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Abstract. Perennial firn aquifers (PFAs) are year-round bodies of liquid water within firn, which modulate meltwater runoff to

crevasses, potentially impacting ice-shelf and ice-sheet stability. Recently identified in the Antarctic Peninsula (AP), PFAs form

in regions with both high surface melt and snow accumulation rates, and are expected to expand due to the anticipated increase

in melt and snowfall. Using a firn model to predict future Antarctic PFAs for multiple climatic forcings is computationally

expensive. To overcome this, we developed an XGBoost emulator, a fast machine learning model, to approximate a firn model.5

The PFA emulator was trained with simulations from the firn densification model IMAU-FDM, forced by three emission

scenarios (SSP1-2.6, SSP2-4.5 and SSP5-8.5) of the combined regional climate model (RCM) RACMO2.3p2 and general

circulation model (GCM) CESM2. Using a scenario and spatial blocking evaluation approach, we found that the emulator

successfully explains at least 89 % of PFA presence and meltwater storage variance. Using the PFA emulator, we predict

future PFAs (2015-2100) for nine additional forcings from the RCMs MAR and HIRHAM in combination with five GCMs.10

Under SSP1-2.6 and SSP2-4.5, PFAs remain mostly restricted to the AP. For SSP5-8.5, PFAs expand to Ellsworth Land in West

Antarctica, and Enderby Land in East Antarctica. For climatic forcings from RACMO and MAR, we find that liquid water input

(melt and rain) and snow accumulation are good predictors for PFA occurrence. However, HIRHAM predicts considerably less

surface melt and accumulation for a given temperature than MAR and RACMO do, resulting in less realistic PFA predictions.

Overall, our findings show that PFAs will likely expand in a warmer Antarctica, irrespective of the emission scenario.15

1 Introduction

The Antarctic Ice Sheet (AIS) has been losing mass since at least 2002 (Shepherd et al., 2019), contributing ∼ 10 % to global

average sea level rise since 1993 (Oppenheimer et al., 2019). The primary factor currently contributing to AIS mass loss is

enhanced basal melt beneath ice shelves (Smith et al., 2020), leading to their thinning, enhanced iceberg calving or collapse.

This, in turn, reduces their buttressing effect, allowing inland ice to flow faster into the ocean. Another process to reduce the20

buttressing effect of ice shelves is melt pond-driven hydrofracturing, which is expected to increase under future warming (Lai

et al., 2020; van Wessem et al., 2023). In the case of the disintegration of Larsen A and B ice shelves in 1995 and 2002,
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respectively, depletion of the firn air content and subsequent meltwater ponding and infilling of crevasses is generally thought

to have caused hydrofracturing(Scambos et al., 2000; Banwell et al., 2013). Surface meltwater accumulation on ice shelves can

trigger ice-shelf collapse when tensile stresses are sufficiently large (Banwell et al., 2013). Currently, 60 % of the ice shelves25

(by area) both buttress upstream ice and are vulnerable to hydrofracturing if experiencing accumulation of meltwater (Lai et al.,

2020).

Perennial firn aquifers (PFAs), which are year-round subsurface bodies of liquid water within the firn’s pore space, also

modulate meltwater draining into crevasses at the bottom of the firn layer, potentially causing ice shelves to break up. PFAs

form in a climate with a combination of high surface melt rates and high snow accumulation rates (Kuipers Munneke et al.,30

2014). As snow has a low thermal conductivity (Calonne et al., 2019), high snowfall rates in fall and winter rapidly cover and

insulate the summer meltwater and thereby prevent it from refreezing in winter.

PFAs are common across southeast Greenland (e.g., Forster et al., 2014; Miège et al., 2016). On the AIS, firn aquifers

have been observed on the Wilkins and Müller ice shelves in the western Antarctic Peninsula (AP) (Montgomery et al., 2020;

MacDonell et al., 2021), the warmest and wettest region of Antarctica. An exploratory firn modelling study predicted PFAs35

to occur also on the grounded ice along the north-western coast of the AP (van Wessem et al., 2021). Combining regional

climate model (RCM) with satellite data confirm a high probability of PFA occurrence in all these regions (Di Biase et al.,

2024). Increasing surface melt and snowfall may result in future PFA expansion, also to other regions of Antarctica. Similarly,

an inland expansion of aquifers occurred over the last decades in Greenland (Horlings et al., 2022).

While direct evidence linking PFAs to ice-shelf instability is currently lacking, Wilkins and Müller ice shelves, where firn40

aquifers have been observed, have both lost a considerable portion of their surface areas (33 and 49 %, respectively) since

the 1950s (Cook and Vaughan, 2010). Neighbouring Jones and Wordie ice shelves, with similar climaticx conditions, have

completely disintegrated (Cook and Vaughan, 2010). The absence of ice shelves along most of the north-western AP coast also

suggests that the combination of ice shelves and firn aquifers is not viable.

PFAs can also play an important role over the grounded ice. In Greenland liquid water from PFAs drains through crevasses to45

the bed (Poinar et al., 2017), leading to basal lubrication, at least temporarily increasing ice velocity and ice discharge into the

ocean (Zwally et al., 2002). Warming through the release of latent heat during refreezing changes the ice rheology (Hubbard

et al., 2016). Hence, understanding the future evolution of PFAs is relevant when assessing the future stability of ice shelves

and grounded ice.

Offline firn models forced by output of RCMs have proven to be useful tools to simulate the ice-sheet wide transient evolution50

of firn. They have already been used to simulate historical firn aquifers over Greenland (Brils et al., 2024), and the AP (van

Wessem et al., 2021). RCMs are better suited for this than general circulation models (GCMs), whose resolution is too coarse

to correctly represent strong coastal gradients in precipitation and surface melt (Bozkurt et al., 2021), which are particularly

important for PFA formation (van Wessem et al., 2021). In addition, most GCMs do not properly represent important physical

processes, such as the snowmelt-albedo feedback (Jakobs et al., 2019).55

For future projections of PFA extent, multiple climatic scenarios, and combinations of RCMs and GCMs are ideally used,

as projections of near-surface climatic conditions over Antarctica vary widely among models (Carter et al., 2022; Kittel et al.,
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2021). However, running a firn model for multiple forcings is computationally demanding. Therefore, we developed an XG-

Boost PFA emulator, which is a machine learning model that mimics a more complex firn model. Emulators have previously

been used to simulate firn (Dunmire et al., 2024; Verjans et al., 2021; Jourdain et al., 2024), as well as other ice sheet processes60

(Van Katwyk et al., 2023).

We train and evaluate the PFA emulator using output from the IMAU Firn Densification model v1.2AD (IMAU-FDM

v1.2AD), which was recently updated by Veldhuijsen et al. (2024d) to better simulate transient firn densification in a changing

climate. IMAU-FDM was forced by future climate realisations of the GCM CESM2, dynamically downscaled over the entire

AIS by the RCM RACMO2.3p2 to a 27 km resolution, for emission scenarios SSP1-2.6, SSP2-4.5 and SSP5-8.5 (Veldhuijsen65

et al., 2024d). We subsequently apply our emulator to 12 climate projections from three polar RCMs (RACMO2.3p2, MAR3.11

and HIRHAM5) forced by several GCMs. We then report the resulting PFA distribution and expansion on the AIS.

2 Methods

2.1 IMAU-FDM firn model and forcing

IMAU-FDM version v1.2AD is a semi-empirical 1D firn densification model that simulates the time evolution of firn depth,70

density, temperature, grain size and liquid water content. Firn compaction is calculated based on the semi-empirical dry-snow

densification equations of Arthern et al. (2010) with an updated dynamical densification expression to cope with changing cli-

mate forcing (Veldhuijsen et al., 2024d). The updated densification rate depends on firn temperature, grain size and overburden

pressure instead of firn temperature and averages over the past 40 years of accumulation and surface temperature. The verti-

cal percolation of liquid water from melt or rain is simulated using the bucket method, whereby liquid water is only retained75

through capillary forces (i.e. irreducible water). The maximum irreducible water decreases with increasing density (Coléou

and Lesaffre, 1998). The meltwater can percolate through all layers in a single time step and (partly) refreeze when it reaches

a layer with nonzero pore space and a temperature below the freezing point. Once the liquid water content of the lowermost

firn layer exceeds the maximum irreducible water content, the surplus is assumed to instantaneously leave the firn column as

runoff. The bucket method is computationally efficient but does not allow for saturated pore spaces, preferential flow, standing80

water over ice layers or horizontal flow.

In the simulations presented here, IMAU-FDM is forced at the upper boundary, the snow surface, with 3-hourly values of

snowfall, sublimation, snowdrift erosion, 10-m wind speed, surface temperature, surface melt and rainfall from simulations of

the RCM RACMO2.3p2 at a 27 km resolution (van Wessem et al., 2023). RACMO2.3p2 was in turn forced by the Community

Earth System Model version 2 model output (CESM2) (Danabasoglu et al., 2020). These simulations consist of a historical85

climate realisation (1950–2014) and climate realisations for low-, middle- and high-emission future (2015–2100) scenarios

(SSP1-2.6, SSP2-4.5 and SSP5-8.5, respectively). The projected Antarctic end-of-century (2090-2100) warming in SSP5-

8.5 in CESM2 (+6.7 K) compared to 2005-2015 is stronger than the mean Antarctic warming in CMIP6 models (+4.8 K),

which enables us to train the firn model on a wide range of temperatures (Dunmire et al., 2022; Kittel et al., 2021). The

coupling between RACMO2.3p2 and IMAU-FDM is unidirectional. The stand-alone approach of IMAU-FDM allows for a90
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more realistic initialisation and higher vertical resolution than RACMO’s built-in firn model, which uses similar physics. The

disadvantage is that interaction with the atmosphere is not possible. For further details on the model set up and forcing, we

refer to Veldhuijsen et al. (2024d).

2.2 PFA emulator

We develop a PFA emulator that mimics how IMAU-FDM transiently simulates PFAs. We use the yearly perennial amount of95

liquid water content (LWC) as the target variable, see next section. To emulate PFAs we develop an extreme gradient boosting

(XGBoost) machine learning model (Chen and Guestrin, 2016). The model is developed in Python using the open-source

scikit-learn and XGBoost packages. XGBoost sequentially builds an ensemble of weak decision trees. In each iteration, it fits

a new tree to the residuals of the previous iteration, optimizing a specific objective function to minimize the overall prediction

error.100

XGBoost is chosen for its high predictive accuracy and has been shown to outperform other machine learning algorithms,

including neural networks, random forest regression and linear regression methods, in predicting e.g., snow water equivalent,

snow avalanche susceptibility and glacier mass balance (Anilkumar et al., 2023; Iban and Bilgilioglu, 2023; Sun et al., 2024)

and in general for medium and large sized (>10,000) tabular datasets (Grinsztajn et al., 2022). Additionally, XGBoost is highly

scalable, meaning it can handle large datasets and complex models, it incorporates regularization techniques to prevent overfit-105

ting and it has built-in mechanisms to estimate feature importance. Recently, a Random Forest model, a bagging algorithm that

trains decision trees in parallel, has been used to emulate firn air content over Antarctica (Dunmire et al., 2024). While Random

Forest is known for its simplicity, ease-of-use, and resistance to overfitting, XGBoost often better captures complex nonlinear

relationships, especially in scenarios where there are interactions between features or when the dataset is high-dimensional

(Fatima et al., 2023).110

2.2.1 Target variable and input features

Our target variable, the yearly perennial LWC, is defined as the minimum vertically integrated LWC over a year, based on

model output at 10-day intervals. A yearly perennial LWC of zero indicates the absence of a PFA. A drawback of this approach

is that it does not differentiate between years with brief periods without LWC (e.g. 10 days) and those with long periods without

LWC (e.g. 10 months). In addition, since LWC cannot be negative, the minimum value is zero, preventing negative values from115

counterbalancing positive biases. To resolve this, we introduce a negative value to represent the number of days without LWC.

For instance, if LWC is absent for 10 days, the target value is -10; if LWC is absent for 10 months, the target value is about

-300. Although the negative and positive quantities are very distinct, they are of the same order of magnitude, which provides

a relatively smooth transition around zero.

The climate variables used as input features for our emulator are: (1) total annual snow accumulation (snowfall minus120

evaporation/sublimation), (2) total autumn (MAM) snow accumulation, (3) total summer (DJF) snowfall, (4) total annual liquid

water input (surface melt plus rainfall), (5) annual melt-over-accumulation (MoA) ratio, (6) mean annual surface temperature,

(7) mean summer (DJF) surface temperature and (8) annual seasonal temperature amplitude. These are the most important
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mass fluxes and boundary conditions governing the firn density, temperature and LWC, and therewith the presence of PFAs

(Kuipers Munneke et al., 2014; van Wessem et al., 2021). For the summer, we consider snowfall instead of snow accumulation,125

due to the likely presence of evaporation alongside sublimation, which has different implications for PFAs. The annual seasonal

temperature amplitude is defined as the difference between the average temperature of the warmest month and the coldest

month. To account for the time it takes for firn to adjust to climatic conditions, we consider averages over the past 5, 10 and

30 years of the input features. Additionally, we include surface elevation and surface slope as input features, as the topography

influences short-term climate variability, such as extreme precipitation (González Herrero et al., 2023).130

2.2.2 Dataset selection

The emulator is trained to predict yearly perennial LWC across Antarctica. The dataset consists of 18,136 IMAU-FDM grid

cells with 85 time steps each (years between 2015-2100), amounting to 4.6 million data points for three climate scenarios.

However, for most of the AIS, the climate conditions are not favorable for aquifer formation, i.e. too dry and/or too cold, even

under strong future warming. For instance, RACMO forced by CESM2 predicts that 76 % of the AIS does not experience any135

melt by the end of the century even in the SSP5-8.5 scenario (Veldhuijsen et al., 2024d). To minimize the influence of non-

aquifer locations, we limit the training dataset to aquifer-favorable locations. For each scenario, we select data points where

PFAs are present or where the duration without LWC is shorter than 150 days. In addition, we select data points with aquifer-

favorable conditions, defined as having more than 400 mm w.e. yr−1 of accumulation and more than 200 mm w.e. yr−1 of

melt (van Wessem et al., 2021; Brils et al., 2024). From the remaining dataset, we randomly select 5,000 points from each140

scenario. In total, our dataset used for training consists of 123,000 data points (2.6 % of the total AIS data points).

2.2.3 Emulator training

Our dataset has a spatial and temporal structure, and to ensure independence between training and testing data, we split the

training and testing data strategically rather than randomly (Roberts et al., 2017). Firstly, we evaluate the performance using

spatial blocking cross-validation. For this, we divide the area in which firn aquifers occur into eight regions. During the cross-145

validation, we leave out one region at a time. Since firn aquifers are rare on the AIS, cross-validation ensures that the model is

evaluated on the full dataset. Additionally, we also evaluate the performance by leaving out each of the three emission scenarios

at a time, referred to as scenario blocking cross-validation. The initial 30 years of the future part of the simulations (2015-2045)

are excluded from the validation scores to avoid dependency on the other scenarios. Finally, we use all scenarios and regions

for training the emulator, to ensure that the widest possible range of warming trends and climatic conditions are included in the150

emulator.

The hyperparameters are tuned using the BayesSearchCV function (built-in scikit-learn) during the spatial blocking cross-

validation. Eight key hyperparameters involved in the XGBoost algorithm were optimized. Firstly, the number of estimators

(n_estimators) refers to the number of trees. The learning rate (learning_rate) controls the step size at which the

optimizer makes updates to the weights. The regularisation techniques included in XGBoost are the maximum depth of the155

trees (max_depth), the minimum weight needed in a leaf node (min_child _weight), the subsample ratio of the training
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Table 1. List of available forcing datasets of regional climate models (RCMs) driven by global climate models (GCMs) along with the GCM

era, GCM ensemble member number, RCM horizontal resolution and the available scenarios. We use the period 1980-2100 of all forcing

datasets.

RCM GCM GCM era GCM member RCM horizontal resolu-

tion

Scenarios

RACMO CESM2 CMIP6 r11i1p1f1 27 km SSP1-2.6, SSP2-4.5, SSP5-8.5

MAR ACCESS-1.3 CMIP5 r1i1p1 35 km SSP5-8.5

MAR CESM2 CMIP6 r11i1p1f1 35 km SSP1-2.6, SSP2-4.5, SSP5-8.5

MAR NorESM1-M CMIP5 r1i1p1 35 km SSP5-8.5

MAR CNRM-CM6-1 CMIP6 r1i1p1f2 35 km SSP5-8.5

HIRHAM CESM2 CMIP6 r11i1p1f1 12 km SSP1-2.6, SSP5-8.5

HIRHAM EC-Earth3 CMIP6 r5i1p1f1 12 km SSP5-8.5

instances (subsample), subsample ratio of columns when constructing each tree (colsample_bytree), the minimum

loss reduction (gamma), and the regularisation degree (reg_lambda).

2.3 Predicting firn aquifers

IMAU-FDM simulations forced by RACMO-CESM for three scenarios (SSP1-2.6, SSP2-4.5 and SSP5-8.5) were used to train160

the PFA emulator. By applying the emulator to output from three polar RCMs, an ensemble of 12 scenarios of perennial

LWC predictions for 2015-2100 is produced (Table 1). CESM2-forced runs of MAR (Jourdain et al., 2024) and HIRHAM

(Hansen et al., 2021) RCMs are available for SSP1-2.6, SSP2-4.5 and SSP5-8.5, and SSP1-2.6 and SSP5-8.5, respectively. In

addition, MAR simulations driven by GCMs ACCESS-1.3, NorESM1-M and CNRM-CM6-1 for SSP5-8.5 (Kittel et al., 2021)

and HIRHAM simulations driven by GCMs EC-Earth3 for SSP5-8.5 (Boberg et al., 2022) were also used. The horizontal165

resolution of each climate forcing is preserved in the emulator simulations.

Even for the contemporary AIS climate, significant differences in near-surface air temperature, snowfall and melt exist be-

tween these three RCMs (Mottram et al., 2021; Carter et al., 2022). An important difference between the RCMs lies in the

handling of precipitation advection: MAR allows precipitation to be advected through the atmospheric layers until reaching

the surface, whereas RACMO and HIRHAM deposit precipitation instantaneously. Furthermore, RACMO and MAR use sub-170

surface schemes optimized over snow and ice for Antarctica, while HIRHAM applies simpler surface snow physics for ice

surfaces. In addition, notable climatic differences between the GCM simulations exists; for instance, the 21st-century AIS

warming for the four selected GCMs for MAR for SSP5-8.5 ranges from +3.2 K (NorESM1-M) to +8.5 K (CNRM-CM6-1)

(Kittel et al., 2021).
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3 Emulator tuning and evaluation175

3.1 Emulator tuning

The eight regions used for the spatial blocking cross-validation are shown in Fig. 1. The optimal hyperparameters obtained

during the spatial blocking cross-validation are listed in Table 1. We found that removing the 30-year average melt, rain and

surface temperature input features improved the performance. Therefore, we leave out the 30-year melt input feature. The

30-year surface temperatures were replaced by the 30-year averaged temperature trend. This led to a small improvement in the180

performance (3 % less false negatives and 1 % less false positives).

Figure 1. Regions used for spatial blocking cross-validation. The names indicate locations referred to in the text and the dashed boxes

indicate the regions in Figs. 3, 5, 7, 8, 10, S1 and S4.

3.2 Emulator evaluation

During the spatial blocking cross-validation, the emulator explains 89 % of the variance in the IMAU-FDM perennial LWC

(R2 = 0.90; Fig. 2a). The RMSE is 86 mm or days, and the bias is 0.4 mm or days. However, in this work we aim to predict the

presence or absence of aquifers rather than perennial LWC. When employing a positive perennial LWC threshold to identify185

aquifers, the emulator successfully predicts 88 % of the IMAU-FDM aquifers (12 % false negatives) with 9 % false positives.

The emulator yields an R2 value of 0.90 for the years with PFAs of the individual locations (Fig. 2c). Maps of PFA years

of the AP and Ellsworth Land for the spatial blocking for SSP5-8.5 are shown in Fig. 3. The performance is poorest on and

around the Larsen C and D ice shelves (region 7, RMSE = 8 years), with under- and overestimates. When randomly instead of

strategically splitting our training and testing data, the emulator yields a misleadingly high R2 value of 0.98 which highlights190

the importance of using strategically splitting the data to prevent overfitting.
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Table 2. Hyperparameter ranges used for tuning and their optimal values.

Parameter Tuning range Optimal value

n_estimators 0-300 179

learning_rate 0.001-1 0.034

min_child_weight 0-50 44

max_depth 2-15 6

subsample 0.5-1 0.58

colsample_bytree 0.5-1 0.77

gamma 0-10 4.2

reg_lambda 0-10 2.8

During the validation in which SSP2-4.5 is left out, the emulator yields an R2 value of 0.96 for both the perennial LWC and

the years with PFAs (Figs. 2b,d). For this, we include all data of all locations where either the emulator or the model forecasts

the presence of an aquifer or predicts fewer than 150 days without LWC in at least one year. The emulator successfully predicts

88 % of the IMAU-FDM aquifer years of the SSP2-4.5 scenario (12 % false negatives), with 7 % false positives. The results for195

leaving out SSP1-2.6 are similar, with the emulator predicting 92 % of the aquifer years with 11 % false positives (R2 = 0.96

and 0.97 for perennial LWC and years with PFAs, respectively). When leaving out the SSP5-8.5 scenario, the emulator predicts

89 % of the aquifer years, with 15 % false positives (R2 = 0.9 and 0.91 for perennial LWC and years with PFAs, respectively).

The larger error can be attributed to the large differences in warming trend.

Four example time series from the spatial blocking and scenario blocking evaluations are shown in Fig. 4. These figures200

show that the emulator can mimic the growth as well as the shrinking of aquifers. They also illustrate that deviations from the

firn model mainly occur during the onset of aquifers, when aquifers are relatively small.

4 Results

4.1 PFAs predictions under scenarios SSP1-2.6 and SSP2-4.5

The trained emulator predicts PFAs over the period 2015-2100 for the 12 forcings listed in Table 1. It should be noted that all205

available SSP1-2.6 and SSP2-4.5 RCM forcings are from CESM2. For SSP1-2.6 and SSP2-4.5, PFAs are projected to remain

mostly restricted to the AP, except for expansion to Enderby Land (East Antarctica) under SSP2-4.5 for MAR-CESM (Fig.

5). All forcings predict PFAs along the north-western coast of the AP. Additionally, RACMO-CESM forcings predict PFAs on

Wilkins ice shelf for SSP1-2.6 and SSP2-4.5, and on George VI ice shelves for SSP2-4.5. MAR-CESM forcing also predicts

aquifers on Wilkins and George VI ice shelves for SSP2-4.5, and both MAR forcings predict aquifers along the grounding lines210

of Larsen C ice shelf. Figure 6a shows time series of PFA extent for all SSP1-2.6 and SSP2-4.5 simulations. As all RCMs are
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Figure 2. (a,b) Perennial liquid water content (LWC) and (c,d) number of years with perennial firn aquifers (PFAs) from the (a,b) spatial

blocking cross-validation and (c,d) SSP2-4.5 block validation. Panels (a) and (b) include the data points used for training and evaluation

described in Sect. 2.2.2. Panels (c) and (d) include all locations where either the emulator or the model forecasts the presence of an aquifer

or predicts fewer than 150 days without LWC in at least one year in the associated scenario.

forced with the same two CESM2 realisations, peaks and minima in modelled PFA extent align. MAR predicts the highest PFA

extent by 2100 for SSP1-2.6 (50,000 km2) and SSP2-4.5 (87,000 km2), followed by RACMO (31,000 and 43,000 km2), while

HIRHAM-CESM only predicts a PFA extent of 19,000 km2 for SSP1-2.6. Part of the difference between the RCMs arises by

the distinct horizontal resolutions. Overall, PFA expansion starts to accelerate around 2050 in these runs.215

4.2 PFAs predictions under scenario SSP5-8.5

For SSP5-8.5, PFAs expand within the AP, and to Ellsworth Land, on and around Abbot and Venable ice shelves, except for

MAR-NorESM, which only expands within the AP (Fig. 7). All forcings predict aquifers along the north-western coast of the

AP, and along the grounding lines of Larsen C, George VI and Wilkins ice shelves. In addition, RACMO-CESM stands out, as
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Figure 3. (a) Number of years with perennial firn aquifers (PFAs) under SSP5-8.5 from the emulator during the spatial blocking validation

and (b) from the IMAU-FDM firn model and (c) the difference.

Figure 4. Example time series of perennial liquid water content (LWC)/days without LWC for the firn model (blue) and the emulator for

spatial blocking (red) and for scenario blocking (orange), as well as firn air content for the firn model (gray), for individual grid points and

different scenarios. (a) and (b) are SSP5-8.5, (c) is SSP2-4.5, and (d) is SSP1.2-6. The locations of the grid points are indicated in Fig. 1.

it predicts extensive PFA coverage on Wilkins, George VI and Abbot ice shelves (between 70-100 % of the ice shelf area). In220

contrast, all MAR forcings and HIRHAM-EC-Earth predict extensive PFA coverage on Larsen C ice shelf (>12,000 km2). PFAs

are also predicted by 5 out of the 7 models in Enderby Land in East Antarctica (Fig. 8a). MAR-ACCESS and MAR-NorESM
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Figure 5. Number of years with perennial firn aquifers (PFAs) for (a) SSP1-2.6 and (b) SSP2-4.5 forcing datasets over the period 2015-2100

for the Antarctic Peninsula. The MAR-CESM SSP2-4.5 forcing also includes Enderby Land.

are the two models that do not predict PFAs in this region, which also predict lowest overall PFAs extent (100,000 km2 and

127,000 km2 by 2100, respectively, Fig. 6b). For HIRHAM-EC-Earth, and MAR-CNRM-CM6, the emulator predicts PFAs

in Marie Byrd Land. MAR-CNRM predicts the largest PFA extent by 2100, 334,000 km2, followed by HIRHAM-Ec-Earth,225

289,000 km2. Notably, HIRHAM-EC-Earth predicts at least twice the initial (2015) PFA extent (72,000 km2) compared to

the other simulations. Using the same GCM forcing (CESM2), RACMO and MAR yield comparable PFA extent (257,000 and

234,000 km2), while HIRHAM-CESM predicts a considerably lower extent (148,000 km2). On the other hand, for SSP1-2.6
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Figure 6. Time series of perennial firn aquifer (PFA) extent for all climatic forcing datasets for (a) SSP1-2.6 and SSP2-4.5 and (b) SSP5-8.5

scenarios.

and SSP2-4.5, MAR yields higher PFA compared to RACMO for the same GCM forcing. PFA expansion starts to accelerate

around 2050 for the CESM2 and CNRM-CM6 forcings, similarly as for SSP1-2.6 and SSP2-4.5 (Fig. 6).230

4.3 Climatic drivers

The previous sections show a large range of PFA predictions, caused by differences in the climatic forcing. Firstly, differences

in initial surface temperature and warming between the forcing datasets explain part of the spread (Fig. 9b). For example,

MAR-NorESM predicts the smallest PFA extent for SSP5-8.5 by 2100, as it has the smallest AIS end-of-century (2090-2100)

warming (+3.3 K) compared to 2005-2015, and lowest end-of-century surface temperature (241.6 K). On the other hand,235

HIRHAM-EC-Earth and MAR-CNRM-CM have the highest temperatures by 2090-2100 for SSP5-8.5 (245.9 and 244.9 K,

respectively) with a warming of +4.6 and +6.6 K, respectively, and predict the largest PFA extent. For HIRHAM-EC-Earth,

the initial temperature is high, related to the warm bias over Antarctica in EC-Earth3 (Boberg et al., 2022), which explains the

high PFA extent at the start of the simulation. For SSP1-2.6 and SSP2-4.5, the largest PFA extent is predicted by MAR-CESM,

which is also the warmest model combination (Fig. 9a).240

Significant regional differences also exist between RCMs for the same GCM forcing, in this case CESM2. For example, on

Larsen C ice shelf most aquifers are predicted by MAR, which is related to high surface melt and high accumulation at the foot
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Figure 7. Number of years with perennial firn aquifers (PFAs) for SSP5-8.5 forcing datasets for the Antarctic Peninsula and Ellsworth Land.

of the mountains, which are absent in the other two models (Fig. 10; see Fig. S2 for surface temperature). On the other hand,

the absence of extensive PFAs on Wilkins and George VI ice shelves in MAR and HIRHAM is due to lower accumulation

compared to RACMO. Furthermore, HIRHAM-CESM calculates lower surface melt rates than the other two models, despite245

mean surface temperatures in HIRHAM-CESM being comparable to those in RACMO-CESM.

Figure 11a shows that the presence of PFAs for RACMO and MAR is strongly governed by the rates of accumulation and

melt (plus rain), here shown as averages for the preceding 10 years. It shows that at least 300 mm w.e. yr−1of surface melt and
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Figure 8. Number of years with perennial firn aquifers (PFAs) for SSP5-8.5 forcing datasets for (a) Enderby Land and (b) Marie Byrd Land.

600 mm w.e. yr−1 of accumulation are required for aquifers to form. When melt and accumulation exceed 600 mm w.e. yr−1

and 1000 mm w.e. yr−1, respectively, an aquifer is predicted in nearly all cases, in line with Brils et al. (2024). The same figure250

for HIRHAM (Fig. S2a) suggests that PFAs also form at slightly lower surface melt and accumulation rates. The is because

HIRHAM models considerably less surface melt and accumulation for a given temperature than MAR and RACMO (Fig. S3).

The results of the emulator for HIRHAM are thus less reliable, as its combinations of temperature, accumulation and surface

melt rates are not present in the training data. Therefore, in the remainder we focus on the emulator results from RACMO and

MAR forcings.255

4.4 Transient PFAs

As Figure 4b shows, PFAs can also develop, shrink and subsequently disappear, henceforth referred to as transient PFAs. A

transient PFA is defined as a PFA that existed for at least 5 years but has disappeared before 2100. Figure 11b shows the presence

of transient PFAs as a function of melt (plus rain) against accumulation rates for RACMO and MAR simulations. The white

dotted lines indicate the melt-over-accumulation (MoA) ratios of 0.7 and 1.7, which are theoretical thresholds for indicating260
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Figure 9. Time series of annual average AIS surface temperature for all climatic forcing datasets for (a) SSP1-2.6 and SSP2-4.5 and (b)

SSP5-8.5 scenarios.

ice slabs and ablation zone, respectively (Brils et al., 2024). Transient PFAs mainly occur once the 0.7 and especially the 1.7

threshold have been exceeded, and mainly below accumulation rates of 1000 mm w.e. yr−1. Figure S4 shows the locations of

these transient PFAs for the RACMO and MAR SSP5-8.5 simulations. Transient PFAs mainly occur along the boundaries of

PFA regions. Most notably, transient PFAs occur on Wilkins ice shelf in RACMO-CESM for the SSP5-8.5 scenarios. Transient

PFAs mainly occur under SSP5-8.5, covering on average 28,000 km2 by 2100, which is 13 % compared to the 2100 PFA extent265

(Fig. 11). In the SSP1-2.6 and SSP2-4.5 scenarios the extent of transient PFAs is on average only 4,200 km2, 9 % of the 2100

PFA extent.

5 Discussion

5.1 Firn model and observations

Since our emulator is trained on IMAU-FDM data, the uncertainties inherent to the firn model will also persist in the emulator.270

The bucket method does not include preferential flow, which can lead to an underestimation of the percolation depth of liquid

water and therefore aquifer recharge as observed in Greenland (Miller et al., 2018; Vandecrux et al., 2020). The firn model also
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Figure 10. Annual average (a) surface melt and rainfall, and (b) snow accumulation over the historical period (1980-2014) for RACMO-

CESM, HIRHAM-CESM and MAR-CESM.

Figure 11. Percentage of (a) perennial firn aquifer (PFA) occurence and (b) transient PFA occurrence, and (c) total amount of PFA and

transient PFA occurrence, from all RACMO and MAR simulations, as a function of annual surface melt and rainfall (y-axis) and snow

accumulation (x-axis). The grid cells are grouped in melt and accumulation bins of 50 mmw.e. yr−1. The dotted lines indicate the 0.7 and

1.7 melt-over-accumulation (MoA) thresholds.

does not allow for lateral meltwater transport, which has been observed within aquifers, but with a limited measured specific

discharge (60 - 140 m yr−1) (Montgomery et al., 2020; Miller et al., 2018). In addition, the use of irreducible water content
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hinders the ability to estimate the volume of meltwater stored within a PFA. Nonetheless, the bucket method is used as it is a275

fast and stable meltwater scheme, in contrast to many Richards-equation based models that are computationally more expensive

and prone to numerical instabilities. While it is difficult to estimate the volume of meltwater stored within a PFA with the bucket

method, the presence of year-round LWC in the firn can be used as an indication of PFA presence (Kuipers Munneke et al.,

2014). Brils et al. (2024) simulated aquifers in Greenland using IMAU-FDM, agreeing with 62 % of the observed aquifers by

airborne and ground-penetrating radar measurements. The mismatch can be explained by underestimation of detected aquifers280

by widely spaced radar data, resolution limitations of the firn model, drainage to crevasses that is not included in the model, in

addition to the above described firn model limitations, and biases in the climatic forcing.

In Antarctica, PFAs have thus far only been observed in-situ on the Wilkins and Müller ice shelves (Montgomery et al.,

2020; MacDonell et al., 2021). Using an integrated approach combining satellite and RCM data, PFAs are also predicted along

the north-western coast of the AP, the warmest and wettest region of Antarctica, and on George VI ice shelf (Di Biase et al.,285

2024). PFAs along the north-western coast, indicated by the satellite as well as the RCM data, agree with our emulator results.

However, historical PFA extent on Wilkins and George VI ice shelves appears underestimated in the emulator simulations.

In contrast, on Larsen C ice shelf current PFAs are simulated by all MAR forcing datasets, while PFA probability is low

here (Di Biase et al., 2024). Müller ice shelf is located in a region with complex topography, which is not resolved in the

RCMs. Overall, the modelled historical PFA extent shows moderate agreement with observations, especially for intermediate290

accumulation and surface melt rates. As future warming leads to increased melt and accumulation, the emulator is expected to

produce more accurate PFA predictions, as more locations will shift into distinct PFA climate regimes rather than remaining in

transitional states.

5.2 XGBoost emulator

Our PFA emulator captures at least 89 % of the simulated PFA variance. Despite its demonstrated generalisation capabilities,295

we emphasize that XGBoost models can be prone to errors when used beyond their range of training conditions (Chen and

Guestrin, 2016). Given the large spatial variability in climatic conditions across the AIS, the range of the individual input

features are likely covered in the training data. However, our findings suggest that some specific combinations of these features

may be absent in the training data. This is illustrated by the lower melt and accumulation for a given temperature in HIRHAM

compared to RACMO and MAR. As a result, the emulator predicts PFAs for HIRHAM forcings under unrealistically low300

melt and accumulation rates (Brils et al., 2024; van Wessem et al., 2021). RACMO and MAR, are in better agreement on the

conditions of PFA formation, reinforcing our confidence in the emulator’s performance. However, if a different RCM is used

for either training or predicting, the consistency between the RCMs should be evaluated to ensure reliable results. Additionally,

our work highlights the importance of using spatial and scenario blocking instead of randomly splitting training and testing

data. In the latter approach, the training and testing data are very similar, while with spatial or scenario blocking, XGBoost is305

trained and tested on datasets with slightly different characteristics. As a result, overfitting and overoptimistic perception of the

predictive power is prevented (Roberts et al., 2017).
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5.3 PFA expansion uncertainties

Overall, PFA expansion responds primarily to the modelled warming, either by a higher emission scenario, or by a warmer

model. The Larsen C ice shelf stands out in this regard, as all simulations by MAR clearly predict PFAs here, also in colder310

runs, such as MAR-norESM (Figs. 5, 7). Generally, PFAs are predicted on the windward side of Antarctic and Greenland

mountain ranges, and receive moist and mild air masses originating from the sea, resulting favorable conditions for PFA

formation (Turner et al., 2019). The Larsen C ice shelf is considered too dry, as it is located on the leeward side of the AP

mountain range. This ice shelf is frequently affected by föhn winds, resulting in dry and warm conditions (Luckman et al.,

2014). Nevertheless, substantial PFAs are predicted here for MAR, as this is the only RCM that allows precipitation to be315

advected over the mountains before reaching the surface. Advection of precipitation is also included in the recently developed

RACMO2.4 version (Van Dalum et al. 2024). However, as described in Section 5.1, MAR overestimates current PFA extent

on Larsen C ice shelf, suggesting that advection of precipitation might be overestimated. In addition, the coarse resolution of

MAR (35 km), contributes to this effect, as blocking of humid air is underestimated (Datta et al., 2018). This in turn, can cause

overestimation of clouds, precipitation, longwave radiation and consequently melt on Larsen C ice shelf.320

The horizontal resolutions of all forcing datasets and thus emulator results ranges from 12 to 35 km. However, Van Wessem

et al. (2016) suggest that even at 5.5 km resolution, the underestimation of the height and slope of the orographic barrier may

result in an underestimation of precipitation and föhn winds in the AP. Another uncertainty concerning the emulator results is

that all SSP1-2.6 and SSP2-4.5 simulations are indirectly driven by CESM2, which has a high climate sensitivity, but also a

cold bias over the AIS (Dunmire et al., 2022).325

5.4 Implication for future ice-shelf stability

As new PFAs are developing, the firn air content is also decreasing (Fig. 4). If warming continues, the firn air content eventually

becomes fully depleted, after which the PFAs disappear, making them transient. In fact, explicit firn simulations for Greenland

suggest that PFAs are a committed transition state from healthy firn to depleted firn in high accumulation regions (>1,000

mm yr−1) (Brils et al., 2024). The duration of such transient PFA presence will decrease with stronger warming rates or lower330

accumulation rates. Thus, the importance of including PFAs when assessing the timing of ice-shelf vulnerability also decreases.

This is illustrated by the stable PFA on Adelaide island (Fig. 4d), which has a high accumulation rate over the historical

period (3100 mm yr−1) and low warming rate over the 21st century (+3.2 K). In contrast, on Wilkins ice shelf, the historical

accumulation rate is relatively low (800 mm yr−1), and the warming rate is high (+7.2 K), resulting in the disappearance of

the PFA after 40 years (Fig. 4b). When combining our results with those of Lai et al. (2020), we find that Wilkins, Larsen C,335

and Abbot ice shelves, where both PFAs are predicted and substantial tensile stresses occur, may be vulnerable to instability

due to PFAs.
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6 Conclusions

An XGBoost machine learning emulator was developed to predict future Antarctic PFAs (2015-2100) for an ensemble of

12 scenarios from three RCMs (RACMO, MAR and HIRHAM) in combination with five GCMs. The emulator was trained340

with simulations of three scenarios (SSP1-2.6, SSP2-4.5 and SSP5-8.5) from IMAU-FDM forced by RACMO-CESM. Using

a scenario and spatial blocking evaluation approach, we found that the emulator successfully explains at least 89 % of the

PFA presence and perennial LWC variance. Under SSP1-2.6 and SSP2-4.5, PFA presence remains restricted to the AP. For

SSP5-8.5, PFAs expand within the AP, and expand to Ellsworth Land in six out of the seven simulations, to Enderby Land

in East Antarctica in five out of the seven simulations and to Marie Byrd Land in two out of the seven simulations. There345

is a large spread among the RCMs and GCMs predictions, related to differences in the climatic input, which highlights the

usefulness of the emulator. For climatic forcings from RACMO and MAR, we find that liquid water input (melt and rain)

and snow accumulation are good predictors for the occurrence of PFAs. However, HIRHAM predicts considerably lower melt

and accumulation for a given temperature compared to MAR and RACMO, causing less realistic PFA predictions. Overall,

our results show that, irrespective of the emission scenario, firn aquifers are likely to expand in a warmer Antarctica. This350

highlights the importance to understand the impacts PFAs have on ice sheet hydrology, instability and ice-shelf stability.
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