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Abstract. Snow avalanches are one of the most impactful natural hazards in mountainous areas. Thus, the assessment and

forecasting of avalanche danger is of great importance for the protection of life and property. A changing climate may lead to

changes in avalanche danger although the manifestation is unclear. Since climate change is regionally different, an assessment

of potential avalanche danger changes should be conducted on a regional basis. Here the focus is on avalanche danger in

northern Norway, i.e., a region in the Arctic. We utilise regional expert avalanche-danger level (ADL) assessments together5

with the 3-km Norwegian reanalysis (NORA3) to estimate the linkage between avalanche danger in the Troms region of

Norway and the prevailing weather conditions represented by NORA3 as well as snow-cover information from the snow

model seNorge. Both a binary and 4-level case are considered. Two random forest (RF) models are optimised and trained, one

for the binary case and one for the 4-level case.

The binary-case RF model exhibits a much higher overall accuracy (76 %) than the 4-level case RF model (57 %), which is10

due to the latter often confusing ADLs 1 and 2 and ADLs 3 and 4. Still, the missclassification difference is almost never larger

1 ADL and the distribution of the frequencies of the different ADLs is reproduced. The most important predictive features

of avalanche danger found here are broadly consistent with earlier studies and are mostly related to new snow and wind

accumulated and averaged over several days. The binary-case RF model is used to hindcast binary-case avalanche activity

(BCA) from 1970 to 2023. In this period, the spring season (Mar-May) shows a small but in most regions significant increase15

in BCA, whereas the winter season (Dec-Feb) exhibits mostly non-significant negative trends. Moreover, BCA is found to be

correlated with the Arctic Oscillation (AO) index especially in winter, although this correlation may have deteriorated in recent

years. Given recent advances in skill of representing the AO in decadal prediction systems this is an encouraging result for the

predictability of future avalanche danger tendencies in northern Norway.

The methodology presented here may be generally applied to link climate indicators to numerical climate model output,20

enabling their prediction for future climate change scenarios.

1 Introduction

Environmental and climate indicators associated with, e.g., natural hazards and human activities, both on land (e.g., the danger

of avalanches or landslides) and at sea (e.g., changes in nutrient concentration or stratification essential for fishery), represent
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important information when it comes to society planning and policy-making, especially under changing conditions. Prediction25

of these indicators, for instance avalanches that are a large risk to life and property, is of great importance, especially in densely

populated areas or tourism “hot-spots”. Other environmental indicators, such as nutrient concentration may be related more to

the conditions for industry, farming, and fishery and are thus strongly important for the planning of these industries and their

infrastructure (e.g., agricultural and marine-spatial planning). However, because of the great complexity of the environment

in which these indicators emerge, they are often not directly modelled, implying a paucity of information and hampering of30

planning for the present and especially the future. Nonetheless, some information may be inferred indirectly, i.e., from other

environmental properties that are directly modelled. This may be done using statistical methods that quantitatively relate the

indicator in question to the modelled properties. One type of such properties for which a rich pedigree of direct modelling as

well as observational monitoring exist is meteorological weather data. Thus, this data and its changes are often used to infer

knowledge about—and changes in—indicators that are not directly modelled. An important benefit of this is that a diverse set35

of modelled future scenarios exists for meteorological data. This offers the opportunity to investigate potential future changes

of environmental parameters based on the modelled future changes in weather conditions.

One environmental indicator that is associated with natural hazards and that is related to meteorological parameters is snow

avalanche danger or hazard (e.g., Statham et al., 2018). The terms danger and hazard are synonyms (e.g., Statham, 2008), but

according to Müller et al. (2016a), the former is more often used in Europe, while the latter is more typical in North America.40

In the following, avalanche danger is used.

Avalanche danger aggregates information about the likelihood of occurrence as well as the size of avalanches to a single

integer—the avalanche danger level (ADL; e.g., Müller et al., 2016b). A standardised 5-level ADL scale was agreed upon

by the European Avalanche Warning Services (EAWS) in 1993 and subsequently (in 1997) adopted in North America as well

(e.g., Schweizer et al., 2020). The ADL is typically forecast regionally by a team of experts based on (1) snowpack stability, (2)45

the frequency of snowpack stability, and (3) avalanche size (e.g., Müller et al., 2023). As Pérez-Guillén et al. (2022) note, this

means that ADL forecasting still follows the approach already described by LaChapelle (1980). Nonetheless, in recent years

advances have been made in incorporating physical (snowpack) modelling in the forecast (Morin et al., 2020). Moreover, in

Switzerland an approach relying exclusively on machine learning models (i.e., without expert input as, e.g., in Schweizer and

Föhn, 1996) to predict regional ADL with promising accuracy rivalling that of human experts (see, e.g., Techel and Schweizer,50

2017) has been developed (Pérez-Guillén et al., 2022) and is about to be implemented operationally (Maissen et al., 2024).

Employing machine learning to robustly predict ADL offers the possibility of (1) hindcasting and potentially connecting ADL

to known climate patterns, (2) quicker and more fine-resolution predictions of ADL based on numerical weather forecasts

and (3) prediction of ADL based on numerically modelled future climate-change scenarios. The latter is highly important for

future planning for stakeholders (e.g., ski-tourism industry or infrastructure departments) as a changing climate likely impacts55

avalanche occurrence and danger (e.g., Castebrunet et al., 2014; Laute and Beylich, 2018; Dyrrdal et al., 2020; Mayer et al.,

2024).

While exact deterministic prediction of avalanche release will likely remain out of reach for the time being (Schweizer

et al., 2003; Dkengne Sielenou et al., 2021), the possibility of using weather data to forecast avalanches was recognised
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decades ago (e.g., Atwater, 1954; LaChapelle, 1966). In the years since, many studies have focused on statistical prediction of60

avalanche occurrence from meteorological data (e.g., Judson and Erickson, 1973; Bakkehøi, 1987; Davis et al., 1999; Kronholm

et al., 2006; Jomelli et al., 2007; Jaedicke et al., 2008; Hendrikx et al., 2005, 2014; Gauthier et al., 2017; Mayer et al., 2023;

Viallon-Galinier et al., 2023; Hao et al., 2023). These studies are based on observational avalanche records and typically focus

on small regions with strong observational coverage. As observational records for larger regions are likely incomplete (e.g.,

Schweizer et al., 2020), especially in the sparsely populated regions such as northern Norway (Jaedicke et al., 2008), direct65

forecasting of the probability of avalanche occurrence for larger areas appears so far infeasible. Instead, as indicated above,

the forecasting of ADL is more promising. While there have been attempts for many years to forecast ADL with the help of

statistical methods (mostly nearest-neighbour methods; Schweizer and Föhn, 1996; Brabec and Meister, 2001), this research

has gained more momentum only in recent years (Dekanová et al., 2018; Fromm and Schönberger, 2022; Pérez-Guillén et al.,

2022; Blagovechshenskiy et al., 2023; Sharma et al., 2023; Maissen et al., 2024). However, e.g., the nearest-neighbour model70

of Brabec and Meister (2001) based on data from 60 manual weather stations in Switzerland yielded only a 52 % prediction

accuracy. In contrast, the expert system of Schweizer and Föhn (1996), tested in the Davos region in Switzerland, achieved

up to 73 % accuracy, although only in the case where an expert was allowed to interact with the forecast. Schirmer et al.

(2009) compared several different machine learning methods to forecast avalanche danger. Notably, they also included snow-

stratigraphy data from simulations with the physically-based snow-cover model SNOWPACK (Bartelt and Lehning, 2002;75

Lehning et al., 2002b, a). They found the best method (73 % cross-validated accuracy) to be a nearest-neighbour classifier,

which, however, included the ADL from the previous day as input. While this may improve the accuracy with respect to

daily ADL it likely deteriorates the performance for days where the ADL changes compared to the previous day (e.g., Pérez-

Guillén et al., 2022). Recently, focussing on regional dry-snow avalanche conditions in the Swiss Alps, Pérez-Guillén et al.

(2022) achieved the best results of predicting ADL based on meteorological and SNOWPACK-simulated snow stratigraphy80

data with a random forest (RF) classifier (about 75 %). Their approach is purely data-driven and does not require expert

inputs. It may be noted that the RF model has become a generally popular method in avalanche forecasting, however it appears

to be mostly used for forecasting avalanche activity (e.g., Möhle et al., 2014; Dkengne Sielenou et al., 2021; Mayer et al.,

2023, 2024; Viallon-Galinier et al., 2023) and not ADL. Contrarily, there has been a number of studies using an artificial neural

network (ANN) to predict ADL in different mountain regions. However they report strongly different accuracies. For example,85

Dekanová et al. (2018), using an ANN to predict avalanche danger in the Western Tatras (Slovakia) based on weather station

data, obtained accuracies of 59 to 66 %. Conversely, Blagovechshenskiy et al. (2023) reported accuracies of 77 to 91 % for

an ANN trained for the Ile Alatau Ridge in Kazakhstan. One reason for the discrepancy may be that Blagovechshenskiy et al.

(2023) use information about the snow stratigraphy as predictive features while Dekanová et al. (2018)’s information about

snow is confined to “actual snow depth” and “new snow depth”. Furthermore, there are differences in the generation of the ADL90

data set, as Blagovechshenskiy et al. (2023) had to reconstruct most of the ADLs based on actual avalanche observations while

Dekanová et al. (2018) used a historical record of ADL forecasts. Sharma et al. (2023) using the same data as Pérez-Guillén

et al. (2022) reported a best-case accuracy of 76.54 % with respect to their validation data. However, no information about the

split into training and validation data is given. This may be important because if the validation data is chose randomly, temporal
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correlations may cause severe overestimation of model accuracy (see section 5 below). A further reason for the comparatively95

high accuracy of Sharma et al. (2023) is likely that their data was confined to dry snow avalanches. These points may explain the

discrepancy in model performance with Fromm and Schönberger (2022) who obtained an accuracy of only 48 % for an ANN

trained on meteorological and SNOWPACK-simulation data (i.e., similar to Sharma et al., 2023) for a ski-resort in the Austrian

and Swiss Alps. As test data they used one whole winter which was excluded from the training data and they considered any

type of avalanche. They also note that in contrast to Pérez-Guillén et al. (2022) and Sharma et al. (2023), they did not focus on100

regional ADL but instead on a much smaller region, i.e., a single ski resort. The resort is strongly influenced by artificial and

intentional avalanche triggering, potentially further hampering direct comparability to the other studies.

So far, the only study investigating statistically the relation between avalanches and weather data in northern Norway is

Jaedicke et al. (2008), although this was not the main focus of that study and instead of ADL they predicted avalanche activity.

Moreover, Dyrrdal et al. (2020) investigated climate indices specifically related to avalanches in the Troms region in northern105

Norway, but they did not statistically relate these indices to avalanche danger. In northern Norway snow avalanches are among

the most important natural hazards, causing road closures and access disruptions to towns, and casualties associated with, e.g.,

skiing, riding snowmobile, driving cars, or even being in houses. In an analysis of the Norwegian mass movement database1

as well as Varsom2, Dyrrdal et al. (2020) found that between 1730 and January 2020 in Troms, 307 casualties were caused

by snow avalanches. A reason for historically relatively little focus on statistical avalanche prediction in northern Norway110

may be due to the sparse avalanche observations in this region (Jaedicke et al., 2008), implying that avalanche prediction

models based on observational avalanche records are likely biased. We note that the analysis in Jaedicke et al. (2008) may

suffer from this problem. To circumvent this shortcoming, we here instead rely on the expert ADL assessments published

by the Norwegian Water Resources and Energy Directorate (NVE). The ADLs are compared with a set of meteorological

variables which are constructed based on the 3-km Norwegian Reanalysis (NORA3). Moreover, we include several snow-115

related parameters derived from the simple 1-layer snowpack model seNorge (Saloranta, 2012, 2014, 2016). seNorge is run

using daily temperature and precipitation data from NORA3 to simulate snow conditions. Like Pérez-Guillén et al. (2022), we

focus on the RF model to predict ADL in northern Norway and mostly follow their detailed model optimisation and feature

selection procedures (see section 4 below). However, we also implement an ANN with the structure suggested by Sharma et al.

(2023) and test its performance. But since we do not conduct an optimisation of the ANN, we include the results only in the120

supplementary material (see texts S1 to S3). Generally, the RF and the ANN model yield similar results (see texts S2 and S3).

We optimise two different RF models: (1) for the original “4-level case” (ADL 5 has not been forecast in northern Norway)

and (2) for a “binary case”, where ADLs 1 and 2 and ADLs 3 and 4 are combined. Consistent with previous studies, we find

that the most important predictive features in both cases are related to accumulated new snow over several days as well as wind

drift. As expected, the RF model for the binary case performs much better than the model for the 4-level case, where ADLs 1125

and 2 are often confused and similarly ADLs 3 and 4. The model generally over-predicts the frequencies of the medium classes

(ALDs 2 and 3) when using the balanced test data, although for the original data the class frequency distribution is reproduced.

1https://skredregistrering.no
2https://varsom.no
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Finally, using the RF model for the binary case we perform an “avalanche activity”3 hindcast for 1970-2023. While there is

little general trend in avalanche activity, there is a notable peak in the 1990s, with less activity before and after. The peak in the

1990s appears to be connected to exceptionally high values of the North Atlantic Oscillation (NAO) or the Arctic Oscillation130

(AO) at that time. Recent advances of decadal prediction systems indicate considerable skill in representing the NAO/AO.

This is encouraging as it implies a potential predictability of at least the tendency of avalanche activity on this time scale.

However, we also find a decrease in correlation between NAO/AO and avalanche activity in recent years, potentially induced

by other climate modes, indicating a loss of predictability. Furthermore, the influence of these climate modes on northern

Norwegian avalanche activity, may confound a potential climate-change signal. If climate models simulating future climate-135

change scenarios are unable to represent climate modes such as NAO/AO, avalanche activity/danger projections based on these

simulations may be subject to severe uncertainty.

Given the high danger posed by snow avalanches in northern Norway, an increased ability of predicting avalanche danger is

of immense value to help preventing skiing accidents and fatalities in homes and on roads, as well as preparing for potential

road closures and access disruptions. In the present study we attempt to make progress in this direction. It is structured as140

follows: Section 2 first explains the expert ADL assessments (2.1), the NORA3 reanalysis (2.2), and the seNorge model (2.3),

and finally gives an overview of the avalanche-danger prediction features calculated from the NORA3 data and the seNorge

output (2.4). Section 3 describes the RF model (3.1) and the employed model performance metrics (3.2). In section 4 the RF

optimisation and feature selection procedure is presented and in section 5 the RF models (binary and 4-level case) are evaluated.

The binary-case RF model is used in section 6 to perform a hindcast of “avalanche activity”, which is then connected to known145

climate patterns. Section 7 offers a summary and concluding remarks.

2 Data

2.1 Avalanche danger

In northern Norway avalanche observations are sparse and many avalanches remain undetected. Thus, using avalanche ob-

servation catalogues as training data for statistical models to predict avalanches likely introduces biases leading to incorrect150

or at least uncertain prediction. To avoid this potential bias, we here instead employ the daily avalanche danger level (ADL)

assessment as described in section 1. In Norway the ADL assessment is generated and published4 by a team of experts from the

Norwegian Water Resources and Energy Directorate (NVE), the Norwegian Meteorological Institute (MET), and the Norwe-

gian Public Roads Administration (Statens vegvesen) aggregating knowledge from snow and weather observations as well as

numerical weather modelling to forecast the ADL for the next couple of days. The ADL data are available from the avalanche155

season of 2017/18 up to present day.

3Note that our measure of avalanche activity is not based on actual avalanche observations, but is instead connected to a change in binary-case level (see

section 6).
4The Norwegian ADLs are published at www.varsom.no.
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Figure 1. Study region. The black square in the inset indicates the location of the study region in Norway. The topography information is

taken from NORA3.

In describing the avalanche danger by a single value per region, the ADL constitutes a large reduction in complexity. In fact,

the avalanche forecaster considers several different “avalanche problems”5 (AP; e.g., wind slab, persistent weak layer etc.) and

based on the estimated likelihood (based, in turn, on distribution and sensitivity) and size of avalanches determines a danger

level per AP (Müller et al., 2023). The final ADL in a given region is taken as the highest danger level among the different APs.160

Hence, the ADL is a result of different APs that are related to different meteorological conditions, complicating the relation

between ADL and meteorological data. However, considering only one AP reduces the amount of available data, making a

robust training of statistical models more difficult. Also, at least some of the APs may be related to similar meteorological

conditions and we thus believe it is still feasible to focus on the general ADL. In future work we will attempt a more detailed

decomposition into the different APs.165

Here, the ADLs from the northern Norwegian regions of Nord-Troms, Lyngen, Tromsø, Sør-Troms and Indre Troms are

considered. The regions are depicted in Fig. 1. From Fig. 2a it is clear that there is considerable variation in frequency of

the different ADLs with 2 being the most frequent and 4 the least frequent, while level 5 was never forecast in northern

Norway. Hence, the ADL scale in this study is constrained to four levels. The figure also shows that the frequency of the

ADLs is similar across the different regions. Conversely, the ADL frequency varies across the different recorded years (Fig.170

2b), especially between levels 1 and 2. For example, in 2020 there were almost no days with level 1 but many more days with

5See https://www.avalanches.org/standards/avalanche-problems/
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Figure 2. Summary of the avalanche danger level (ADL) data in northern Norway from winter 2017/18 to 2022/23. Note that in (b) there are

more then 365 occurrences per year because the data are aggregated for all the northern Norwegian regions.

level 2. In contrast, in 2018 and 2021 there were much fewer days with level 2 and many more with level 1. The distribution of

ADLs per year is important information when it comes to the splitting of training and test data for the statistical models.

As Pérez-Guillén et al. (2022) discuss, one source of noise in the ADL data is forecast error, i.e., incorrect labels. For

example Techel and Schweizer (2017) find that the regional forecasts match local nowcasts only 71 % of the time. Pérez-175

Guillén et al. (2022) thus attempt to generate a refined subset of their ADL data by including additional information such as

observational data and the outcomes of several verification studies. For northern Norway, no such verification studies exist,

although there is one study trying to compare remote-sensing derived avalanche activity with forecast ADL which indicates

that ADL forecasts are conservative (Eckerstorfer et al., 2017). Attempts are currently under way to increase remote-sensing

coverage and detection algorithm quality, but the probability of detection has been found to depend on the type of avalanche180

and is overall only about 57 % (Müller et al., 2021)6. Furthermore, while there are in-situ observational avalanche records

in northern Norway7 these are very sparse due to the comparatively large area and the low population density. Even using a

combination of in-situ and remote-sensing observation to “tidy up” our ADL data would strongly reduce our available data so

as to make robust training of a statistical model infeasible. With these reservations in mind we are here bound to use the raw

ADL forecast data.185

In this study, we consider two types of avalanche-danger scales. First, we employ the full ADL scale (henceforth “4-level

case”). Second, we generate a binary scale (henceforth “binary case”) where the ADLs 1 and 2 are combined to binary-case

level (BCL) 0 and the ADLs 3 and 4 are combined to BCL 1. This is done because (1) we find a much better model performance

in predicting the binary case compared to the 4-level case (see section 5) and (2) we use the binary case in a hindcast for a

rough estimate of changing avalanche activity over time and to find potential connections to known climate patterns/modes190

(see section 6).
6The Norwegian remote-sensing avalanche observations are publicly available at https://satskred.nve.no/.
7The Norwegian avalanche observations are available via Varsom Regobs (https://regobs.no) and NVE (https://nedlasting.nve.no/gis/).
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2.2 NORA3

The meteorological data used in this study is taken from the 3-km Norwegian Reanalysis (NORA3). NORA3 is an atmospheric

hindcast for the North Sea, the Norwegian Sea, and the Barents Sea as well as the Scandinavian Peninsula, including further

parts of northern and western Europe and north-west Russia (Haakenstad et al., 2021). More precisely, it may be viewed195

as falling somewhere between a hindcast and a full reanalysis as it includes data assimilation only for surface parameters

(Haakenstad et al., 2021; Haakenstad and Breivik, 2022). NORA3 provides a regional downscaling to a 3-km horizontal

resolution of the latest version of the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis, ERA5,

with a 31-km horizontal resolution (Hersbach et al., 2020). To produce NORA3, the non-hydrostatic convection-permitting

numerical weather model HARMONIE-AROME (Bengtsson et al., 2017) was run on a 3-km horizontal resolution and with 65200

vertical layers, using ERA5 fields as initial and boundary conditions. At the time of writing, data availability covers the period

1970 to present day with a few months lag. It is planned to extend NORA3 back in time to 1960.

Pertinent to the present study, NORA3 has been found to significantly improve the representation of 2-m temperature, 10-

m wind, and daily precipitation, particularly regarding extremes and in coastal and mountainous areas compared to its host

reanalysis (ERA5) and its predecessor (NORA10; Reistad et al., 2011). These improvements appear mostly due to the higher205

resolution as well as the resolved deep convection (Haakenstad et al., 2021; Haakenstad and Breivik, 2022). Still, Haakenstad

and Breivik (2022) report at least two biases that may be important for the present study, namely a significant underestimation

of spring temperatures as well as too long-lasting snow cover in regions with few observations.

Previous studies that attempted to relate weather data to avalanches note that meteorological parameters above a certain

elevation are most important regarding avalanche release (e.g. Kronholm et al., 2006; Laute and Beylich, 2018; Dyrrdal et al.,210

2020). We have conducted our analysis using several different elevation thresholds, selecting grid cells between 400 and 900

m, 500 and 1000, and 600 and 1100 m. However, the choice of elevation threshold had little impact on the final results. The

results presented here are based on the elevation interval 400 to 900 m and the number of grid cells selected per region is shown

in Table 1.

2.3 seNorge215

To obtain more information about the snow conditions the snow model seNorge (Saloranta, 2012) version 1.1.1 (Saloranta,

2014, 2016) is run using NORA3 daily 2-m air temperature and total precipitation amount as input. This model is the “work-

horse” for the avalanche warning system in Norway (Morin et al., 2020) and well suited for Norwegian conditions (Saloranta,

2012). It is a simple process-based single-layer snowpack model demanding little computational resources, thus being conve-

nient for application to large high-resolution grids (Saloranta, 2016; Morin et al., 2020). seNorge consists of two sub-modules220

for (1) snowpack water balance and (2) snow compaction and density, calculating the snow water equivalent, the melt/refreeze

rate, and run-off as well as snow depth and density, respectively. To obtain reasonable initialisation data for seNorge, the model

was first run for the years 1970 through 1975 with the initial values being zero everywhere. The final simulation outputs from
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Table 1. Number of selected grid cells between elevation levels 400 m and 900 m for the NORA3 grid cell selection.

Region Number of cells

Indre Troms 461

Lyngen 136

Nord-Troms 594

Sør-Troms 146

Tromsø 41

1975 were then used as model initialisation data for 1970 and the model was run from 1970 through 2023 to produce the

snow-cover data.225

Note that some years ago the much more elaborate snowpack model Crocus was applied in Norway to obtain snowpack

stratigraphy information. However, this was discontinued in the 2017/18 season due to unreliable results and lack of personnel

to maintain the model chain (Morin et al., 2020). Thus, for the time being, the seNorge model represents the best available

gridded snow data for Norway. Efforts are currently underway in cooperation with the Norwegian Water Resources and Energy

Directorate (NVE) to implement and run the detailed snowpack model SNOWPACK based on Norwegian data (Karsten Müller,230

personal communication). It is planned to incorporate the SNOWPACK simulations into our machine learning system for ADL

prediction when they are available.

2.4 Avalanche-danger prediction features

Based on the NORA3 weather data several parameters are constructed to be used as potential predictors of ADL, partly follow-

ing earlier studies (e.g., Hendrikx et al., 2014; Gauthier et al., 2017; Pérez-Guillén et al., 2022). An overview of these potential235

predictors is presented in Table 2. They include the accumulated new liquid precipitation r1 on the day of the ADL assessment,

as well as the new liquid precipitation accumulated over one to six days before and including the day (r2, ..., r7). Equivalently,

solid precipitation is represented by the features s1, ..., s7. The hourly total precipitation (Ptot) values from NORA3 were clas-

sified as liquid or solid based on the hourly 2-m air temperature being larger or smaller than 0 ◦C, respectively. The parameters

rh, rh2, ..., rh7 correspond to the to daily and 2-day to 7-day averages of the relative humidity. The maximum and minimum of240

2-m air temperature (tmax, tmin) and 10-m wind speed (wmax) represent the daily maximum and minimum of hourly values

from NORA3, respectively. The diurnal cycles dtr, dtr1, dtr2, dtr3 represent the difference between the maximum and minimum

hourly 2-m air temperatures on the day of and up to three days before the ADL assessment. The thermal amplitudes dtrd1,

dtrd2, dtrd3 represent the largest thermal range of hourly 2-m air temperatures between the day of and one to three days before

the assessment. The ftc is a boolean flag indicating if a freeze-thaw cycle was present on the day of the assessment, i.e., if the245

daily tmax was larger than 0 ◦C and the daily tmin was smaller than 0 ◦C. The positive-degree days (pdd) are calculated as the

seven-day sum (including the day of the assessment) of the daily mean 2-m air temperature (tmean) for days with tmean > 0

9
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◦C. The drift index (wdrift) combines precipitation and wind (see Table 2) to represent the effect of snow drift (Hendrikx et al.,

2005). The cubed drift index (wdrift3) is also included as this is more in line with the current understanding of snow transport

by wind (Hendrikx et al., 2014). Further parameters include the net short-wave and long-wave radiation at surface (nsw and250

nlw, respectively) averaged over one to seven days. As described in section 2.3, we also use parameters generated with the

seNorge snow model. These are the snow water equivalent (SWE), snow depth (SDP), snow density (SD), and melt/refreeze

rate (MR). The parameters are included as daily and 2-day to up to 7-day means.

The predictive features are calculated for all days for which ADLs are available, covering the period of winter 2017/18 to

2022/23. The avalanche period is considered as lasting from December to May, including these months, although in few cases255

there are ADLs for days in late November and early June. The data is split into a training and a test dataset. To avoid a potential

overestimation of model skill due to intra-seasonal correlation, we use the two full avalanche seasons of 2020/21 and 2022/23

as test data and the remaining seasons as training data. The two test seasons are rather different in terms of ADL frequencies

(see Fig. 2), thus covering at least some interseasonal variation. When training the statistical models we average the predictive

features for each of the five avalanche regions separately (Fig. 1). However, we train one model for all five regions combined260

because there is not enough data to robustly train a statistical model per region (especially for level 4 with only 120 cases for

all regions combined; see Fig. 2a). We note that we have tested taking the 90th percentile of the grid cells per region instead of

the average, but this had little impact on our final results.

3 Methods

In the following we introduce the random forest (RF) model used to predict avalanche danger based on meteorological data265

and then give a brief summary of the model evaluation metrics. For a description of the artificial neural network (ANN) see

text S1 in the online supplementary information.

3.1 Random forest

The random forest (RF; Breiman, 2001) model is a non-linear supervised classifier based on an aggregation of weaker classi-

fiers (the decision tree). The decision tree (DT; Breiman et al., 1984) establishes “splitting rules” for the continuous features270

to predict the discrete target variable (i.e., the ADL). The splitting rules are here obtained by minimising the Gini index of

diversity (e.g., Breiman et al., 1984):

Gini =
N∑

i=1

(pi (1− pi)) , (1)

where N is the number of classes in the data and pi is the probability of correctly classifying item i. Higher and lower Gini

indices correspond to greater and smaller misclassification, respectively. The number of splitting rules sets the “depth” of the275

DT and the user may determine the minimum number of data samples that must remain after a split.
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Table 2. Potential predictors constructed from NORA3 meteorological data. The “current day” refers to the day of the avalanche danger

assessment. The capitalised abbreviations indicate that the respective parameter was derived with the seNorge model. See the text for more

details on the parameter definition.

Feature name Description

Ptot Daily total accumulated new precipitation (mm)

r1, ..., r7 Daily to 7-day accumulated new liquid precipitation (mm)

s1, ..., s7 Daily to 7-day accumulated new solid precipitation (mm)

rh, rh2, ..., rh7 Daily to 7-day mean of relative humidity

t1, ..., t7 Daily to 7-day mean temperature (K)

tmin Daily minimum temperature (K)

tmax, tmax2, ..., 7 Daily to 7-day maximum temperature (K)

dtr Daily temperature range (K)

dtr1, dtr2, dtr3 Diurnal cycle one to three days before the current day (K)

dtrd1, dtrd2, dtrd3 Thermal amplitude between one to three days before and the current day (K)

ftc Daily freeze-thaw cycle (ftc = 1)

pdd Positive-degree days (7-day sum of tmean for days with tmean > 0 ◦C)

w1, ..., 7 Daily to 7-day mean wind speed (ms−1)

wmax, wmax2, ..., 7 Daily to 7-day maximum wind speed (ms−1)

w_dir Daily wind direction

wdrift Drift index (w_mean × s1) (ms−1 × mm)

wdrift3 Cubed drift index (w_mean3 × s1) (ms−3 × mm)

wdrift_2, 3 As wdrift but mean wind and precipitation sum over two and three days

wdrift3_2, 3 As wdrift3 but mean wind and precipitation sum over two and three days

nsw, nsw2, ..., nsw7 Daily to 7-day mean of net short-wave radiation at surface (Wm−2)

nlw, nlw2, ..., nlw7 Daily to 7-day mean of net long-wave radiation at surface (Wm−2)

SWE, SWE2, ..., SWE7 Daily to 7-day mean of snow water equivalent (mm)

SDP, SDP2, ..., SDP7 Daily to 7-day mean of snow depth (mm)

SD, SD2, ..., SD7 Daily to 7-day mean of snow density (kg/L)

MR, MR2, ..., MR7 Daily to 7-day mean of melt/refreeze rate (mm/d)

The RF grows multiple DTs, and the final outcome (i.e., the ADL based on a specific set of feature values) is obtained by

the majority vote of the outcome of the individual DTs. Using a large number of DTs typically helps to prevent overfitting. As

another measure to prevent overfitting, the individual DTs are trained on bootstrapped subsets of the data.
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The RF method offers the possibility to gauge the importance of the individual predictive features in the prediction of280

the target variable. This is done by computing the average impurity decrease computed across all DTs in the RF due to the

respective predictive feature.

Note that while an individual DT may be humanly understandable (given it is not too large), the RF typically consists of

hundreds of DTs, meaning it is a “black-box”. However, due to the large number of features (up to 109 features are considered

as potential predictors here), a “black-box” model is likely unavoidable for ADL prediction285

In the context of the prediction of snow avalanches, the RF method has become quite popular. However, it seems to be mostly

used for the prediction of avalanche activity based on avalanche observations (e.g., Möhle et al., 2014; Dkengne Sielenou et al.,

2021; Mayer et al., 2023, 2024; Viallon-Galinier et al., 2023) and Pérez-Guillén et al. (2022) appear to be the first applying an

RF to ADL prediction.

3.2 Model evaluation metrics290

To evaluate and compare model performance, several performance metrics (e.g., Sokolova and Lapalme, 2009) are employed,

similar to earlier studies (e.g., Fromm and Schönberger, 2022; Pérez-Guillén et al., 2022). We use hits (a), false alarms (b),

misses (c), and correct non-events (d) (see Table 3) to calculate the following performance metrics:

PC =
a + d

a + b + c + d
, the accuracy or percentage of correctly classified samples, (2)

295

P =
a

a + b
, the precison score, (3)

representing the fraction of hits among the positive forecasts (i.e., hits and false alarms),

R =
a

a + c
, the recall score, (4)

representing the fraction of hits among the positive observations (i.e., hits and misses), as well as

F1 = 2
P ×R

P + R
, the F1 score, (5)300

which corresponds to the harmonic mean of precision and recall. Following Pérez-Guillén et al. (2022) we use the F1-macro

score in the cross-validation during the model optimisation procedure (section 4). A macro score represents the unweighted

mean of the score over all classes, thus treating all classes equally (e.g., Sokolova and Lapalme, 2009). As noted by Sokolova

and Lapalme (2009), precision, recall, and hence the F1 score are invariant to changes in the classification of correct non-events.

4 Random forest optimisation and feature selection305

As mentioned above, our focus in this study is the random forest (RF) model, and the model optimisation and feature selection

procedure mostly follows Pérez-Guillén et al. (2022). However, note that we here consider both the binary-case levels (BCLs)
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Table 3. Structure of the binary confusion matrix (see e.g., Sokolova and Lapalme, 2009; Wilks, 2011).

obs. positive obs. negative

forecast positive a b

forecast negative c d

and the 4-level case ADLs (see section 2.1). Consequently, the optimisation and feature selection procedure is conducted

separately for these cases.

The RF model is a complex machine-learning method incorporating several hyperparameters which may be tuned to optimise310

the model. We start by performing a randomised grid search over several hyperparameters using the full set of 109 features (see

section 2.4). During the grid search a 3-fold cross-validation is performed employing the F1-macro score (i.e., the unweighted

mean of F1 scores for each class) to gauge model performance. Since we have six winters of data available, the folds are

constructed such that in each fold four winters are used as training data and the remaining two winters as test data. As the classes

of the target variable are strongly imbalanced (see Fig. 2) we use a synthetic minority over-sampling technique (SMOTE;315

Chawla et al., 2002) to oversample the minority classes and balance the data. Note that in the binary case the balancing was

undertaken after the aggregation from ADL to BCL. The RF with the set of hyperparameters achieving the best (i.e., highest)

F1-macro score is then used to gauge the importance of the individual predictive features as described in section 3.1. In a next

step, the cross-correlation (Pearson R) between all the predictive features is calculated. Those features which exhibit R2 > 0.9

with another feature of greater importance are then removed. This leaves 54 and 56 features in the binary and the 4-level case,320

respectively. Their feature importances are shown in Fig. 3. Employing only the remaining 54 and 56 features, we perform

another grid search around the best hyperparameters found in the first step. This yields the final set of hyperparameters as

shown in Table 4. Finally, we test the optimal number of features to be included. As can be seen in Fig. 4, for the binary case

there is a considerable increase in median model performance from 10 to 20 features, while including more than 20 features

either does not change or even deteriorates the performance. Hence, we choose 20 features in the binary case. For the 4-level325

case increasing the number of features from 20 to 30 improves the median performance, but for higher feature numbers the

performance deteriorates again. Thus, we choose 30 features for the 4-level case. The features above the black lines in Fig. 3

constitute the final sets of features used in the further analysis. Figure 4 shows the RF performance derived from a 3-fold cross-

validation (i.e., using four winters as training and two winters as test data). The same optimal feature numbers are obtained

in a 6-fold cross-validation (i.e., using five winters as training and one winter as test data; see Fig. S6 in the supplementary330

information). Note that Pérez-Guillén et al. (2022) similarly find 30 to be the optimum number of predictive features, although

they use different features (including SNOWPACK-derived snow-stratigraphy parameters; compare their Fig. 5 with our Fig.

3b).

Generally, the most important parameters in both the binary and the 4-level case are related to new snow accumulating over

several days (e.g., s3, s6) together with snow density (SD4) as well as the wind (e.g., wmax2, w_dir) and wind drift (e.g.,335
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Figure 3. Feature importances for the random forest models trained for (a) the binary case and (b) the 4-level case. The black horizontal lines

indicate the cut-off point determined in the optimal feature number test described in the text. For a description of the features see Table 2.

wdrift3_3, wdrift_3). This is expected and broadly consistent with Pérez-Guillén et al. (2022)8 as well as other studies which,

however, investigate avalanche activity instead of ADL (e.g., Gauthier et al., 2017; Jaedicke et al., 2008; Bakkehøi, 1987;

Kronholm et al., 2006; Hao et al., 2023), since both new snow and wind, especially associated with storms (e.g., Davis et al.,

1999), are prominent avalanche triggers (see e.g., Jaedicke et al., 2008; Dyrrdal et al., 2020, specifically for northern Norway).

8Note that our wdrift parameters appear to correspond to the wind_trans parameters in Pérez-Guillén et al. (2022).
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Table 4. The sets of hypperparameters used in the random forest models. The row “Maximum number of features” refers to the number of

features considered at each split in the decision trees. “sqrt” indicates the square root of the number of all features and “1.0” indicates all

features.

Hyperparameter binary 4-level

Number of trees 900 500

Maximum depth of the tree 20 35

Maximum number of features sqrt 1.0

Minimum number of samples at leaf node 9 2

Minimum number of samples for each split 2 4

Interestingly, the 6-day and 7-day averaged net short-wave radiation features (nsw6, nsw7) are among the most important340

features in the binary and the 4-level case, respectively. This is remarkable, since for most of the northern Norwegian winter

polar-night conditions obtain, meaning the sun does not rise and there is no short-wave radiation. Indeed, while nsw6 never

exceeds 2 Wm−2 in winter (December through February), in spring (March through May) typical values are between 40 and

50 Wm−2 (see Fig. S7). Accordingly, the importance of nsw6 and nsw7 should be concentrated in the spring months. These

parameters are likely related directly to melting and refreezing (e.g., nsw6 and MR6 are highly correlated, see Fig. S8) but345

also to clouds. As clouds are connected to precipitation and wind, this partly explains its comparatively high importance.

Furthermore, as documented by, e.g., Conway et al. (1988), on slopes with a southerly aspect, avalanches are often released

after the snow has been warmed by solar radiation. A few features directly related to temperature are among the most important

features, mostly as longer averages (t7, tmax7). However, it is unclear how these temperature features impact avalanche danger

since, as noted by e.g. Kronholm et al. (2006), higher temperatures can have both stabilising and destabilising effects on the350

snow cover. Higher temperatures may, e.g., lead to more meltwater that can percolate through the snowpack (destabilising),

while they may also decrease the time over which weak layers are present in the snowpack (stabilising). The features related to

temperature change (e.g., t_range, dtemp1 etc.) are of minor importance in the 4-level case and are not used in the binary case

at all, indicating that short-term temperature changes (up to three days) are not important for the ADL in our analysis. For the

4-level case, some rain-related features are used in the final model. However, their importance is much lower than that of snow355

or total precipitation. This indicates that wet-snow avalanches, which are often caused by rain-on-snow events (e.g., Conway

et al., 1988; Heywood, 1988), mostly do not determine the general ADL. As described in section 2.1, we here consider only

the general ADL. Focusing instead on individual avalanche problems would likely lead to a different set of most important

predictive features used in the RF model, being more directly connected to the specific type of avalanche (wind slab, wet snow,

etc.).360
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Figure 4. The F1-macro skill score of the random forest dependent on the number of included features based on a 3-fold cross-validation for

(a) the binary case and (b) the 4-level case. Note the different y-axis scales. See Fig. S6 in the supplementary information for the results of a

6-fold cross-validation.

Table 5. Classification report for the binary case with unbalanced data. See Table S4 in the supplementary information for the balanced data.

For the corresponding classification report of the artificial neural network see Table S1.

level precision recall f1-score support

0 0.85 0.79 0.82 1227

1 0.62 0.70 0.66 593

accuracy 0.76 1820

macro avg 0.73 0.75 0.74 1820

weighted avg 0.77 0.76 0.77 1820

5 Model evaluation

Summaries of the model performance with respect to the test data (i.e., the winter seasons 2020/21 and 2022/23) for the binary

and the 4-level case are presented in Tables 5 and 6, respectively. Heat maps of the corresponding confusion matrices are shown

in Fig. 5, and Table 7 gives the difference of the forecast to the true ADL in the 4-level case. See text S2 in the supplementary

information for a brief comparison of the performance of the RF and ANN models.365

It is clear that in the binary case a much higher overall accuracy of about 76 % is achieved compared to only 57 % in the

4-level case. The latter appears low compared to other studies (Schweizer and Föhn, 1996; Schirmer et al., 2009; Dekanová

et al., 2018; Pérez-Guillén et al., 2022; Sharma et al., 2023; Blagovechshenskiy et al., 2023) although it is slightly higher than

in Fromm and Schönberger (2022) and Brabec and Meister (2001). Most of these studies used meteorological station data as

well as sophisticated information on snow and/or SNOWPACK simulations, which may partly explain their better performance.370
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Table 6. Classification report for the 4-level case with unbalanced data. See Table S5 in the supplementary information for the balanced data.

For the corresponding classification report of the artificial neural network see Table S2.

level precision recall f1-score support

1 0.42 0.38 0.40 310

2 0.62 0.60 0.61 917

3 0.59 0.63 0.61 563

4 0.22 0.37 0.28 30

accuracy 0.57 1820

macro avg 0.46 0.50 0.48 1820

weighted avg 0.57 0.57 0.57 1820

As previously mentioned, e.g., Sharma et al. (2023) appear to have randomly selected their validation data instead of using

whole winters. We note that this has an immense influence on the purported model performance: When we randomly select

33 % of the data as test data, accuracies exceeding 85 % are obtained (both for the binary and the 4-level case). This indicates

that strong temporal correlations exist, confounding the model performance when test/validation data are chosen randomly.

A further reason for the lower model performance here than, e.g., in Pérez-Guillén et al. (2022) is that they have 20 years of375

data available and focus only on dry-snow avalanches while we use the general ADL including all avalanche types/problems

(see section 2.1). Here we acquiesce to the noisier ADL data to have more training data available for our model, given that

our dataset covers only six seasons. However, in future work we will attempt a more detailed analysis with respect to the

different avalanche problems. Further reasons may explain (at least in part) the higher accuracies in most of the other studies.

For example, Schweizer and Föhn (1996) let a human expert interact with their system, likely increasing the accuracy. Schirmer380

et al. (2009) used the ADL from the previous day, which increased the model performance. However, since Pérez-Guillén et al.

(2022) found that this strongly reduced the model accuracy for days where the ADL changes from the previous day, we here

refrain from using the previous-day ADL as predictive feature. As discussed by Fromm and Schönberger (2022), the extent

and scale of the investigated region likely also impacts the results. They concentrated on a much smaller region which is more

strongly affected by accidental and intentional avalanche release, potentially confounding their results compared to studies385

focussing, like here, on larger areas (e.g., Pérez-Guillén et al., 2022; Sharma et al., 2023; Schirmer et al., 2009). The region

investigated by Dekanová et al. (2018) is smaller than our study area, potentially implying less noisy ADL data, which may

explain their somewhat higher model accuracies of 59-66 %.

From Table 5 it appears that our binary-case RF model is better at predicting BCL 0 than 1. However, when the test data

are balanced by synthetic oversampling, all three scores (precision, recall, F1) are similar for BCL 0 and 1 (see Table S4 in390

the supplementary information). Considering the confusion matrix for the 4-level case (Fig. 5b) it is evident that while most

of the ADL-2 and ADL-3 cases are classified correctly, ADL 1 is most often misclassified as ADL 2. Most ADL-4 cases are
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Table 7. Difference between true and predicted danger level for 4-level case. The numbers given are the percentages of the number of days

with the given danger level difference. The left column represents unbalanced and the right column that balanced data. For the corresponding

results for the artificial neural network see Table S3.

difference unbalanced balanced

-3 0.0 0.0

-2 0.88 0.65

-1 18.02 21.86

0 56.87 58.23

1 23.13 18.38

2 1.04 0.85

3 0.05 0.03

also misclassified as ADL 3. While this means that a large fraction of cases is misclassified, the misclassification difference

exceeds one ADL only in about 2 % of cases (see Table 7), which is similar to Pérez-Guillén et al. (2022), and explains the

much better model performance in the binary case. However, Pérez-Guillén et al. (2022) generally have smaller differences395

in misclassification across the different classes, leading to their higher overall accuracy. The left column in Table 7 based on

the unbalanced data indicates that our RF model has a tendency to over-predict the ADL, but this is likely due to most cases

being either ADL 1 or 2 (Fig. 6) and most ADL-1 cases are misclassified as ADL 2 (Fig. 5b). Accordingly, for the balanced

data (Table 7, right column) the situation is reversed, with only a slight underprediction of ADL (see also the confusion matrix

for the balanced case in Fig. S9b in the supplementary information). From Fig. 6 it appears that the overall frequencies of the400

individual ADLs are reproduced in the unbalanced case. However, this is not true for the balanced case, where a severe over-

representation of ADLs 2 and 3 is evident, while ADLs 1 and 4 are strongly under-represented. The confusion matrix based on

the balanced data (Fig. S9b) shows that about half of the ADL 1 and 4 cases are misclassified as ADL 2 and 3, respectively.

This indicates that our RF model has a tendency to over-predict the occurrence of the most frequent classes despite the efforts

undertaken to balance the training and cross-validation-test data (see section 4). Another interpretation is that the model over-405

predicts the frequency of the “medium”-classes (ADLs 2 and 3) at the expense of the more “extreme” classes (ADLs 1 and

4), which may be, at least in part, due to our decision of averaging over multiple grid-cells to generate the predictive features

(see section 2.2). However, we have tested taking the 90th percentile instead of the average over the grid cells, but this lead to

similar frequencies being predicted for ADLs 2 and 3 (not shown).

6 Hindcasting avalanche danger (1970-2023)410

Figure 7 shows the 1970-2023 hindcast of the binary-case avalanche activity (BCA) in the Nord-Troms region. The figures

for the other regions are presented in the supplementary information (Fig. S10). The BCA here refers to the number of days
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Figure 5. Confusion matrices for the random forest classification with respect to the unbalanced test data for (a) the binary case with binary-

case levels (BCL) and (b) the 4-level case with avalanche danger levels (ADL). The values on the diagonals correspond to the recall scores

shown in Tables 5 and 6, respectively. For the confusion matrices with respect to the balanced test data see Fig. S9 in the supplementary

information. For the corresponding confusion matrices of the artificial neural network see Fig. S1.
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Figure 6. Frequencies of occurrence of (squares) predicted and (circles) test-data danger levels for the (left) binary case with binary-case

levels (BCL) and (right) 4-level case with avalanche danger levels (ADL). Shown are both the (black) unbalanced and (gray) balanced data.

For the corresponding class frequencies of the artificial neural network see Fig. S2.

per season with a BCL of 1. While the evolution of BCA is not the same in the different regions, there are strong similarities

regarding certain features, which may be observed in Fig. 7 and which are briefly summarised in the following. There is little

to no trend in the full-season avalanche data from 1970 to 2023 (see Table S6 for linear trends). However, there is a phase of415

high BCA in the 1990s, mostly due to high BCA in winter (December through February) since the spring (March through May)

BCA generally varies less. We note that the increase in BCA in the 1990 is consistent with a simultaneous rise in avalanche

activity in Iceland (Keylock, 2003). The phase of high BCA in the 1990s is accompanied by an increase in BCA variance (full

season), with a considerable subsequent decrease in variance in 2000-2010, increasing slightly again after 2010. The BCA

variance before 1990 is mostly due to spring BCA, as little variance is evident for winter BCA in this period. In the 1990s the420
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Figure 7. Binary-case avalanche activity (BCA), i.e., the days with level 1 in the binary case, in Nord-Troms for the full season (solid), the

winter (dashed), and the spring (dotted) for 1970 to 2023. The thin lines correspond to annual data and the thick lines represent a 7-year

rolling mean. See Fig. S10 in the supplementary information for the other regions.

variance in winter and spring appears to be in phase, causing the strong full-season BCA variance. However, in general, spring

and winter BCA change in opposite ways over time. In spring there is a small overall increasing trend in BCA, while there is a

small decrease in winter. For most of the regions, the spring trends are significant on the 5 % level, while the winter trends are

less significant (see Table S6 in the supplementary information).

One of the most prevalent features of the BCA hindcast is the peak of winter BCA around 1990 in the 7-year rolling mean425

which is due to a phase of exclusively high BCA in these years. This is remarkable, since this period is known for exhibiting

exceptionally high index values of the North Atlantic Oscillation (NAO; see, e.g., Hurrell, 1995; Wanner et al., 2001) as well as

of the Arctic Oscillation (AO; see, e.g., Thompson and Wallace, 1998). The NAO is a measure of the sea-level pressure (SLP)

difference between the Icelandic Low and the Azores High and is one of the most well-established climate patterns influencing

European climate (e.g., Hurrell, 1995; Wanner et al., 2001)9. The AO may be viewed as an extension of the NAO to the whole430

Northern Hemisphere and interpreted as the surface signature of modulations of the polar vortex at higher elevation (Wanner

et al., 2001; Thompson and Wallace, 1998, 2001)10.

Many studies relate the NAO/AO to the weather conditions in Europe, especially in winter (see, e.g., the review by Wanner

et al., 2001). The NAO has also been related specifically to precipitation in northern Europe, including northern Norway, e.g.,

by Uvo (2003). This study found that winter precipitation in the Troms region exhibits correlation coefficients with the NAO435

index of up to 0.5-0.6 (see her Fig. 4). Uvo (2003) also notes that changes in precipitation due to NAO changes are connected to

wind and topography. That is, stronger westerly winds induced by a higher NAO index are intercepted by the mountains in the

proximity of the Norwegian cost, inducing precipitation there. However, she observes that since the westerly winds generated

9The NAO index used here corresponds to the index by Hurrell (1995) which can be downloaded from https://climatedataguide.ucar.edu/climate-data/

hurrell-north-atlantic-oscillation-nao-index-station-based.
10The AO data was downloaded from: https://www.climate.gov/news-features/understanding-climate/climate-variability-arctic-oscillation.
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Figure 8. (a) Annual winter hindcast of binary-case avalanche activity (BCA, red) and Arctic Oscillation (AO) index (black) for Nord-Troms.

(b) Correlation coefficients of full-season, winter, and spring BCA with AO index for all regions. (c) and (d) are the same as (a) and (b),

respectively, but for 7-year rolling means. Black and gray colours in (b) and (d) indicate p values smaller and larger 0.05, respectively, based

on a Wald test with a t distribution.

by the Icelandic Low and the Azores High do not reach northern Norway directly, this region is only “intermediately influenced”

by the NAO. Consistently, Rogers (1997) found that North Atlantic storm activity (see also Alexandersson et al., 2000), which440

likely impacts wind and precipitation in northern Europe, is more strongly influenced by low-frequency SLP anomalies in

the extreme north-eastern Atlantic than by the NAO. This appears to fit the findings of Thompson and Wallace (2001), who

showed that there is an increase in variance of the North Atlantic storm track associated with a high AO index, meaning that

more storms reach the far north, inducing stronger winds and more precipitation there. At low AO index, conditions correspond

more to blocking events, preventing storms from reaching further north. Note that the AO index is better correlated with Arctic445

SLP than the NAO index (Fig. S11).

To the authors’ knowledge, the only studies trying to relate the NAO directly to avalanches in Europe are Keylock (2003),

Jomelli et al. (2007), García et al. (2009), and García-Sellés et al. (2010). The latter two investigated avalanche activity in

the Pyrenees (north-eastern Spain) and found a negative correlation. Conversely, Jomelli et al. (2007) found no correlation of

avalanche activity and NAO in the French Alps. Finally, Keylock (2003), investigated avalanche activity in Iceland, hence in a450

location more closely related to our region of interest than the other three studies. He tentatively concluded that while the NAO

may not affect avalanche size distribution, a positive phase of the NAO likely increases avalanche activity.

Consistent with Keylock (2003) and the discussion above regarding the influence of the NAO and AO on northern Nor-

wegian weather, we find that the northern Norwegian BCA is correlated with both NAO and AO, but more so with the latter

(compare Figs. 8 and S12). The correlation is particularly strong for 7-year rolling means of both quantities, although there is455

considerable variation across the five different regions (Figs. 8d and S13). Notably, Figs. 8b, d, S13, and S14 reveal that while

the correlations for annual means are not particularly strong (R=0.35-0.45), they are more consistent across regions than for
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Figure 9. Binary-case avalanche activity (BCA, red), 3-day mean wind speed (w3, orange), and 3-day sum of new snow (s3, blue) in Nord-

Troms and Arctic Oscillation (AO) index (black).

the 7-year rolling means (R=0.4-0.8), at least in the winter months (December through February). Furthermore, comparing the

lead-lag correlations in Figs. S13 and S14 it appears that the clearest correlation between BCA and AO is in the winter months,

with a singular peak at AO-lag year 0 for both annual and 7-year rolling means. In the spring months (March through May)460

there is more variation across regions and while there are correlation peaks at AO-lag year 0, there are further peaks at lead and

lag year 4 in the annual means. Thus, we concentrate our further correlation analysis on the winter months.

The 7-year rolling mean time series of winter BCA and AO index show the strong peak in both quantities in the 1990s. Both

BCA and AO index decrease subsequently, but while the AO index increases again quite strongly after about 2010, the BCA

shows only a small increase. This development obtains in all regions except Indre Troms, where the BCA corresponds more465

strongly to the AO index (see also the high correlation of of BCA and AO index in this region shown in Fig. 8d).

Since the BCA is here fully determined by the meteorological conditions, we investigate the predictive features and their

correspondence with the AO index in the winter months. Figure 9 shows 7-year rolling means of BCA, AO index, and w3

and s3 for Nord-Troms. Note that one of the most important predictive feature in the binary case is wdrift3_3, which is a

combination of w3 and s3. We choose here to show both components, as the single parameter wdrift3_3 is more difficult to470

interpret and may obscure compensating variance of s3 and w3. It is evident that both features follow the AO index quite

closely, but while s3 increases with the AO index (with a slight lag) after 2010, w3 does not increase. The discrepancy in the

development after 2010 in s3 and w3 likely causes the slower increase in BCA predicted by the RF model. Thus, there is an

apparent “decoupling” of wind speed from the AO index after 2010, causing a weakening of the correspondence of BCA and

the AO index in most regions. We note that the “decoupling” after 2010 is even stronger for the correspondence of BCA with the475

NAO index (see Fig. S12c). So far, we have no compelling explanation for this. However, it must be remembered that the AO

index is not the only climate mode influencing Scandinavian weather. We have investigated several more climate indices that

are important for northern European wind and precipitation and we find that the 7-year rolling mean of the Polar/Eurasian (PE)

pattern index shows apparently unprecedented low values in the decade 2010-2020, especially in winter (see Fig. S15). This is

remarkable since, as Panagiotopoulos et al. (2002) point out, the PE has a structure similar to the AO. The index representing480
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another important climate mode, the Scandinavian (SCA) pattern, exhibits consistently high values in winter around 2010

with a subsequent decrease (Fig. S16). A low PE pattern index and a high SCA pattern index have been associated with a

weaker polar vortex, likely weakening the westerly winds in the Arctic (e.g., Gao et al., 2017; Panagiotopoulos et al., 2002).

Consistently, a higher SCA index has also been associated with weakened storm-track activity over Northern Europe (Bueh

and Nakamura, 2007). Hence, the anomalous states of other climate modes may cause the recent apparent “decoupling” of485

the AO and northern Norwegian wind speed, and thus, the weakening of the correspondence of the AO index with northern

Norwegian BCA.

The BCA hindcast with the ANN model is presented in text S3 in the supplementary information. While the results are

generally similar we note that the apparent “decoupling” of the BCA from the AO in the last decade is weaker in the ANN-

based hindcast (see, e.g., Fig. S5 in the supplementary information). This casts doubts on the robustness of this result and490

indicates that the influence of the AO on avalanche activity in northern Norway is still uncertain.

7 Summary and conclusions

In this study we implement a machine-learning approach for purely data-driven statistical prediction of avalanche danger

level (ADL) based on gridded meteorological (NORA3) and snow (seNorge) information in northern Norway. Two avalanche

danger scales are considered: (1) the original ADLs (“4-level case”) and (2) the “binary-case levels” (BCL; “binary-case”)495

where ADLs 1 and 2 and ADLs 3 and 4 are aggregated to BCL 0 and BCL 1, respectively. For each case a random forest (RF)

classifier is optimised and predictive features are selected. The RF model accuracy is considerably higher for the BCLs (76 %)

than for the full ADLs (57 %), consistent with the frequent confusion of ADLs 1 and 2 and ADLs 3 and 4 in the latter case. The

accuracy in the 4-level case is comparable to or even higher than in some earlier studies (Brabec and Meister, 2001; Fromm and

Schönberger, 2022), but lower than in many others (Schirmer et al., 2009; Dekanová et al., 2018; Pérez-Guillén et al., 2022;500

Sharma et al., 2023; Blagovechshenskiy et al., 2023). We exploit the whole available NORA3 record to perform a hindcast of

the binary-case avalanche activity (BCA), which we define as the number of days per season with BCL 1. While there appears

to be no general trend there is noticeable variation over time, with a conspicuous peak in BCA in the 1990s, especially in the

winter months (December through February). We connect this peak with a well-known Northern Hemispheric climate mode

that has been shown to impact European climate, the Arctic Oscillation (AO). The BCA exhibits significant correlation with505

the AO, especially as a 7-year rolling mean.

Within the last decade, decadal prediction systems have shown an improvement of skill in representing and predicting AO

and European winters (e.g., Riddle et al., 2013; Scaife et al., 2014; Kang et al., 2014; Stockdale et al., 2015; Athanasiadis

et al., 2017, 2020). Given the here-found connection between BCA and AO, this is encouraging with respect to potential

predictability of at least the decadal tendency of avalanche activity in northern Norway. However, the indication that the510

strength of the connection between the BCA and the AO has weakened in recent years, potentially due to the influence of other

climate modes, means that the value of AO predictability for avalanche forecasting remains uncertain.
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An important advantage of a fully data-driven approach to predict avalanche danger and activity based on gridded weather/s-

now data is the potential to generate future projections of those metrics based on climate change scenario simulations (see, e.g.,

Castebrunet et al., 2014; Mayer et al., 2024). Such simulations are mostly conducted by global climate models (GCMs) with515

too coarse resolutions to be usable for avalanche prediction. Thus, regional downscalings are required to produce appropriate

data. For Norway such data are available via the Nordic Convection Permitting Climate Projections (NorCP; Lind et al., 2023).

In future work we plan to apply our machine-learning model to the NorCP data and generate BCA and ADL projections for

northern Norway. However, the likely importance of (regional) climate modes for the development of avalanche activity, as

described above, must be taken into account when considering future climate projections. It is not guaranteed that climate520

modes such as the AO are sufficiently represented in the GCMs and/or NorCP.

As of now the snowpack information for Norway is confined to data based on the simple snow model seNorge. Efforts are

currently under way in cooperation with the Norwegian Water Resources and Energy Directorate (NVE) to implement the

much more detailed model SNOWPACK to run based on gridded meteorological data. In future research we plan to use the

snow-stratigraphy information from SNOWPACK in our machine-learning approach to predict ADL and BCL/BCA. However,525

we note that results appear to be mixed when it comes to the impact of including SNOWPACK output in ADL prediction

machine-learning models: While Schirmer et al. (2009) found an improvement due to the inclusion of SNOWPACK data, the

results of Fromm and Schönberger (2022) suggested no improvement. Hence, the impact of the SNOWPACK information on

our model performance in Norway remains to be seen.

Finally, the ADLs as used here do not distinguish between the different avalanche problems. This likely makes the ADL-530

data noisy with respect to their relation to meteorological and snow data because different avalanche problems are caused by

different weather and snow conditions. Here we opt for the general ADL as it guarantees a larger data set and it aggregates

avalanche problems that may be related to similar weather conditions. However, in upcoming research we aim to disentangle

the different avalanche problems. The most feasible approach appears to be to select the most frequent avalanche problem to

ensure data availability to robustly train a statistical model and at the same time filter some of the “noise” due to the other, less535

frequent avalanche problems.

High-quality information on avalanche danger is of great importance as it enables stakeholders and people in general to make

well-informed decisions affecting their life and property. Our study represents an initial step towards automated avalanche

danger prediction in northern Norway that may be used to support and improve expert forecasts. As ongoing and future climate

change likely impacts avalanche characteristics, knowledge about potential future changes of these characteristics is valuable.540

Our methodology can be used to study future changes in avalanche danger and activity based on future-scenario climate-model

projections. This information may assist governments and stakeholders in planning of future infrastructure and organisation to

prepare for and adapt to environmental conditions in a changing climatic.

Code and data availability. The programming language Python was used to perform the data analysis and generate the figures. The logistic

regression and the decision tree were generated using the Python library scikit-learn (Pedregosa et al., 2011). The neural network was545
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generated with the help of the library Keras (Chollet et al., 2015). The maps were produced with the library Cartopy (Met Office, 2010 -

2024). The code will be made available upon publication.
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