel offset tracking 

methods (POT). In this study, we first composed image pairs by selecting any two optical images with acquisition dates < 550d 105 

from the same sensor. Second, we used the COSI-Corr (Co-Registration of Optically Sensed Images and Correlation, Leprince 

et al., 2007; Li et al., 2024), a POT method to derive initial deformation values. Third, we used both the traditional stable area 

method and our proposed histogram-based method to correct mismatches in image pairs during POT. From that, we derive 

time series deformation of the landslide with the least square regression method as Zhang et al., (2022). 

3.2.1 Mismatch correction in image pairs and the proposed histogram-based method 110 

The COSI-Corr is a frequently used method to derive surface deformations between two optical images (Miles et al., 2021; 

Chen et al., 2020; Michel et al., 2018). With the Fourier transformation, COSI-Corr utilizes two sliding (initial and final) 

windows to consecutively detect differences in an image pair. In this work, the initial and final window sizes of the frequency 
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correlator are 64 and 32, respectively, consistent with Yang et al. (2020). The N/S (north/south), E/W (east/west) and SNR are 

three output layers for a given image pair. Although registrations have been implemented in optical images, there are still sub-115 

pixel mismatches between any two images. It is a common way to remove mismatches in N/S and E/W layers from an image 

pair by subtracting the mean or median (N/S and E/W) deformations in a selected stable area (Bontemps et al., 2018; Lacroix 

et al., 2018; Yang et al., 2020). Mean or median values of the stable area are frequently used as approximations of the mismatch 

value. Different stable areas should produce the same mismatch values for a given image pair. These estimated mismatch 

values can be biased due to many factors. Firstly, selection of a stable area is always subjective and based on personal 120 

experiences. It is even more challenging to select a stable area in topographic complex mountains like the Chamoli area. 

Second, the size and location of stable areas can influence the mean or median values, as they can be easily biased by abnormal 

POT results even constrained by the SNR signals (Bontemps et al., 2018). Biases in estimating mismatch values in image pairs 

can propagate to deformation time series leading to inconsistencies among different image types. 

To solve this problem, we first used all POT results from the entire study area to form a histogram with 2000 bins. Second, we 125 

find the highest deformation frequency bin based on the assumption that the deformation of the study area follows a normal 

distribution. Third, the mismatch value is estimated by the mean of the bin’s (maximum and minimum) boundary as a mode 

value. Finally, this mode value is eliminated as the mismatch between images in the given pair from POT results. This new 

method does not need to select a stable area. 

Here we selected the N/S layer of a POT result as an example to show the difference between the traditional stable area method 130 

and our proposed histogram-based method. Fig. 2a shows that the mean value is 1.6 m, and the median value is 1.06 m in the 

stable area (Gray rectangle in Fig. 2b). In traditional methods (such as the first three experiments in this work), either the mean 

or the median values will be used as the mismatch between the two images in the image pair. To use our proposed method, we 

created a histogram with 2000 bins, ranging from -380 to 480 m for the entire image (the area with POT result). Then, we 

identify the bin with the highest deformation frequency (the column with the vertical blue line in the centre), and estimate the 135 

mismatch value as 0.335 m by averaging the bin's (maximum and minimum) bounds (Fig. 2b).  
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Figure 2: Average and median values within the stable area(a). The mean of the bin boundaries with the highest frequency is used 

as the mismatch in this image pair for the N/S layer(b). Note, the vertical blue line (inset b) is the values estimated from our proposed 

method and the two vertical red lines (inset b) were mean and median values used in traditional stable area method. 140 

3.2.2 Five experiments to reconcile measure inconsistencies 

To test the performance of our proposed histogram-based method, we used five experiments in this study to derive deformation 

of the landslide (Table 1). We used a stable area (the grey rectangular in Fig. 1b) in the first three experiments, whereas the 

newly proposed histogram-based method is used for the last two experiments. In the first experiment, we used all 71 clear 

Landsat 8 images, some of which are covered by mountain shadows (i.e. Supplement 2 mountain shadows cover part or the 145 

entire Chamoli landslide). In the other four experiments, we selected Landsat 8 and Sentinel-2 images without mountain 

shadows from clear ones (Supplement 2). After correcting mismatches in image pairs, we used the same method as Zhang et 

al. (2022) to derive time-series deformation for the study area. 

Table 1. Five experiments in this work. These experiments were designed to test the performance of the proposed histogram-based 

method. 150 

Experiment No. Data Number of images Number of pairs Method 

1st Landsat 8 71 897 Stable area with 

shadow images 

2nd Landsat 8 35 209 Stable area & no 

shadow images 

3rd Sentinel-2 43 495 Stable area & no 

shadow images 

4th Landsat 8 35 209 histogram-based & no 

shadow images 

5th Sentinel-2 43 495 histogram-based & no 

shadow images 

POT needs two images of different dates to compare an image pair. In this work, any two images of the same type (Sentinel-

2 or Landsat 8) with < 550 days interval are composed of an image pair (Supplement 1). With all 71 clear Landsat 8 images, 

there are 897 image pairs in the first experiment. By excluding 36 shadow Landsat 8 images, 209 image pairs are used in the 

second and fourth experiments. For the third and fifth experiments, 495 image pairs were composed with 43 Sentinel-2 images. 

Fig. 3 is a flowchart of the proposed method. 155 
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Figure 3: Flowchart of the proposed method.  

4 Results 

4.1 Reconciled Landsat 8 and Sentinel-2 measurements 160 

Fig. 4 shows the derived deformation of the landslide before 2021 (the landslide failed in February 2021). Slope deformation 

in Fig. 4a (including images covered by mountain shadows) is different from the other four results. Clear images with mountain 

shadows in Exp 1 seriously deteriorated deformation of the landslide in Fig. 4a. Spatial deformation patterns that did not use 

shadow images agree well with each other and unanimously show that the main deformation occurred at the east part of the 

landslide. Their spatial consistency can also be validated by their corresponding boxplots (embedded in Fig. 4). Using the 165 

traditional stable area method (Exp 2 & 3), the mean deformation difference between Landsat 8 (44.99 m, Fig. 4b) and Sentinel-

2 (53.98 m, Fig. 4c) is ~9 m. In contrast, the proposed histogram-based method reduced this difference to < 5m (Landsat 8 

with Exp 4 mean is 47.20 and Sentinel-2 with Exp 5 mean is 50.33, Fig. 4d & 4e). 

https://doi.org/10.5194/egusphere-2024-2786
Preprint. Discussion started: 14 October 2024
c© Author(s) 2024. CC BY 4.0 License.



8 

 

 

Figure 4: Deformation results of the Chamoli landslide. Results in panels a-c are derived with stable area (Exp 1-3), whereas panels 170 
d-e used histogram-based method (Exp. 4-5). All 71 clear Landsat images were used in panel a. Results in panels b-c did not use 

shadow images. (Shadow images mean the Chamoli landslide is partially or totally covered by mountain shadows). The black 

polygons are used to derive deformation time-series in Fig 5. Panels a-e are embedded with boxplots of deformation with one- and 

three-quarter percentiles, range, mean and median values, the red dashed curves are fitted normal distributions. 

Fig. 5 shows the cumulative deformation time series from the five experiments in the east part of the landslide (the black 175 

polygons in Fig. 4). The deformation time series that uses all clear (including shadow-covered) Landsat 8 images and the stable 

area (the black dotted line in Fig. 5a) has very large sparks, which means very large uncertainties. In comparison, results (L8 

stable and S2 stable in Fig. 5a) that excluded shadow images have much less sparks, meaning excluding shadow images could 

improve deformation time series. However, there are still inconsistencies between L8 stable and S2 stable results in the red 

dashed polygons in Fig. 5a (period 1 & 2). For example, L8 stable shows accelerated deformation, while S2 stable shows the 180 

deformation stagnated between April and September 2016 (period 1). Both measurements do not agree with each other on 

whether the deformation continued increasing between September 2017 and March 2018 (period 2). 
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By using our proposed histogram-based method, these temporal inconsistencies between Landsat 8 and Sentinel-2 data were 

reconciled (Fig. 5b). Both measurements show the deformations are much higher in the May-October periods in 2017 and 

2018 than other years. The landslide moved ~33 m in the two-year period of 2017-2018. It moved about 14 m and 15 m in 185 

summers of 2017 and 2018, respectively. In contrast, the landslide moved approximately 26 m in three years from May 2013 

to May 2016 and about 16 m over the last two years before collapse (2019.5-2020.10). 

 

Figure 5: Deformation time-series of the east part of the landslide (black polygons in Fig. 4a-e). Deformation time-series for Fig. 4a-

c (Exp 1-3) are shown in (a) and time-series for Fig. 4. d-e (Exp 4-5) are shown in (b). Note, inconsistencies in red dashed polygons 190 
between L8 stable and S2 stable results in (period 1 & 2 of a). Temporally consistent results in (b) show large accelerations in 

summers of 2017 and 2018. 
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4.2 Deformation accelerations in summers of 2017/18 

To compare deformations of the Chamoli landslide in summers (4.1-9.30) and winters (10.1-3.31 the following year), we made 

simplified the deformation time series from 2013 to 2021 for the landslide and its neighbouring stable slopes. Each year, 195 

Sentinel-2 and Landsat 8 images acquired from early March to late October are not influenced by mountain shadows. By 

averaging time series of deformations derived from these two kinds of remote sensing images with the histogram-based method, 

we grouped deformations into summer and winter deformations (Fig. 6b). Neighbouring slopes remained very stable during 

the study period (Area III & IV in Fig. 6a &6b). Though different parts of the landslide have distinct spatial deformations 

(mean displacement in Area I is ~80 m while in Area II is ~35 m), their temporal deformation patterns are alike. The largest 200 

deformations occurred in the summers of 2017 and 2018 for both Area I and Area II in Fig. 6b. Boxplots (Fig. 6c-d) of the 

deformation show the landslide moved much faster in summers than winters. For the east part of the landslide (Area I in Fig. 

6a), mean summer displacement rates is ~3.4 cm/d, while the mean winter displacement rates is ~2.6 cm/d (Fig. 6c). The 

highest displacement rates occur in summers of 2017 (6.74 cm/d) and 2018 (8.32 cm/d). For the west part (Area II in Fig. 6a), 

the mean summer and winter displacement rates are ~2 and 0 cm/d (negative values are due to uncertainties), respectively. The 205 

displacement rates in summers of 2017 and 2018 are 4.5 cm/d and 6.49 cm/d, respectively. 

 

Figure 6: Four sub-areas in (a) are selected to show displacements in summers and winters of the landslide (Area I and II) and non-

landslide slopes (Area III and IV) (b). Monthly precipitations (grey columns) and mean air temperatures (the blue dotted line) are 
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also shown in (b). Boxplots of summer and winter displacements of the landslide in area I and II are shown in (c) and (d), respectively. 210 
(Fig. a base map from © Google Earth 2024) 

4.3 Higher temperatures and more precipitations in summers of 2017/18 

Fig. 7a shows annual, summer precipitation (4.1-9.30) and its ratio to the full year precipitation from 2013 to 2020 derived 

from the EAR5 data. Annual precipitations in the study area are >1200 mm. Though total annual precipitations in 2017 and 

2018 are not the highest, summer precipitation ratios of 2016-2018 are among the top three highest, with > 80% precipitation 215 

occurred in summer months. The insulator effect of the pre-summer winter snowfall cannot alone explain the accelerations in 

summers of 2017/2018 (as shown in Bast et al., 2024), because the summer precipitation ratio in 2018 is also very high 

indicating lower snowfall in the winter before the 2019 summer, which did not show significant slope acceleration. 

Temperature is another possible driving factor for the landslide deformation. As the highest temperatures of the year occur in 

the summer months of July and August, we ranked mean temperatures of July and August in 1979-2020 using ERA5 data (Fig. 220 

7b). The August of 2018 (11.92°C, 1/82) and the July of 2017 (11.21°C, 4/82) are among the highest in 41 years. Temperatures 

in July 2018 and August 2017 are also greater than the 41-year mean temperature of 8.7°C. Summer temperatures in 2017 and 

2018 are the top two highest months from 2013 to 2020 (inset Fig. 7b). 

 

Figure 7: Annual, summer precipitation (from April to October) and summer precipitation ratio (a) for the Chamoli landslide. Air 225 
temperatures of July and August from 1979 to 2020 sorting from largest to smallest (b). Inset (b) is summer temperature rankings 

from 2013 to 2020. Both precipitation and temperature data used are from the EAR5 dataset. 

5 Discussion 

5.1 Improvement of the method 

During POT processing, it is a routine way find a stable area to eliminate mismatches in image pairs (Bontemps et al., 2018; 230 

Lacroix et al., 2018; Yang et al., 2020). Finding a true stable area is quite challenging in complex mountain environments like 

the Chamoli study area, which could be the reason for the inconsistency in deformation time series between the Sentinel-2 and 

Landsat 8 images in Fig. 5a, Shugar et al. (2021) and Van Wyk de Vries et al. (2022). In this work, our proposed histogram-
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based method eliminated the subjectivity in selecting a stable area and reconciled intra-annual deformations in both data 

revealing the contrasting summer/winter deformation patterns in the study period. Our multi-year time-series deformation from 235 

2013 to 2021 indicates that major deformations of the Chamoli ice-rock block occurred in summers of 2017 and 2018. Both 

years have the highest summer temperatures during 1979-2021 and higher than average summer precipitations from 2013 to 

2021. 

5.2 Our measured deformation is the entire landslide 

Previous works show that much part of the Chamoli landslide is covered by ice (Shugar et al., 2021; Van Wyk de Vries et al., 240 

2022), raising the question of whether our measured deformations are the entire landslide or the ice layer on the surface of the 

landslide. Here we list two lines of evidence to support our claim that our measures are ice-rock instead of only surface ice 

layer deformations. First, the deformation time series of a neighbouring glacier (Fig. 8) is linear and much larger, compared to 

the nonlinear and much smaller deformation of the Chamoli landslide. As both this glacier and the landslide share similar 

elevations, aspects, and slopes, and they are very close to each other, their deformation time series should be similar if our 245 

measures are only surface ice layers. Second, although Shugar et al. (2021) estimated ~20 m thick surface ice layers of the 

Chamoli landslide in February 2021, the surface ice layers were probably much thinner in the summer months due to 

sublimation and possible partial melt at high temperatures. In fact, remote sensing images in September and October (optical 

images in other summer years are mostly covered by clouds) of the landslide surface have much lower albedo than 

neighbouring glaciers (Supplement 4). The reason for the seasonal deformation difference of the landslide (summers deform 250 

faster than winters) is that the rock had much lower albedo, absorbed more short-wave radiance, and heated up faster compared 

to the neighbouring glacier. Thus, darker rock can conduct heat underneath to reduce the strength of the ice in rock joints, 

while temperatures around glaciers could remain less variable through the self-cooling effect (Salerno et al., 2023). This could 

explain the contrasting cumulative deformations between the Chamoli landslide and its neighbouring glacier. 
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 255 

Figure 8: Displacement comparison of the Chamoli landslide and the neighbouring glacier. The inset image shows the location of 

the selected glacier and landslide points (from © Google Earth 2024). 

5.3 Rising temperatures decreased ice strength on the sliding plane 

Previous works (Shugar et al., 2021; Van Wyk de Vries et al., 2022) show that the detached Chamoli landslide in February 

2021 are an integral block. Our results that the deformation in the east part of the Chamoli landslide is the largest (~60 m since 260 

2013, Fig. 4e) and the deformation decreased to the north (downslope) and west parts indicates that the east part of the block 

has already detached from the beneath bedrock while the west and north part were still attached to the bedrock during most 

time of our study period. To explain the summer accelerations of the landslide, we speculate that there was underground ice 

on the sliding plane beneath the east part of the landslide bonding it to the bedrock. Higher than usual summer temperatures 

in 2017/18 decreased the cohesion strength of the ice on the sliding plane. Previous work shows that an increase of 1℃ will 265 

lead to a decrease of 10% in ice strength (Mamot et al., 2018). The 2℃ higher of 2017/18 summer temperatures than normal 

years could lead to ~20% decrease in the strength of the ice in joints. If liquid rain fell on the landslide in the exceptionally 

high summers of 2017/18, it may percolate deeper through fissures and pores (The crack details can be seen in Fig. 1d and Fig. 

S6 of Supplement 6) to increase the efficiency of the rising temperatures’ impact on underground ice (Gruber and Haeberli, 

2007). Raining waters are always warmer than ice-cemented slopes, infiltration of which could further decrease ice strength. 270 

In addition, infiltrated water could further decrease the friction of the ice (resisting force of the landslide), leading to 

accelerating deformations in summers of 2017/18. However, as we do not have in-situ measurements at the landslide with an 

elevation of >5000 m, phase state of summer precipitations and its role on the Chamoli landslide reserves further investigations. 

Significant cumulative deformations in 2017 and 2018 probably make the landslide more vulnerable and set the stage for the 

final collapse in February 2021, during which the landslide also experienced higher temperatures than previous years 275 

(Srivastava et al., 2022; Supplement 5). Two days before the landslide (on the 5 February 2021), scarps around the landslide 
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clearly stands out on high spatial resolution images (Supplement 6), indicating the landslide is no longer attached to the bedrock 

and only bonded by ice on the sliding plane (Fig. 9).  

The stability of a slope can be described by the balance between two terms: the driving force (𝐹𝑑) and the resisting force (𝐹𝑟). 

The driving force is mainly the gravity of the mass, while the resisting force is mainly related to cohesion and friction. The 280 

balance between these two forces is called the safety factor FS: 

F𝑠 =
𝐹𝑟

𝐹𝑑
 (1). 

When the safety factor of a slope is less than 1, the slope is considered unstable. (Das and Sivakugan, 2017) 

The cracks in the Chamoli landslide may be > 100 meters deep, which yields a stress of ~ 3 MPa. Laboratory experiments 

showed that the shear strength of ice-filled joints increases linearly with the increase of normal stress and satisfies the Mohr-285 

Coulomb criterion (Huang et al., 2023). At -15°C, the cohesion of ice is 0.69 MPa and the friction angle is 33.5°. 

The Mohr–Coulomb criterion can be used to express the relationship between the shear strength and the normal stress as 

follows: 

𝜏𝑝 = 𝑐𝑗 + 𝜎𝑛𝑡𝑎𝑛𝜑𝑗 (2), 

where 𝜏𝑝 is the shear stress on the plane, 𝜎𝑛 is the normal stress on the plane, 𝑐𝑗 is the cohesion of ice-filled joints and 𝜑𝑗  is 290 

the internal friction angle of the ice-filled joints. 

The driving force (𝐹𝑑) is 

𝐹𝑑 = 𝑚𝑔 sin 𝛼 (3), 

and the resisting force (𝐹𝑟) is  

𝐹𝑟 = 𝜏𝑝 ∗ 𝑆𝑝 (4), 295 

where 𝑆𝑝 is the area of the sliding plane, 𝛼 is slope angle of the valley that the landslide moved on. 

For the Chamoli landslide, the driving force was constantly the component of gravity along the slope (𝐹𝑑≈2.95*1011N). A 

remote sensing image on February 5 (2 days before the collapse) clearly shows boundary (mainly cracks) of the triangular 

block, indicating that the landslide was already separated from the bedrock at that time. It was ice that bonding the landslide 

on place and temperature rise could cause the shear strength of the ice to decrease. According to the relationship between 300 

temperature and ice strength under the normal stress of the Chamoli landslide, the strength of the ice on the sliding plane at -

15℃ and -8℃ were 𝐹𝑟≈6.04*1011N and 𝐹𝑟≈4.83*1011N, respectively (Huang et al., 2023; Mamot et al., 2018). When the 

temperature rise to -3℃, the shear strength (𝐹𝑟) would decrease to 𝐹𝑟=2.55*1011~2.85 *1011N, which is smaller than the sliding 

force of 𝐹𝑑≈2.95*1011N, meaning the occurrence of the landslide.  

Although there are many uncertainties in estimating the shear strength, such as crack opening and joint roughness, it does not 305 

affect the decreasing trend of the shear strength due to temperature rise before the Chamoli landslide. 
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Figure 9: Schematic diagram of the Chamoli ice-rock landslide. 

5.4 Evidence of the underground ice on the sliding plane 

We argue that major ice of the Chamoli ice-rock block was on the sliding plane instead of the landslide surface, which is 310 

different to the findings of Shugar et al. (2021). Here we list two lines of evidence. First, the presence of ice beneath the sliding 

plane can be inferred from the speed of the avalanche that reached the bottom valley (Shugar et al., 2021) and the relative 

altitude (~1800 m). To reach the measured speed (114~120m/s from Shugar et al., 2021), there must be ice beneath the sliding 

block as a cushion to decrease the frictional strength of the block during the slide from the source area to the valley bottom. 

The friction coefficient μ between the detached block and the beneath slope can be calculated by considering the velocity of 315 

the landslide reaching the bottom valley and the relative height it descended. During this process, the gravitational potential 

energy transferred to kinetic energy after the collapse by overcoming the friction between the landslide and the slope. With 

known descended height, the average friction coefficient can be calculated with  

𝑚𝑔ℎ =
1

2
𝑚𝑣𝑖

2 + 𝜇𝑚𝑔𝑠 (5), 

where h is the elevation difference from the landslide source to the bottom valley, s is the sliding distance from the landslide 320 

to the bottom valley, g is the gravitational acceleration, and v is the speed when the landslide reached the bottom valley. 

Under ideal conditions, the derived friction coefficient μ from equation (5) is 0.34-0.36, which is closer to the friction 

coefficient of ice-rock mixture (Note the friction coefficient of rock is ~0.6, Byerlee, 1978; Beeman et al.,1988). However, 

there would be numerous bulges and lots of collisions along the sliding way. So, the actual μ might be even smaller and only 

the existence of ice under the landslide block could satisfy this constrain. Second, the ice beneath the sliding block made the 325 

exceptionally long runoff distance of the disintegrated mass possible. According to the inversion of high-frequency signal 

(Shugar et al., 2021), the velocity of the landslide impacting the valley bottom was 114 ~120 ms-1. Note this velocity is a vector 

that can be decomposed into two components, one that was parallel and one that was perpendicular to the valley bottom (Fig. 

10a). The velocity component that was perpendicular to the valley bottom would diminish and convert to heat by clashing with 
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the bottom valley. The initial velocity of the mass at the valley bottom would be the velocity component that was parallel to 330 

the slope of the bottom valley, 

𝑣𝑖 = 𝑣0 × cos(𝛼 − 𝛽) (6) 

Where 𝑣0 is 120 ms-1, 𝛽 is the slope of the bottom valley (15˚, measured with the ALOS 30m DEM). With this initial velocity 

in the bottom valley, we can calculate the maximum distances of the smashed mass that can travel. 

𝜇𝑚𝑔𝑠 =
1

2
𝑚𝑣𝑖

2 +𝑚𝑔𝑠 sin 𝛽 (7) 335 

where 𝜇 is the friction coefficient between the moving mass and the valley bottom, 𝑠 is the maximum travelling distance of 

the mass that can travel on the valley bottom, 𝛽 is the slope angle of the valley bottom. This equation estimates the longest 

moving distance of the moving mass by considering the initial kinetic energy (the first term to the right), the gravitational 

potential energy during the process (the second term to the right) and the energy consumed by friction along the path.  

We consider the following hypotheses. 340 

(1) No ice beneath the moving mass. The bottom of the moving mass would be rock or boulder. If we assume it was 

rock/boulder (gneiss 𝜇 = 0.6) (Byerlee, 1978) beneath the mass, the maximum travel distance would be 3.4km. 

(2) If there was mainly ice beneath the moving mass (with 𝜇 =0.3) (Schulson and Fortt, 2012), the maximum travel 

distance would be 6.8 km. 

(3) If there was ice-water mixture beneath the moving mass (with 𝜇 = 0.2) (Beeman et al.,1988), the maximum travel 345 

distance would be 10.1 km. 

Above maximum travelling distances are ideal states with straight-line shaped travelling path (Fig. 10b). Actually, the shape 

of the valley bottom is not straight and there were collisions that could significantly attenuate velocity of the moving mass and 

thus significantly shorten the travelling distance. As the distance from the initial point of the block in the valley to the Ronti 

Gad–Rishiganga River confluence is > 8km, the first hypotheses should be rejected meaning there was ice beneath the landslide. 350 

The initial clash of the block with the bottom valley probably melted some cushion ice, which further decreased the frictional 

strength of the disintegrated mass. 
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Figure 10: Illustration of the landslide came down along the valley slope (the red box in a) and collide with the bottom valley (the 

red ellipse in a). The velocity of the landslide reaching the bottom valley (𝒗𝟎) can be decomposed into two components (𝒗𝒊 or 𝒗𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍 355 

and 𝒗𝒑𝒆𝒓𝒑𝒆𝒏𝒅𝒊𝒄𝒖𝒍𝒂𝒓). The maximum motion trajectories of the landslide block with different friction coefficients after falling into the 

bottom valley and runoff distances ignoring collisions with the valley wall (b) (from © Google Earth 2024). 

5.5 Implications 

Our findings have important implications for future climate change as higher elevations are disproportionally affected by 

global warming relating to the elevation dependent warming effect (Mountain Research Initiative EDW Working Group 2015). 360 

Rising temperature (Supplement 7) will decrease the strength of ice-cemented slopes and elongate summertime further 

magnifying precipitation’s impact on slope instability. Ongoing climate change will dramatically increase the frequency of the 

Chamoli-style landslide hazards via the above recognized processes in deglaciating high mountain Asia. Future regional and 

slope scale landslide hazard modelling could benefit by considering above revealed processes under climate changing scenarios. 

6 Conclusions 365 

This work solved inconsistencies in landslide deformation time series between Landsat 8 and Sentinel-2 datasets. Reconciled 

measures unanimously show major deformations of the Chamoli landslide occurred in summers of 2017/18, which is closely 

related to extreme summer temperatures. By then, the east part of the landslide is only attached to the bedrock by ice and rising 

temperature decreased the strength of the ice leading to accelerations in summers and the final collapse in February 2021. This 

work provides rare direct observations of climate change’s impact on landslides in extremely high Asian mountain regions. 370 

Future climate change will probably result in more similar landslides in deglaciating mountain regions. 
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