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Abstract.  

 Snow density data are important for a variety of applications, yet, to our knowledge, there are no robust methods for 

estimating spatiotemporal varying snow density in the Arctic environment. The current understanding of snow density 

variability is largely limited to manual in situ sampling, which is not feasible across large domains like the Canadian Arctic. 

This research proposes a passive microwave retrieval algorithm for tundra snow density. A two-layer electromagnetic 5 

snowpack model, representing depth hoar underlaying a wind slab layer, was used to estimate microwave emissions for use in 

an inverse model to estimate snow density. The proposed algorithm is predicated on solving the inverse model at boundary 

conditions for the snowpack layer densities to estimate snow density within a plausible range. An experiment was conducted 

to assess the algorithm’s ability to reproduce snow density estimates from snow courses at four high arctic sites in the Canadian 

tundra. The electromagnetic snowpack model was calibrated at one site and then evaluated at the three other sites. Results 10 

from the calibration and evaluation sites were similar and the algorithm replicated the density estimates from snow courses 

well with absolute error values approaching the uncertainty of the reference data (±10%). The algorithm configuration appears 

best suited for estimating snow density conditions towards the end of the winter season. With more extensive forcing data (e.g. 

from global climate models) this algorithm could be applied across the tundra to provide information on snow density at scales 

that are not currently available. 15 

1 Introduction 

 There are numerous applications for which the quantification of snow density is important: for example, estimating snow 

water equivalent (SWE) for water resources (Venäläinen et al., 2021, 2023), modelling atmosphere-land interactions for energy 

balances (Gouttevin et al., 2012, 2018), and ecological monitoring of Arctic fauna (Martineau et al., 2022; Sivy et al., 2018); 

though, to the best of our knowledge, there is no robust method for estimating spatiotemporally-varying snow density in the 20 

Arctic. There are automated instruments to estimate snow density but they are not widely implemented, instead density is 

typical estimated by weighing a known volume of snow (Kinar & Pomeroy, 2015). This manual process is labour intensive 

and, as a result, sparsely distributed making the prediction of spatially distributed density estimates uncertain. In a remote 

environment, like the Canadian Arctic, comprehensive in situ sampling is not feasible due to logistical constraints, so large-

scale analyses involving snow density tend to rely on modelled estimates. Recent studies have shown that current snow density 25 
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products, from meteorological reanalysis or detailed snow models, are not adequate for use in Arctic environments. The snow 

scheme in the ERA5-Land reanalysis model overestimates snow depth and underestimates density, by considerable margins, 

in high-latitudes (Cao et al., 2020, 2022). Similarly, detailed snow models (i.e. Crocus and SNOWPACK) cannot estimate the 

expected vertical density profile in the Arctic (Barrere et al., 2017; Domine et al., 2019). Despite its intrinsic importance in 

Earth systems, snow density variability is currently not well understood on large spatiotemporal scales. 30 

 One possible approach to estimate snow density at the regional scale (i.e. 102-104 km2; Woo, 1998) is from satellite-based 

remote sensing. Satellite passive microwave (PM) radiometry offers near-daily coverage of the Northern Hemisphere, under 

most weather conditions, with a data record spanning back to 1978. Emitted microwave energy can pass through a snowpack 

unattenuated at lower frequencies or is attenuated at higher frequencies. For attenuated emission, the primary microwave 

interaction within a dry snowpack is volume scattering which is controlled by the snowpack properties (i.e. snow depth, 35 

density, temperature, and grain size radius; Chang et al., 1982). PM snow emission retrievals using a frequency difference 

approach (ΔTb) – the subtraction of higher frequency channel Tb (volume scattering dominated) from a lower-frequency Tb 

channel (subnivean emission dominated) – have been the basis of empirical representations of PM estimates (e.g. Chang et al., 

1987) and more sophisticated assimilation-based retrieval schemes (e.g. Takala et al., 2011). Historically, snow mass has been 

estimated with spaceborne (PM) radiometry through retrieval algorithms focusing on snow depth (Kelly et al., 2003, 2019; 40 

Takala et al., 2011; Tedesco & Jeyaratnam, 2016). In theory, the principles behind those existing retrieval schemes could be 

exploited to estimate snow density rather than depth. 

In general, the parameterization of snow density in has been simplified in large-scale passive microwave SWE estimation 

models (Mortimer et al., 2022). There is a lack of snow density observations at the necessary scales to constrain density 

parameterization, primarily because of the difficult in acquiring spatially distributed in situ observations (Sturm et al., 2010). 45 

As a result, snow depth has been the focus of most analyses regarding SWE. In some cases, snow density is kept constant 

across the domain (e.g. Luojus et al., 2021; Takala et al., 2011) or conservative estimates are taken from empirical models of 

snow density evolution over time (e.g. Kelly et al., 2003). However, such a simplified representation of snow density may not 

adequately represent variability across the large domains those models are designed to cover. 

 In this study, an experiment was conducted to evaluate the potential use of satellite-based PM observations and existing in 50 

situ meteorological networks to estimate snow density in the high Arctic tundra biome. Snow density estimates from the 

proposed algorithm could provide a notable benefit over existing snow density products, which do not account for the proper 

snow densification schemes relevant to the tundra environment (Cao et al., 2022; Domine et al., 2016). Instead, the algorithm 

would be informed by independent PM observations that provide context on snow density conditions and not rely on the 

parameterization of specific densification schemes. Thus, estimates from this approach could fill a gap in the understanding of 55 

snow density variability in remote areas that are unsuitable for in intensive in situ sampling and where current snow density 

models are not appropriate. 
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2 Study Area 

 Four automatic weather stations (AWS) were identified across a latitudinal range in the Canadian tundra for this experiment 

(Fig. 1); statistical summaries for each site are provided in Table 1. These sites were specifically selected because they are 60 

located in the high Arctic tundra environment and collocated with manual in situ sampling sites (described in Section 3.2). The 

tundra environment was chosen to develop this prototype snow density retrieval algorithm for the following two key reasons 

that tend to simplify the retrieval process. First, terrain effects should be minimal compared to those found in more 

topologically complex landscapes like alpine environments (Tong et al., 2010). Second, forest cover attenuation effects (Li et 

al., 2020) are minimized in tundra regions which are characterized by sparse, short vegetation (Marsh & Pomeroy, 1996). 65 

  

3 Data 

3.1 Model Forcing Data 

 PM radiometry data were the main forcing for the proposed snow density retrieval algorithm. Radiometry data were 

acquired from the Advanced Microwave Scanning Radiometer Earth Observing System (AMSR-E) Level-2A product gridded 70 

to a 25x25 km Equal-Area Scalable Earth (EASE) grid (Ashcroft & Wentz, 2013), spanning eight winter seasons (2003-2011) 

while the instrument was functional (reference snow density data were not available for the 2002-03 season). AMSR-E 

observations for each station were extracted from an adjacent EASE grid cell to the AWS to minimize water fraction in 

observation scene due to their proximity to the coast. Nighttime observations from the descending orbit track (~1:30 am local 

time at the equator) were used so snow conditions would be more likely to be cold and dry for optimal microwave retrievals 75 

(Derksen et al., 2005). The 18.7 and 36.5 GHz vertically-polarized radiometer channels (hereafter 19 and 37 GHz, respectively) 

were used to estimate ΔTb in the forward model. 

Table 1 – Statistical summaries of study sites: average AWS data 

(Jan-Mar) and CanSWE reference snow density data.  

 

 

Site 

 

 

Latitude 

AWS Data CanSWE Density Data (kg/m3) 

Avg. 

Temp (C) 

Avg. 

SD (cm) 
n Avg. Std. Min/Max 

Alert 82°31’ -30.2 31.7 64 356.5 49.9 147/440 

Eureka 79°59’ -35.2 17.4 80 329.4 55.2 143/436 

Resolute 74°43’ -29.4 19.4 56 366.1 55.2 243/485 

Cambridge 

Bay 
69°06’ -30.6 28.4 229 323.9 45.2 185/452 

Figure 1 – Study sites (AWS), distributed across the 

high Arctic tundra in Nunavut, Canada. 
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 Meteorological measurements, acquired from the Environment and Climate Change Canada (ECCC) AWS network (ECCC 

& ClimateData.ca, n.d.) were also used for model forcing. The electromagnetic snowpack model was parameterized with AWS 

data, which required daily measurements of snow depth and air temperature as prior snow conditions. AWS data were the 80 

limiting factor in this experiment because the AWS network is sparsely distributed in northern Canada limiting potential study 

sites.  

3.2 In situ Reference Data 

 The curated ECCC Canadian Historical Snow Water Equivalent dataset (CanSWE; Vionnet et al., 2021) provided in situ 

snow density data for comparison with algorithm estimates. CanSWE included sampling locations collocated with AWS sites 85 

which allowed for direct comparisons of estimated and sampled snow density. Snow density data in CanSWE (considered in 

this study) were collected with ESC-30 SWE tubes along 5-10 point snow course transects spanning 150-300m, aggregated 

into bulk estimates of snow density. A ten percent uncertainty range was applied to the snow density data in the reference 

dataset because of uncertainties inherent to manual snow density sampling (Conger & McClung, 2009; López-Moreno et al., 

2020). Specific information about sampling procedures was not available for the individual sites in the CanSWE dataset (e.g. 90 

where the snow course is situated relative to the AWS was unknown).  

 CanSWE snow density data from four manual sampling sites were used in the development of this algorithm. Those data 

were chosen specifically because of their location in the high Arctic tundra with relatively high temporal sampling frequency. 

The reference dataset was limited with respect to the algorithm configuration (described in Section 4.2). A number of yearly 

AWS forcing datasets were deemed unsuitable for algorithm forcing and were removed from the analysis. One winter season 95 

at the Eureka site (2008-09) had insufficient snow accumulation to permit PM retrievals (i.e. <10 cm) and three seasons each 

for Alert (2007-08, 2009-10, and 2010-11) and Resolute (2003-04, 2004-05, and 2006-07) where snow accumulation 

trajectories reported by the AWS were starkly different from the in situ snow depth samples in CanSWE. Individual CanSWE 

snow density samples were removed under three conditions: if they were out of the domain of algorithm estimates (i.e. 150-

450 kg/m3, described in Section 4.2), sporadic observations that did not fit temporally with the seasonal trajectory, and high 100 

densities late in the season during ablation when the snowpack would likely be in a wet state inhibiting microwave emissions.  

4 Methods 

4.1 Electromagnetic Model 

 The Snow Microwave Radiative Transfer model (Picard et al., 2018), configured with the Dense Media Radiative Transfer 

(DMRT) electromagnetic model, was used in this study. The physically-based forward modelling approach required the 105 

snowpack to be parameterized, so the relevant characteristics needed to be quantified. A two-layer snowpack model was 

configured to account for the presence of depth hoar underneath a slab layer to best represent the microwave signature of 
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tundra snow (Hall, 1987; Saberi et al., 2017). Upon initial deposition the snowpack would likely be in a homogenous state, 

with one layer, but that situation was not considered in this approach. The strong environmental controls present in the tundra 

contribute to the development of wind slab and depth hoar snow layers quickly after deposition (Benson & Sturm, 1993; Sturm 110 

& Holmgren, 1998), and algorithm retrievals were performed after 10 cm of snow had accumulated so the pack would be 

unlikely to be in the initial homogenous state. The snow depth forcing variable was prescribed by dividing the total snow depth 

at the AWS into the relative depths for the two layers using a fixed 1:2 ratio of depth hoar to slab layer thickness (Saberi et al., 

2017), representative of high Arctic tundra snow on a regional-scale (Derksen et al., 2014; Meloche et al., 2022). Similarly, 

the minimum daily air temperature at the AWS was used as a surrogate for snow temperature and was prescribed directly to 115 

each snow layer.  

 The microstructure model in SMRT (sticky-hard-spheres) required estimates of the effective radius of ice grains in the 

snowpack which are not acquired by operational AWS measurements. The effective grain radius model from Kelly et al. (2003) 

was modified for use with the two layer snowpack model – Sturm & Benson’s (1997) kinetic “lower” grain growth model was 

applied to the depth hoar layer and a slow, constant growth rate was applied to the upper wind slab layer to represent 120 

equilibrium growth. The grain growth model required parameterization of the minimum and maximum grain radius which 

were determined through a calibration routine (see Section 3.5). 

 The electromagnetic model used in this study included simplified substrate and atmospheric components. Given the cold 

temperatures of the study area, the substrate was assumed to consist of frozen soil, so the effects of dielectric permittivity and 

roughness should be negligible when estimating ΔTb (Kelly et al., 2003). The substrate composition was parameterized to 125 

represent cryosolic soil, the predominant soil type found in the Canadian Arctic (Tarnocai & Bockheim, 2011). AWS 

observations of minimum daily temperature +5C were used to parameterize the substrate temperature because of the insulative 

properties of snow (Benson & Sturm, 1993). Atmospheric contributions were not considered. A full list of model parameters 

is provided in Table 2. 

Table 2 – Electromagnetic model parameterization.  130 

Snowpack Model Substrate Model 

Parameter Value Parameter Value 

Electromagnetic 

Model 

Dense Media Radiative Transfer based on Quasicrystallin 

Approximation with coherent potential (Tsang et al., 2000) 

Composition Cryosolic soil as described by Tarnocai & Bockheim (2011):  

Sand - 75%, Clay – 8%, Dry matter – 1490 kg/m3 

Snow Depth AWS snow depth portioned in 1:2 ratio of depth hoar to wind 

slab (Saberi et al., 2017) 

Temperature AWS minimum daily 2m air temperature + 5C 

Temperature AWS minimum daily 2m air temperature Permittivity Model Dobson et al. (1985) 

Grain Radius Modified growth model from Kelly et al. (2003) Roughness Flat surface (i.e. no surface roughness) 

Stickiness Non-sticky spheres (i.e. infinite stickiness) Moisture Content <1% 

Liquid Water Content 0%  

Salinity 0% 
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4.2 Snow Density Retrieval Algorithm 

 The GlobSnow grain size estimation procedure – using snow depth measurements from AWS to optimize the effective 

snow grain size parameter in the emission model (Pulliainen, 2006; Takala et al., 2011) - was modified to produce estimates 

of snow density. PM retrievals of snow density were conducted at each AWS site, where meteorological conditions dictated 

when retrievals were performed. A minimum snow depth of 10 cm was imposed for algorithm retrievals because of the 135 

transparent nature of shallow snow to microwave emissions (Hall et al., 2002). Similarly, algorithm retrievals were not 

conducted when AWS air temperatures were above freezing because of the likelihood of liquid meltwater in the snowpack 

attenuating microwave emissions (Foster et al., 1984). With the AWS observations prescribed to the electromagnetic model 

an inverse modelling approach was applied to optimize the snow density parameters. The forward model was inverted by 

minimizing the cost function (J): 140 

𝐽(𝜌𝑠𝑙𝑎𝑏 , 𝜌ℎ𝑜𝑎𝑟) = (𝛥𝑇𝑏𝑠𝑖𝑚(𝜌𝑠𝑙𝑎𝑏 , 𝜌ℎ𝑜𝑎𝑟) − 𝛥𝑇𝑏𝑜𝑏𝑠) 2  (1) 

representing the vertically polarized 19 and 37 GHz spectral difference in the AMSR-E observation (𝛥𝑇𝑏𝑜𝑏𝑠) and the simulated 

SMRT signature at the same channels (𝛥𝑇𝑏𝑠𝑖𝑚), given the prescribed wind slab and depth hoar layer densities (𝜌𝑠𝑙𝑎𝑏  and 𝜌ℎ𝑜𝑎𝑟 , 

respectively). Algorithm estimates were smoothed with a 5-day moving average to address noise in the radiometry data. 

 The solution to the two-layer snowpack model presented was imprecise because different layer density combinations could 145 

produce the same predicted ΔTb, resulting in a system with no global minima. The practical impact of this equifinality issue 

was that the algorithm may be confronted by seemingly equally valid but different layer density combinations, producing the 

same microwave signature. Without additional information there was no suitable way to identify the optimal layer density 

combination, so the retrieval algorithm was designed to solve for all DMRT-plausible layer density combinations for a given 

observation scene to address equifinality in the inverse model. 150 

 To constrain the modelled layer density estimates to a plausible range, boundary conditions were established to limit the 

parameter space in which the algorithm could search for solutions to the inverse model. A lower boundary was defined based 

on the strong environmental controls present in the tundra that result in a characteristic wind slab snow layer overlaying less 

dense depth hoar (Benson & Sturm, 1993). The wind slab layer should be denser than the depth hoar layer, so all parameter 

combinations where 𝜌𝑠𝑙𝑎𝑏 <  𝜌ℎ𝑜𝑎𝑟  were discarded, and the lower boundary was situated where the two layers had equal snow 155 

density values. The upper boundary for the model was defined based on the behaviour of microwave interactions in DMRT. 

In DMRT theory (in a non-sticky configuration, as applied here) the scattering coefficient for 37 GHz peaks at snow density  

of 150 kg/m3 and decreases until a volume fraction of 50% (Picard et al., 2013). Thus, the domain of each layer was limited to 

densities between 150-450 kg/m3 to ensure consistent behaviour in the electromagnetic snowpack model, and the upper 

boundary was situated where either layer was at the edge of that domain. An important aspect of the retrieval algorithm was 160 

to exploit how the various minima on the cost surface (defined by J) were positioned throughout the parameter space. Figure 

2 shows an example of how the positions of minima formed a valley transecting the parameter space. Therefore, the DMRT-

https://doi.org/10.5194/egusphere-2024-2928
Preprint. Discussion started: 7 October 2024
c© Author(s) 2024. CC BY 4.0 License.



7 

 

 

plausible layer density combinations were the set of layer density combinations situated along a straight line connecting the 

solutions at the two established boundary conditions for the inverse model. It should be noted that under some instances, the 

"valley” intersected with the upper boundary related to the minimum depth hoar density (i.e. left axis in Fig. 2), though the 165 

situation shown in Fig 2. (intersecting the upper axis) was more common. 

Figure 2 – Example parameter space (i.e. depth hoar and wind slab layer density combinations), showing upper and lower 

boundary conditions for snowpack model densities, inverse solutions at the boundaries, and DMRT-plausible range between them. 

The surface is defined by cost function (J in Eq. 1) where darker (lighter) shades of blue represent lower (higher) cost.  

 The range of DMRT-plausible snow densities raised the question of how to evaluate the algorithm estimates against the 170 

reference data. A heterogeneity (H) parameter was introduced into the algorithm to estimate densities for the two snow layers 

and reduce the DMRT-plausible snow densities to a single estimate of bulk snow density – H=0.00 at the lower boundary 

solution and H=1.00 the upper boundary solution (i.e. the least and most heterogenous solutions, respectively). There did not 

appear to be any relationship between forcing variables and where the in situ snow density samples were situated within the 

DMRT-plausible range (and stratigraphic data were not available in the reference dataset), so H was assigned a fixed value 175 

determined through a calibration routine. Ultimately, the bulk snow density estimated with H was treated as the final algorithm 

estimate with uncertainty defined by the DMRT-plausible range.  

4.3 Calibration and Evaluation Procedure 

 Some algorithm parameters could not be based on observations and instead needed to be determined through a calibration 

procedure. The calibration procedure consisted of two stages to identify the optimal algorithm configuration to be applied to 180 

all sites over the study period (i.e. 2003-11). First, the values for the minimum and maximum radii in the grain growth model 
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(described in Section 4.1) were adjusted to produce the greatest overlap between the range of DMRT-plausible snow density 

estimates and the in situ reference samples, with an overlap metric: 

𝑜𝑣𝑒𝑟𝑙𝑎𝑝 =
1

𝑛
∙ ∑

|{𝜌𝑒𝑠𝑡(𝑡)}∩{𝜌𝑜𝑏𝑠(𝑡)}|

|{𝜌𝑒𝑠𝑡(𝑡)}|
𝑛
𝑡=1   (2) 

where {𝜌𝑒𝑠𝑡(𝑡)} is the set of DMRT-plausible estimated snow densities and {𝜌𝑜𝑏𝑠(𝑡)} the set of the corresponding CanSWE 185 

density sample with a ±10% uncertainty range, at time t. Thus, the overlap metric describes the proportion of the DMRT-

plausible snow density range that intersected the uncertainty range of the in situ samples, averaged over n time steps. Second, 

the value for H (described in Section 4.2) was determined by converting the DMRT-plausible algorithm estimates, from the 

first step, to minimize the mean absolute percentage error (MAPE) between snow densities and the reference data. MAPE was 

chosen for this purpose, rather than absolute or squared error, because of the heteroscedastic nature of the uncertainty in the 190 

reference dataset.  

 The Cambridge Bay AWS site was chosen for the calibration procedure because there were many more CanSWE data 

available compared to the other AWS sites (Table 1), as it had a shorter sampling interval and forcing data for all winter 

seasons in the study period. The other three AWS sites were then used to evaluate the calibrated algorithm configuration. At 

each site, algorithm snow density estimates were evaluated against the reference snow density samples using the same metrics 195 

as in the calibration stage (i.e. overlap and MAPE); bias, root mean square error (RMSE), and correlation (r) were also reported 

as indicators of algorithm performance. MAPE was treated as the primary measure of absolute accuracy of algorithm estimates; 

if MAPE was within the uncertainty range of the in situ samples (±10%) then snow density estimates from the algorithm could 

be comparable to those collected with snow courses.  

Table 3 – Algorithm performance metrics relative to CanSWE reference samples (mean normalized values shown in parentheses). 200 
Stage Site n Overlap (%) MAPE (%)  Bias (kg/m3;%) RMSE (kg/m3;%) Correlation 

Calibration Cambridge Bay 229 39.6 13.3 9.0 (2.8) 49.6 (15.3) 0.426 

Evaluation 

Alert 64 42.6 14.0 32.4 (9.1) 56.1 (15.7) 0.547 

Eureka 80 34.7 14.3 -16.5 (-5.0) 63.8 (19.4) 0.382 

Resolute 56 36.5 13.5 25.6 (7.0) 54.4 (14.9) 0.510 

5 Results 

5.1 Calibration Results – Cambridge Bay 

 The calibration procedure was applied at the Cambridge Bay site where the algorithm was run for each winter season and 

the results aggregated to identify the optimal parameter configuration. Performance metrics for the calibrated algorithm are 

reported in Table 3. During the first stage of the calibration procedure, the optimal values for the minimum and maximum radii 205 

in the grain growth model were 0.30 and 0.90 mm, respectively, and the DMRT-plausible range of estimates overlapped 39.6% 

with the reference data. In the second calibration stage the optimal value for H was 0.465 and the final estimates of bulk snow 

density had a MAPE of 13.3%. Over the study period, the algorithm overestimated snow density at Cambridge Bay by a 
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relatively small amount (9.0 kg/m3; 2.8%) and demonstrated a moderate positive correlation (0.426) with the reference data. 

Although, performance over the study period was not consistent and the algorithm configuration performed better during some 210 

years than others (Fig. 3). In some cases there was considerable overlap between the algorithm estimated DMRT-plausible 

snow densities and the reference data and MAPE within reference uncertainty (Fig. 3a). In other cases, algorithm estimates 

were less skilful earlier in the season then estimates converged closer to the reference samples later on (Fig 3b&c). Overall, 

calibration results appeared to replicate density estimates from snow courses well with MAPE of final snow density estimates 

(converted with H) approaching the level of reference uncertainty and similar magnitudes of algorithm (DMRT-plausible 215 

range) and reference uncertainty. 

 5.2 Evaluation Results – All Other Sites 

Performance metrics for the evaluation sites were comparable to those achieved at Cambridge Bay during the calibration 

procedure (Table 3). Overlaps of DMRT-plausible snow density ranges with the reference data at evaluation sites were similar 

to Cambridge Bay, with slightly higher overlap at Alert and lower values for the other two sites. Similarly, the MAPEs of final 220 

snow density estimates, converted with H, at evaluation sites had slightly higher values than Cambridge Bay. Like Cambridge 

Bay, all sites displayed moderate positive correlations with the reference data, and biases had similar magnitude to Cambridge 

Figure 3 - Examples of algorithm outputs at Cambridge Bay (a-c) and Eureka sites (d-f): a/d) better, b/e) moderate, c/f) worse 

performance. For each algorithm run, top panel shows algorithm snow density estimates and reference CanSWE snow density, and 

bottom panel shows AWS snow depth for algorithm forcing and reference CanSWE snow depth (legend for all panels shown in d). 
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Bay (i.e. <10%). Like during calibration, estimation skill was not consistent over the study domain/period and the algorithm 

displayed varying levels of performance during different winter seasons throughout the study period. At Eureka, for example, 

there were algorithm runs where estimates were very skilful (Fig 3d), and others where estimates did not agree with the 225 

reference data for parts of the winter season (Fig 3e&f). 

6 Discussion  

6.1 Seasonal Trends in Algorithm Performance 

 From the algorithm performance metrics in Figure 3 and Table 4, specifically those from the Eureka site, the estimation 

skill improved over the course of a given winter season. In some winter seasons at Eureka the algorithm underestimated snow 230 

density early in the season or did not reflect early season variations in snow density (e.g. Fig 3b&c). However, algorithm 

estimates consistently improved over time and most algorithm estimates were close to the in situ references samples by the 

end of the algorithm run at the end of the season (i.e. within ±10%). To quantify this behaviour the reference dataset was 

partitioned into three seasonal sets – October-November-December (OND), January-February-March (JFM), and April-May-

June (AMJ) – and overlap, MAPE, and bias calculated for each set shown in Table 4. Algorithm estimates at Eureka in OND 235 

had low overlap with the in situ samples (17.2%) and were low biased (-51.2 kg/m3; -18.2%) with relatively high MAPE 

(19.4%). Performance metrics improved in JFM for Eureka where overlap was more than double that of OND and MAPE and 

bias reduced. Performance metrics further improved in AMJ with >50% overlap and MAPE was within the uncertainty range 

of the reference samples. These results from Eureka suggest the algorithm configuration is less sensitive to early season snow 

conditions and it could instead be better suited for retrievals later in the winter season. The behaviour of increasing algorithm 240 

estimation skill over the course of the winter season was apparent at the other sites but was less pronounced than at Eureka 

(Table 4). 

Table 4 – Seasonal performance metrics for algorithm snow density estimates relative to CanSWE, for October-

November-December (OND), January-February-March (JFM), and April-May-June (AMJ).  

Site 
Overlap (%) MAPE (%) Bias (kg/m3 [%]) 

OND JFM AMJ OND JFM AMJ OND JFM AMJ 

Alert 19.8 54.5 51.8 25.1 9.0 11.3 35.8 (11.9) 24.4 (6.6) 39.6 (10.4) 

Eureka 17.2 35.8 52.4 19.4 15.6 9.2 -51.2 (-18.2) -20.1 (-6.0) 8.8 (2.6) 

Resolute 33.2 43.1 30.4 15.2 13.3 12.4 26.7 (7.7) 29.1 (8.0) 19.1 (4.9) 

Cambridge Bay 22.6 49.2 48.2 19.0 10.9 11.0 7.8 (2.6) 3.0 (0.9) 19.9 (5.8) 

 The tendency of improved seasonal algorithm estimation skill did not appear to be related to seasonal differences in forcing 245 

data (i.e. situations with shallow snow depth or near freezing air temperature) and instead could be better explained by the 

algorithm configuration. The information available about tundra snow composition from field campaigns is biased towards the 

end of the winter season, typically occurring in March or April  (e.g. Derksen et al., 2014; Meloche et al., 2022; Rees et al., 

2014). Thus, it follows the configuration of the snowpack model would be most appropriate for the conditions towards the end 
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of the season, and the snowpack properties could be different early in the season (specifically the layer thickness ratio). 250 

Additionally, the estimates from the proposed algorithm are synoptic, representing general patterns over regional scales 

(25x25km2), whereas the reference data from CanSWE covered more localized areas (snow courses along 150-300m transects). 

Snow distribution patterns in the high Arctic are terrain dependent and there can be considerable variability within a PM 

satellite footprint (Woo, 1998), so it was difficult to interpret the reference data in detail without specific information about 

where they were collected within the satellite observation scene. 255 

6.2 Evaluation of Algorithm Configuration 

  Performance metrics for all sites (calibration and evaluation) were very similar suggesting the configuration of the 

electromagnetic snowpack model was appropriate for the high Arctic tundra environment, and the model calibration was not 

over fit to the Cambridge Bay site. The algorithm configuration appeared most appropriate towards the end of the season with 

considerable improvements at each site over the course of the winter season. However, there were winter seasons where 260 

algorithm estimates matched the reference data much better than others (Fig. 3&4). The radius of snow grains has a large effect 

on microwave emissions (Chang et al., 1982; Rango et al., 1979) and some of the year-to-year variability in algorithm 

agreement could be explained by the generalized calibration procedure for the snow grain growth model. The grain growth 

model parameters were the same for the whole study period, when there were likely different conditions between winter 

seasons and sites. For example, algorithm estimates for Cambridge Bay 2006-07 (Fig. 3c) displayed relative high correlation 265 

with the reference data (0.693) but with a large bias (53.9 kg/m3; 17.5%) and high MAPE (23.6%); in this case, the grain radius 

estimates may have been too large and smaller values could bring snow density estimates closer to the reference samples. 

Overall, the algorithm configuration seemed suitable, given the similar results at the calibration and evaluation sites, but 

improvements could be made in how the microstructure was parameterized to better represent varying conditions and make 

algorithm performance more consistent. 270 

 There was one winter season at the Cambridge Bay site where the trajectory of algorithm estimates in the early winter 

season did not match the expected densification pattern. Intuitively snow should densify over time, yet during the 2005-06 run 

the algorithm estimated denser snow at the beginning of the winter season, with estimates decreasing over the early season 

rather than increasing (Fig 3b). That behaviour could be explained by the presence of water bodies around Cambridge Bay 

which are known to influence PM observations in the tundra environment when using the ΔTb modelling approach (Derksen 275 

et al., 2010). The generalized substrate representation in the electromagnetic model did not consider water bodies in the 

observation scene and could be modified to include water/lake ice to improve algorithm performance. However, the similar 

overall performance of the algorithm at Cambridge Bay (with many water bodies in the scene) and the evaluation sites (with 

virtually no water bodies in the scene) suggested the ΔTb approach was suitable. 

 The bulk snow density reference samples available in CanSWE did not allow for the densities of the individual snow layers 280 

to be calibrated, nor a thorough examination of the individual density values defined by the H parameter. Instead, density 
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measurements from Derksen et al.’s (2014) field campaign in April 2011 were used to provide some context about algorithm 

estimates for the two snow layers. Derksen et al. performed intensive snow surveys near Eureka (~50x50 km area) during that 

month and found the average wind slab layer and depth hoar layer densities to be 400 and 250 kg/m3, respectively (combined 

for a bulk density of 341 kg/m3, very close to the CanSWE Eureka April snow density of 344 kg/m3). Algorithm density 285 

estimates for the two snow layers derived with H [DMRT-plausible range] over the same period at Eureka (Fig 4b) were found 

to be comparable to those measured by Derksen et al. with wind slab and depth hoar densities of 380 kg/m3 [320, 450] and 

295 kg/m3 [266, 320], respectively (combined for a bulk density of 352 kg/m3 [320, 389]). So, the algorithm estimated bulk 

density is very close to that measured in the field at the regional-scale and the estimated wind slab layer density is also quite 

similar (~5% lower) but the depth hoar density is overestimated by larger amount (~18% higher). While we cannot conclude 290 

from this limited sample size that the algorithm is perfect, the similarity of the algorithm estimates and layer densities to 

independent snow surveys suggest the parametrization of H was effective and that this approach could be expanded to estimate 

snow density across the tundra. 

7 Conclusions and Future Work  

 A prototype algorithm was developed to estimate snow density in the tundra environment using PM remote sensing, given 295 

the challenges in estimating spatiotemporally varying snow density in that environment. An experiment was conducted to 

assess the algorithm’s ability to estimate snow density at sites distributed in the Canadian tundra. Results from those sites 

demonstrate algorithm estimates of snow density provided information on snow density comparable to those collected with 

snow courses and appeared best suited for estimating snow density conditions later in the season. With more extensive forcing 

data (e.g. snow depth estimates from global climate models) this algorithm could be applied over the tundra biome to provide 300 

snow density estimates at spatiotemporal scales that were not previously available. 

 The experimental design for this study was opportunistic due to the limited snow density data available for algorithm 

development and evaluation. CanSWE was the only readily available dataset which covered the required spatial and temporal 

domain for algorithm development but was limited to bulk estimates and, as result, the algorithm estimates for the two distinct 

snow layers could not be sufficiently parameterized or evaluated. Tundra snow conditions are known to be driven by terrain 305 

types (Woo, 1998), and future algorithm development will focus on sites with distributed stratigraphic data to better quantify 

snow density conditions at the PM scale. By characterizing terrain variability at the regional scale, we hypothesise the DMRT-

plausible range of snow densities for the PM scene could be disaggregated using high resolution active microwave data to 

provide information on stratigraphic heterogeneity and better estimate density values for the two distinct snow layers (to 

replace the static H parameter).  310 
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