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Abstract. Monitoring prairie snow has been difficult due to its extreme spatial variability from windy 
conditions, gentle topography, and low tree cover. Previous work has shown that a noninvasive (or 
aboveground) Cosmic Ray Neutron Sensor (CRNS) placed at the Central Agricultural Research Center 10 
(CARC; 47.07º N, 109.95º W), an agricultural research site within a semi-arid prairie environment 
managed by Montana State University, was sensitive to both the low snow amounts and spatial 
variability of prairie snow. In this study, we build upon previous work to understand how different snow 
distributions would have influenced CRNS measurements at the CARC. Specifically, we compared the 
changes in neutron counts and snow water equivalent (SWE) after relocating our CRNS probe at the 15 
CARC using the Ultra Rapid Neutron-Only Simulation (URANOS) and comparing them to uniform 
snow distributions. For shallow, heterogeneous snowpacks like the ones observed at the CARC, the 
magnitude and distance of the snow drifts from the CRNS has the greatest effect on neutron counts. 
Therefore, the best place to site a CRNS is within areas of low snow accumulation that are nearby areas 
of high snow accumulation to obtain a reasonable spatial estimate. Despite this, a naive CRNS 20 
placement was 2 to 5 times more likely to yield better SWE estimates compared to snow scales or 
currently available gridded products. CRNS provides valuable information about shallow, 
heterogeneous snowpacks in prairie and other environments and can benefit future missions from UAV 
and satellite platforms. 

1 Introduction 25 

Seasonal snow plays an important hydrologic and climatic role in the Earth system. Seasonal snow 
covers an average of 31% of the Earth’s surface annually (Tsang et al., 2022). A major component of 
the Western United States’ water supply originates from seasonal snowpack, feeding the needs of over 
60 million people (Bales et al., 2006). Prairie snow can make up to 25% of the global snow cover 
(Sturm and Liston, 2021). Mid-latitude semi-arid prairie environments, such as those found in the 30 
interior Great Plains of North America (i.e. northern states such as Montana and extending north into 
Canada) are dependent on snow. Over 80 to 85% of streamflow in the Northern Great Plains originates 
from snow (Gray, 1970), despite accounting for 20% of the annual precipitation (Aase and Siddoway, 
1980). 
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Snow cover in the prairie is known for its extreme spatial heterogeneity, mainly due to strong 35 
surface winds, gentle topography, and spatial variability in vegetation (Gray, 1970). Figure 1 depicts the 
variability that snow can exhibit in a prairie environment. Strong winds in an open, flat expanse of land 
scours snow, causing wind erosion, enhancing sublimation, and transporting 75% of the annual snowfall 
(Gray, 1970; Harder et al., 2019). The effects of blowing snow are affected by changes in surface 
roughness such as vegetation which allows for preferential deposition and accumulation of snow along 40 
natural barriers (Harder et al., 2019; Kort et al., 2012). These areas of preferential deposition can build 
snow drifts as shown in Fig. 1a that can grow over 1 m tall and can transition to bare ground over a 
spatial scale of meters to tens of meters. 

 
Figure 1: Field images depicting the heterogeneity of snow in a prairie environment from winter 2020-2021. (a) Image taken on top 45 
of > 1 m snow drift, looking east, with snow disappearing as you move away from the snow drift. (b) Standing crop stubble is used 
to trap snow for early spring melt. Field images were provided by Dr. Eric Sproles. 

Agriculture and crop stubble are the most common form of land use change in the Northern 
Great Plains that drive preferential snow accumulation. The introduction of dryland cropping 
techniques, especially no till (or zero tilling) techniques where seeds are directly planted into crop 50 
residues and no tillage of soils, allows certain winter wheat crops to grow in the Northern Great Plains 
(Nielsen et al., 2005; Aase and Siddoway, 1980; Harder et al., 2019). Due to the semi-arid climate in the 
Northern Great Plains, water use must be efficient for agricultural fields to be productive. This 
agricultural development in the prairies has increased the need to capture snow for early season melt 
water. As a result, farmers use standing crop stubbles to aid in trapping snow and reducing snow erosion 55 
in order to provide water recharge and managing infiltration and runoff (see Fig. 1b) (Aase and 
Siddoway, 1980; Harder et al., 2019). 

Snow heterogeneity introduces an important question in water resources management: How and 
where can we effectively measure snow water equivalent (SWE) in such an environment? Traditional 
manual snow measurements from snow pits are labour-intensive and are best applied in deep snow. 60 
Snow pit measurements of snow density are restricted to the snow drifts and not of the typically 
shallower prairie snowpack. In addition, continuous SWE monitoring through snow pillows or snow 
scales like those found in the snow telemetry (SNOTEL) network from the US Department of 
Agriculture Natural Resources Conservation Service (USDA NRCS) (Serreze et al., 1999), are not as 
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effective in the prairie due to wind erosion. Additionally, Figure 1 shows how the placement of a snow 65 
pillow or snow scale (e.g. in an area that accumulates a snow drift or an area that is wind-scoured) could 
result in very different snow measurements, some (or all) of which may not reflect the areal average 
SWE. 

To address these issues, we installed a Cosmic Ray Neutron Sensor (CRNS) to measure the 
SWE at an agricultural research site in the plains of central Montana. CRNS instruments detect the 70 
background neutron flux that is generated when cosmic rays interact with matter on Earth (Desilets et 
al., 2010). Hydrogen atoms are roughly the same size as neutrons, and trap the free neutrons, attenuating 
the signal (Zreda et al., 2012). Thus, the neutron flux measured by a detector is inversely related to the 
amount of hydrogen atoms in its immediate surroundings. The most common source of hydrogen in the 
environment are water molecules in the atmosphere (Rosolem et al., 2013; Zreda et al., 2012), 75 
vegetation (Baroni et al., 2018; Franz et al., 2015), and soils (e.g., lattice water and organic matter) 
(Bogena et al., 2013; Franz et al., 2013). After accounting for all other hydrogen pools, estimates of soil 
moisture and SWE are made over an approximate operational radius of 150 to 250 m (for aboveground 
CRNS) by detecting the neutron flux over time (Zreda et al., 2008; Royer et al., 2021). The non-
invasive and large footprint of CRNS has intriguing potential to overcome the issues of traditional 80 
continuous snow monitoring in heterogeneous shallow to moderate snowpacks. It also helps to mitigate 
a common issue in hydrology: bridging the scale gap between point measurements and areal 
measurements, such as remote sensing or modelling studies, by providing measurements of areal SWE 
at an intermediate or similar spatial resolution (Blöschl, 1999; Iwema et al., 2015; Schattan et al., 
2020).  85 

Previous research has shown that CRNS estimates of SWE at an agricultural prairie site in 
central Montana agree with spatially weighted digital snow models (DSMs) from UAV light detection 
and ranging (lidar) flights and modelled CRNS estimates, despite extreme spatial heterogeneity of the 
snowpack surrounding the detector (Woodley et al., 2024). CRNS has been noted to be sensitive to bare 
ground patches, usually increasing the neutron counts (Schattan et al., 2019). We build on our previous 90 
research from Woodley et al. (2024) to analyse the effects of snow heterogeneity within the operational 
footprint of the CRNS using neutron transport modelling. From these results, we provide insights and 
guidelines on best practices to site future CRNS probes with respect to shallow, heterogenous 
snowpacks. Furthermore, we hope to show that CRNS measurements can be a reliable ground truth for 
remote sensing applications in the prairies. 95 

2 Study Area 

The modelling domain for this study is a 1 km2 region of the Central Agricultural Research Center 
(CARC), an agricultural research site managed by Montana State University, located in central Montana 
(47.057510˚ N, 109.952945˚ W; see Fig. 2). The CARC hosts ongoing agricultural research where 
researchers investigate different crop varieties, cropping strategies, and soil biogeochemistry. Crops 100 
typically grown at the CARC include cereals, grasses, legumes, and broadleaf plants. Some crops 
persist into the winter as stubble at the CARC, depending on harvest practices (Palomaki and Sproles, 
2023). The elevation of the study region ranges from 1287 m to 1298 m. Soils at the CARC are 
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primarily well-drained, shallow clay loams (Palomaki and Sproles, 2023). We observed average air 
temperatures of -0.4°C (-3.7°C during DJF), average air pressure of 870 mb, and average relative 105 
humidity of 62.8% throughout the winter of 2020-2021. A CRNS (CRS2000/B from HydroInnova LLC, 
Albuquerque, NM, USA) was deployed at the site in the winter of 2020/2021, coincident with the 
SnowEx 2021 Prairie field campaign, to measure the low-energy cosmic ray-induced neutrons 
(Woodley et al., 2024). 

 110 
Figure 2: Basemap of study site. a) The 1 km2 research domain outlined by the dashed black box at the Central Research 
Agricultural Center (CARC). The CRNS location is marked by the yellow triangle and the estimated 171 m footprint (calculated 
in Woodley et al. (2024) is shown in the dashed yellow circle. b) The approximate location of the CARC in Moccasin, MT in 
Central Montana is marked by the red star. The State of Montana is also highlighted in red with a fill colour of tan. (Basemap 
Image: © Google Maps). 115 

3 Data and Methods 

3.1 In Situ Measurements 

The CARC was selected for NASA’s SnowEx field campaign to study prairie snow as one of its main 
objectives in the winter of 2020/2021. SnowEx efforts at the CARC included airborne L-band 
interferometric synthetic aperture radar (InSAR) flights from the Uninhabited Aerial Vehicle Synthetic 120 
Aperture Radar (UAVSAR) instrument, snow-on and snow-off UAV lidar observations, UAV 
orthophotos and structure from motion (SfM), and ground-based snow observations including snow pits 
and snow depth transects (Palomaki and Sproles, 2023). For this analysis, we imported spatially 
distributed SWE into our neutron transport simulation, which was estimated using spatial distributed 
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snow depth maps from the UAV lidar flights and snow density data calculated from snow pits 125 
(Woodley et al., 2024). 

Table 1 summarizes the snow depths from the 8 UAV lidar flights made in winter 2020/2021 
across 8 different dates in our 1 km2 study area. The lidar measurements show how snow depths can 
vary spatially and temporally within the CARC. The lidar flight conducted on 15 January 2021 is 
considered our “no snow” baseline. Despite the large changes in snow depths due to the snow drifts, the 130 
snow drifts typically covered less than 1% of the 1 km2 area before February 2021. The digital snow 
model from the UAV lidar was divided into 2 m by 2 m pixels, for a total model domain of 500 pixels 
by 500 pixels.  

 
Table 1: Snow depths (SD) and the snow covered area (SCA) statistics from the digital snow models from each of the 8 UAV lidar 135 
flights at the CARC. We report the average and maximum SD for each date. The SCA is reported as the percentage of the CARC 
within the 1 km2 research area is covered by snow and the percentage of the CARC covered by greater than 20 cm of snow.  

Date Avg. SD, Excluding Bare Ground 
(Avg. With Bare Ground) [cm] 

Max. SD 
[cm] 

SCA 
[%] 

SCA, SD > 20 cm 
[%] 

15 Jan. 2021 5.3 (0.1) 63.4 1.80% 0.2% 
21 Jan. 2021 3.6 (1.6) 96.7 45.1% 0.6% 
22 Jan. 2021 3.8 (2.0) 82.7 52.1% 0.5% 
29 Jan. 2021 3.2 (0.9) 82.8 28.1% 0.5% 
17 Feb. 2021 8.8 (7.9) 131.5 89.6% 5% 
18 Feb. 2021 8.7 (7.6) 131 87.1% 4.8% 
24 Feb. 2021 5.5 (2.2) 100.6 39.7% 2.4% 
4 Mar. 2021 2.2 (1.3) 80.4 60.1% 1.1% 

3.2 Ultra-Rapid Neutron Only Simulation 

To verify CRNS SWE estimates at the CARC, where traditional snow monitoring data does not exist, 
this study will utilize neutron transport modelling. Recently, CRNS studies have adopted the use of the 140 
Ultra Rapid Neutron-Only Simulation (URANOS), such as Brogi et al. (2022), Schattan et al. (2017), 
and Schrön et al. (2023). URANOS utilizes a Monte Carlo approach to simulate the neutrons and has 
been specifically developed for CRNS applications (Köhli et al., 2023). Millions of neutrons are 
generated from randomly distributed point sources within a user-defined area, and neutrons’ path and 
interactions are tracked from its source to the point of detection through a ray-casting algorithm (Brogi 145 
et al., 2022; Köhli et al., 2023). URANOS can model 3-dimensional voxel-based geometries with 
defined materials by stacking multiple layers of either ASCII matrices or bitmap images to replicate 
important site characteristics (Köhli et al., 2023). For this analysis, we used URANOS v1.23, which is 
freely available for download at: https://gitlab.com/mkoehli/uranos/. 
 We ran URANOS simulations for the eight dates corresponding to the UAV lidar flights at the 150 
CARC, similar to the simulations described in Woodley et al. (2024). Our methods have two main 
differences from the URANOS simulations used in the Woodley et al. (2024) analysis. First, we moved 
the CRNS around our research domain to test how neutron counts would have been affected by the 
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differing snow cover conditions around the CARC. A cylindrical virtual CRNS detector was placed at 
each of the 26 points on Fig. 3b roughly 2 m above the ground in URANOS. Each URANOS run 155 
simulated 108 neutrons. The virtual CRNS was enlarged to a 9 m radius to improve detection statistics 
and supplied with a detector response function (provided in the URANOS GitLab repository) to 
simulate the sensitivity of the CRNS installed at the CARC, specifically a high-density polyethylene 
moderator of 25 mm thickness. To minimize the influence of soil heterogeneity and focus on the 
influence of snow variability, we chose to create a uniform 30 cm soil layer with the average of all soil 160 
measurements. Soil samples for soil moisture and bulk density were collected at 5 cm depth intervals up 
to a total depth of 30 cm and at six cardinal directions at three different radii (approximately 25 m, 75 
m, and 200 m) from the CRNS instrument (Woodley et al., 2024). Because this analysis moves the 
simulated CRNS instrument around the CARC where other soil moisture measurements were not made, 
we chose to average the soil measurements for our uniform soil layer. As in Woodley et al. (2024), soil 165 
moisture, atmospheric pressure, and other important parameters listed in Table 2 were kept constant to 
allow direct comparisons of model simulations due to changes in snow distribution, and to remove the 
need to correct counts based on differing hydrogen pools. 
 
Table 2: Atmospheric and soil parameters used in our URANOS simulations. These values were unchanged from each set of 170 
heterogeneous and uniform snow runs.  

Parameter Value 
Number of Neutrons [-] 100000000 
Air Humidity [g m-3] 3.341 
Atmosphere Depth [g cm-3] 888.809 
Soil Moisture (top 30 cm) [%] 21% 
Soil Bulk Density (top 30 cm) [g m-3] 1.087 
Soil Porosity (top 30 cm) [%] 56% 
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Figure 3: a) Lidar digital snow maps (DSM) from the winter 2020-2021 NASA SnowEx Prairie Mission. Colormaps for snow are 175 
not linear. Smaller increments were included to show where extremely shallow snow is located at the CARC. b) Map of locations of 
virtual CRNS points for URANOS simulations. The actual CRNS location is marked by the magenta triangle, with the calculated 
171 m operational footprint (magenta dotted circle) of the CRNS from Woodley et al. (2024). The rest of the virtual CRNS 
locations used in this analysis are marked by red circles. 

 To examine how CRNS measurements change with the spatial distribution of snow, we ran 180 
simulations in URANOS using 1) a uniform snow layer and compared them against simulations using 
2) the heterogeneous snow maps derived from the UAV lidar and snow density. For the uniform 
simulations, a chosen volume of snow water was evenly distributed in the research area, creating a 
uniform snow layer. We created two uniform snow layer schemes based off: a) the average amount of 
snow water in the 171 m operational footprint around the CRNS detector and b) the average amount of 185 
snow water across the entire 1 km2 study domain. The 171 m operational footprint of the CRNS is a 
site-specific value calculated at the CARC using “no snow” URANOS simulations from Woodley et al. 
(2024). The total amount of snow water volume was divided using one of the snow density material 
values in URANOS. Depending on the amount of snow water per pixel, we chose to model the 
snowpack using the built-in material codes for snow: 240, 241, and 242, which has density values of 190 
0.03 g cm-3, 0.1 g cm-3, 0.3 g cm-3, respectively, to create a snow layer with uniform thickness and 
density (see MaterialCodes.txt in GitLab repository, link in Sect. 3.2). 

From the different URANOS simulations, we also calculated SWE from the modelled neutron 
counts. We followed our methods from Woodley et al. (2024) to calculate modelled SWE from 
URANOS. SWE calculations were made using Eq. (1) (Desilets, 2017) using our modelled neutron 195 
counts from URANOS simulations. 

SWE  =   − 𝛬 𝑙𝑛 !"!!"#
!$"!!"#

(1) 
Nq is the calibration neutron count, from the “snow-off” reference date of 15 January 2021. N is the 
neutron counts corresponding to the dates of the subsequent seven “snow-on” lidar flights at the CARC 
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(21 Jan. 2021 to 4 Mar. 2021). The attenuation length (L) was calculated to be 4.8 cm from previous 200 
literature (Desilets et al., 2010). Nwat is the counting rate over an infinite depth of water and can be 
calculated using Eq. (2): 

N#$% = 0.24N& (2) 
 
where 0.24 is an assigned constant value (Desilets, 2017; Desilets et al., 2010). N0 is the theoretical 205 
counting rate over dry soils: 

𝑁& =
𝑁'

𝑎&
θ(𝜌)* + 𝑎+

+ 𝑎,
(3) 

 
where a0 = 0.0808, a1 = 0.372, and a2 = 0.115 (Desilets et al., 2010; Desilets, 2017). Usually, Nq in Eq. 
(3) is multiplied by a correction factor, F(t), to correct for solar activity, atmospheric pressure, and 210 
humidity. However, as all our model simulations used the exact same meteorologic conditions, our 
correction factor was set to 1. qg is the gravimetric soil water content and rbd is the soil bulk density, 
which were obtained from in situ soil samples. 

3.3 Comparisons with Gridded SWE Products 

To evaluate whether CRNS SWE has potential value for future remote sensing missions or gridded 215 
datasets, we compared our CRNS SWE and UAV lidar SWE to several available gridded SWE products 
at several spatial resolutions. We chose the Western United States UCLA Daily Snow Reanalysis 
(hereafter UCLA-re, ~500 m resolution, Fang et al., 2022), the Snow Data Assimilation System 
(SNODAS, 1 km resolution, National Operational Hydrologic Remote Sensing Center, 2004) from 
National Oceanic and Atmospheric Administration’s National Weather Service National Operational 220 
Hydrologic Remote Sensing Center, and the Daily 4 km Gridded SWE (hereafter UA, 4 km resolution, 
Broxton et al., 2019) from the University of Arizona.  

The UCLA-re dataset is generated from assimilation data with Landsat fractional snow cover 
area and other input data such as meteorological forcings from the Modern-Era Retrospective analysis 
for Research and Applications, version 2 (MERRA-2) (Margulis et al., 2019). A Bayesian analysis is 225 
performed on prior estimates of snow states and fluxes using a land surface model and snow depletion 
curves (Margulis et al., 2019). SNODAS provides daily gridded estimates of SWE for the conterminous 
United States by utilizing a snow model, which is forced by downscaled numerical weather predictions 
(Clow et al., 2012). Digitally available airborne, satellite, and ground-based snow data are then 
assimilated into the model to provide a best estimate of near real-time snow estimates (Clow et al., 230 
2012; Driscoll et al., 2017). The UA dataset provides SWE and snow depth estimates by assimilating 
snow station data such as the snow telemetry (SNOTEL) network and precipitation and temperature 
data using the gridded PRISM model (Zeng et al., 2018). For each gridded dataset, we chose the pixel 
that included the CARC. Only the SWE for the UCLA-re data was aggregated and averaged within a 2-
pixel by 2-pixel region, to obtain an area that is like the 1 km2 area of the CARC. All gridded datasets 235 
are freely available for download at the National Snow and Ice Data Center (last accessed: 3 October 
2024). 
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4 Results and Discussion 

4.1 Neutron Modelling 

Figure 4 shows the differences between heterogeneous runs (i.e., spatially varying snow distribution 240 
derived from the UAV lidar and snow density) and the uniform runs (i.e., uniform snow distribution) 
from 15 January 2021, to isolate the effects of large snow drifts on CRNS measurements. Each point in 
Fig. 4a represents a different virtual CRNS location within our study domain (shown in Fig. 3b). On this 
date, most of the CARC was uncovered except for some isolated patches of extremely shallow snow 
and a large snowdrift in the southwest corner of the study domain (top left panel of Fig. 3a, and Fig. 245 
4b). Most virtual CRNS locations resulted in neutron counts from the heterogenous and uniform runs 
that were within 1% of error from each other. However, points P00, P05, P07 and P19 yielded large 
differences of greater than 100 neutrons (approximately 3% error). These four points are also the closest 
to the snow drift on 15 January 2021 (see Fig. 4b). 

 250 
Figure 4: a) A scatterplot comparing neutron counts from the uniform runs (y-axis) against the heterogeneous runs (x-axis) for 15 
January 2021, the near-no-snow baseline, with the exception being the large north-south snow drift in the western portion of the 
study area. While most points fell near the one-to-one line (black dashed line) and within a 1% error, four virtual CRNS locations 
yielded large differences in neutron counts: P00, P05, P07, and P19. b) Map of the snow depth from the 15 January 2021 UAV 
lidar flight, shown in the colorbar. The snow drift is the slim blue linear feature on the left (western) portion of the study area. The 255 
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virtual CRNS locations in URANOS are shown in circles, while the actual CRNS location from winter 2020-2021 is shown in a 
triangle (as in Fig. 3b). The four points with the largest neutron count differences are marked in magenta.  

Figure 5 compares how the neutron counts change with relation to the snowpack variability, 
where the neutron model domain was divided into twelve sectors of equal angle from the virtual CRNS 
detector. We noticed skews in neutron origins due to the relation of the model geometry, namely the 260 
position of the virtual detector and the source geometry. Virtual detectors placed closer to the edges of 
our domain had neutron origins that were skewed towards the centre of the domain. Therefore, we 
limited the neutron counts in the sectors to a 200 m radius. The radial plots in Fig. 5 shows the percent 
change in neutron counts from the uniform runs in each sector on 15 January. P07 (Fig. 5a) saw the 
biggest percent change between the no-snow (right of N-S line) and snow side (left of N-S line) with an 265 
average percent change of 5% in neutron counts compared to 1.6% change, respectively. We observed a 
similar but smaller trend in P05 (Fig. 5c) with an average 3.16% change on the no-snow side and 2.3% 
change on the snow side. In both P19 (not shown) and P00 (Fig. 5b), we observed larger changes on the 
snow side compared to the no-snow side. P00 had a 5.3% change on the snow side compared to a 2.4% 
change on the no-snow side. P19 had a 3.9% change on the snow side and a 2.1% change on the no-270 
snow side. The differences in P00 neutron counts are likely explained by the longer distance away from 
the snow drift (Fig, 5e). Many studies have shown that CRNS is extremely sensitive to its immediate 
surroundings (Köhli et al., 2015; Schrön et al., 2017). The removal of snow cover around the CRNS 
from the uniform run is likely to have a larger effect on neutron counts than the snow drift. P05, P07, 
and P19 which were modelled closer to the snow drift. The differences are likely caused by the breaks 275 
in the snow drift as it first formed. P07 (Fig. 5d) was placed next to a longer, contiguous section of the 
snow drift compared to P05 (Fig. 5f), which enhances the neutron counts on the snow side in the 
heterogeneous runs. We observed similar breaks in P19. 
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Figure 5: Percent changes in neutron counts of the heterogenous runs from the uniform runs for 12 sectors around the virtual 280 
CRNS location for the 3 out of the 4 points identified in Fig. 3: a) P07, b) P00, and c) P05. The orange line on panels a-c marks no 
change in neutrons counts in the heterogeneous runs from the uniform runs. The snow distribution on 15 January 2021 is shown 
for each point on panels d-f to contextualize the differences. 

Figure 6 shows the difference in neutron counts (Fig. 6a) and SWE (Fig. 6b) estimates between 
the heterogeneous and uniform URANOS results for the rest of the other dates. In this case, the uniform 285 
runs use the average SWE within the nominal 171m radius footprint around each virtual CRNS. 
Neutron counts are biased higher in the heterogeneous runs with a mean bias percent error (MBPE) of 
1.8% and a root mean squared percent error (RMSPE) of 2.6%. When we calculate the SWE using these 
URANOS runs and Equation 1, SWE would be overpredicted in the uniform runs with an MBPE = 
19.6% and a RMSPE = 34.9% cm. We grouped the errors across all dates by their points, to determine 290 
which points had the largest and smallest errors in neutron counts (Fig. 6c). The largest differences were 
found in Points P00, P05, P19, and P03. Points P00, P05, and P19 are again the 3 closest points to the 
large snow drift in the western portion of the study area. P03 (top row, center in Fig. 3b) is also located 
near snow drifts that formed due to topographical changes near train tracks that cross the CARC. The 
lowest errors were found in Points P17, P15, P24 and P06. The commonality between points P17, P15, 295 
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P24, and P06 were likely relatively uniform snow cover surrounding the virtual CRNS for most of the 
dates. P17 and P24 were in the same field directly to the left of P00, which had relatively uniform snow 
trapped from the field around most of the dates during winter 2020-2021. P00, P05, P19, and P03 had 
much more variable snow cover surrounding the virtual CRNS, with the large snow drift on one side 
and bare ground on the other for most dates in winter 2020-2021.300 

 
Figure 6: Scatterplot comparing a) neutron counts and b) SWE for the heterogenous snow runs (x-axis) against uniform snow runs 
(y-axis) that use the average SWE of the 171 m radius footprint surrounding the virtual. c) Boxplots showing the difference 
between the heterogenous and uniform snow runs for each virtual CRNS location (show in Figure 3b), where each box contains the 
eight URANOS simulations corresponding to the UAV lidar flights at the CARC. 305 
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Figure 6 also demonstrates the need to accurately measure and map where the snow is distributed, 
especially for a shallow heterogeneous snowpack. One might assume that neutron counts between these 
two runs should be comparable because both have the same total snow water volume within the 
operation footprint of the CRNS. However, the distribution of that snow water is different between the 
two runs. Differences will account for the various patches of bare ground or snow drifts that formed 310 
around the CARC due to snow redistribution among fallow fields, crop stubble, and shelter belts. Figure 
6c suggests that snow drifts closer to the CRNS bias neutron counts the most, leading to the largest 
differences in neutron counts compared to a uniform snow scenario.  

Correlation analysis (not shown) also suggests that snow drifts are the biggest contributors to 
neutron count variability at our study site. For all points and dates, differences in neutron counts 315 
between the heterogeneous and uniform snow runs (hereafter DNCf) were positively correlated with 
statistical significance (r = 0.451) with the percentage of bare ground within the operation footprint of 
the CRNS. The percentage of bare ground in the operation footprint was calculated by cropping the 
UAV lidar snow depth to a circular area within 171 m from the virtual CRNS location and finding the 
percentage of bare ground within the masked area. DNCf closer to 0 were found when the percent of 320 
bare ground in the CRNS footprint was closer to 100%, suggesting that bare ground did not lead to 
reduced neutron counts. In heterogeneous snow environments like the CARC, it suggests that the tall 
snow drifts, especially within proximity of the CRNS, are creating the biggest changes in neutron 
counts. Statistically significant negative correlations were found when comparing variability of snow 
depths – namely the standard deviation and the range (difference in max. and min. snow depths) - 325 
within the CRNS footprint and DNCf (-0.66 with standard deviations and -0.566 with range). Taking the 
same correlations after grouping our measurements by points, we still observe statistically significant 
negative correlations for the median standard deviations and median range of footprint snow depths 
with respect to the median DNCf (-0.643 and -0.582 respectively). The median bare ground percent 
within the CRNS footprint were neither correlated (0.107) nor statistically significant with DNCf. 330 
Interestingly, this suggests our actual CRNS location for winter 2020-2021 was somewhat biased, 
especially towards 17 and 18 February 2021. 

Figure 7 shows similar trends comparing the heterogeneous runs with the uniform runs using the 
average SWE of the entire 1 km2 CARC study domain (as opposed to the average SWE in the 171 m 
radius surrounding the virtual CRNS). The variability of the difference between the heterogenous and 335 
uniform snow runs increased for both neutron counts (Fig. 7a) and SWE (Fig. 7b) using the CARC 
average instead of the CRNS footprint average. Neutron counts were biased towards the heterogeneous 
runs with an MBPE of 1.9% and an RMSPE of 3.1% and SWE were biased towards the uniform runs 
with an MBPE of -22.9% and a RMSPE = 42.3%. This greater variability is expected due to the fact 
that more neutrons detected by the CRNS originate near the instrument as opposed to far away, so the 340 
SWE in the surrounding area has a greater influence on the neutron counts than in more distant areas. 
Most applications of CRNS will likely be to characterize the areal average SWE. Comparing the 
heterogeneous runs to the CARC average SWE runs allows us to evaluate which virtual CRNS locations 
were most reflective of the CARC average. The points that were most reflective of the CARC average 
were points p20, p07, p06, and p19. Interestingly, points p20, p07, and p19 are the three points clustered 345 
around the actual CRNS instrument at the CARC. P06 was not located near the original CRNS but had 
some snow cover through most of January and February. Points 13, 14, and 10 were also similarly 
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clustered close together (NW quadrant) closer to the train track snow drifts. We theorize that at times 
these points sampled too many snow drifts or too little snow during the winter.  

 350 
Figure 7: Same is Fig. 6 but for uniform snow created from the 1 km2 CARC average. 

4.2 CRNS Spatial Representativeness 

In this work, we executed 624 separate URANOS neutron transport simulations for the CARC study 
area in order to understand the influence of spatial variability on CRNS observations. To supplement 
these findings, we conducted a secondary analysis to evaluate the spatial representativeness of CRNS 355 
SWE at our prairie site compared to the observations that might have been collected from a more 
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traditional snow scale SWE instrument. In most cases, CRNS or other SWE instruments would be 
deployed in hopes of capturing the average snow conditions representative of a large area. To do this, 
we averaged the lidar-derived SWE DSMs for each of the eight UAV flights to 1 m2 spatial resolution. 
We calculated the kernel density of all of these 1 m2 SWE pixels to understand the full distribution of 360 
SWE across the study site, where each pixel represents a possible SWE measurement that could have 
been collected by a naively located snow scale or snow pillow (of measurement area equal to 1 m2). 
Then, we applied the CRNS spatial weighting function from Woodley et al. (2024) to each of these 
pixel locations (actually, every 4th pixel to increase computational efficiency), using a wraparound 
boundary to remove edge effects from pixels close to the boundary of the study site. This allowed us to 365 
retrieve a distribution of synthetic CRNS SWE estimates across the entire CARC.  

We acknowledge that this analysis is naive in that it assumes that the CRNS spatial weighting 
function would be constant across the entire study site. In reality, the spatial sensitivity of CRNS can 
change with snow spatial distribution and magnitude, and soil moisture distribution and magnitude, 
among other factors. The wraparound boundary also means that none of the CRNS SWE estimates from 370 
this analysis, especially those near the boundaries of the study area, are truly reflective of the "true” 
SWE that would be observed by CRNS at the same location within the site. 

However, it does mean that each CRNS SWE estimate is derived from the same lidar-derived 
SWE data, which reflects a spatial snow distribution representative of a prairie site. Lastly, this analysis 
assumes that a snow scale or snow pillow would exactly measure the SWE in each given location. 375 
However, this is unlikely to be true given that snow will likely accumulate differently on a smooth 
artificial surface versus the natural ground surface, especially in the windy, shallow snow conditions 
typical of the prairie. In summary, this analysis is not as rigorous in reproducing CRNS behavior as the 
URANOS simulations presented above. Still, it does provide a first-order estimate of the spatial 
representativeness of CRNS SWE estimates at a prairie site versus more conventional, smaller-footprint 380 
SWE instruments. 

Figure 8a shows the kernel density distribution of synthetic SWE estimates from the CRNS 
locations across the entire CARC (blue), compared to the distribution of 1 m2 lidar-derived SWE pixels 
from the entire CARC (red) for an example date of 29 January 2021. This date was more than one week 
after the most recent snow event, allowing for wind redistribution, sublimation, and potentially melting 385 
of the snow during the intervening period. The spatial average lidar-derived SWE for the entire CARC 
is shown in the vertical, black dashed line. A similar plot is shown in Fig. 8b for 17 February 2021, 
soon after a large snow event (and the most pronounced snowpack of the season). In both cases, the 
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CRNS SWE distribution is shifted closer to the CARC average, compared to the 1 m2 SWE distribution. 

 390 
Figure 8: Simulation of the spatial representativeness of a synthetic aboveground CRNS at the CARC versus a synthetic snow 
scale or pillow of area 1m2. a) and b) Probability density functions of the SWE observed by CRNS (blue) versus a synthetic snow 
scale or pillow of pixel size 1m by 1m (red) for 29 January and 17 February 2021, respectively. The vertical dashed line shows the 
mean SWE of the entire study 1 km2 area.  It is evident on both dates that the probability density of CRNS SWE estimates is 
shifted closer to the areal mean. c) and e) show the areas where the CRNS and 1m pixels are within +/- 25% of the mean SWE of 395 
the entire study area, respectively, for 29 January 2021.  The red pixels are locations that are within +/- 25% of the areal mean 
SWE, while the underlying blue color map shows the SWE magnitude. d) and f) show the same information for 17 February 2021.  
Generally, the CRNS is representative of a larger proportion of the study area and the representative areas are more contiguous, 
compared to the 1m resolution synthetic snow scale or pillow.  

 400 
For 29 January, the CARC average SWE was 0.4 cm. 23% of the CRNS locations were within 

+/- 25% of the CARC average, while only 5% of the 1m2 pixels were within that same range. For 
February 17, the CARC average SWE was 1.1 cm, and 50% of the CRNS locations and 20% of the 1m2 
pixels were within +/- 25% of the CARC average, respectively. Across all dates (excluding January 15, 
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2021, which had very spatially limited snow cover), this analysis indicated that the percentage of the 405 
CARC study area for which a CRNS would return a SWE estimate within +/- 25% of the CARC 
average ranged from 21%-50%, while the 1 m2 pixels ranged from 5%-20% of the CARC. In summary, 
our first-order analysis indicated that a naively sited CRNS was 2.3 to 5 times more likely to return a 
SWE estimate within +/- 25% of the large-scale spatial average than a similarly sited SWE sensor with 
a footprint of 1 m2.  410 

 
These results are shown spatially in Fig. 8 c&e, where 8c shows the map of CRNS SWE 

estimates, and 8e shows the lidar-derived SWE at 1 m2 resolution for the example date of 29 January 
2021. In both maps, locations that returned a SWE value within +/- 25% of the CARC average are 
shown in red. The representative areas for CRNS are more extensive and spatially contiguous, while the 415 
representative 1 m2 pixels are fewer and less spatially contiguous. The same maps are shown for 17 
February 2021 in Figs. 8 d&f. In this case, a larger proportion of the CARC is representative of the 
large-scale CARC average in both maps, and the CRNS similarly shows more extensive and more 
contiguous representative areas. These results indicate that CRNS provides value for large-scale SWE 
estimates in the prairies, beyond those available from more conventional, smaller-footprint sensors. It 420 
appears that the optimal locations to site CRNS in prairie snow distributions like the CARC are in 
locations of low snow accumulation near areas of high snow accumulations (e.g. snow drifts). This 
makes sense, as most of the CARC area exhibits low snow accumulation, while only a small portion 
experiences higher snow accumulation, and CRNS are most sensitive to the area immediately 
surrounding the instrument. Through a combination of design and happenstance, our actual CRNS at the 425 
CARC (point P00 on Fig. 3) is located within a representative region for all lidar dates (with the 
exception of 15 January 2021, which had very spatially limited snow cover). 

4.3 Comparison against Gridded SWE Estimates 

Figure 9 shows comparisons of SWE (Fig. 9a) and snow depth (Fig. 9b) products at similar 
magnitudes of scale (see Sect. 3.3 for details). We also plotted our CRNS SWE time series at the CARC 430 
from Woodley et al., (2024). In January and March 2021, all gridded SWE products had no SWE. This 
contrasts with the average CARC SWE from the UAV lidar DSMs (red squares on Fig. 9a) and CRNS 
simulations (grey boxplots on Fig. 9a), and our CRNS SWE times series (green line, Fig. 9a), where 
snow cover is still present on the ground. In February, the UCLA Snow Reanalysis and SNODAS 
predicted more peak SWE on the 17th and 18th of February 2021 compared to our average CARC SWE, 435 
with SNODAS almost double our CARC SWE estimates. The UA SWE produced similar estimates to 
our CARC SWE in mid-February, before predicting more SWE in late-February and underpredicting 
SWE starting in March. 
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Figure 9: Comparisons of SWE estimates of a) gridded SWE and in situ SWE estimates and products for January to March 2021 440 
and b) snow depth products expressed as the day of water year (DOWY; days after 1 October 2020). A time series of the UCLA 
Snow Reanalysis (blue line), UA SWE (orange line), CRNS (green line) from Woodley et al., (2024) are shown. Only the UCLA 
Snow Reanalysis and UA datasets are shown for snow depths. Daily SNODAS SWE and snow depth estimates for each of the dates 
corresponding to a lidar flight are shown as blue triangles, and an averaged CARC SWE and snow depth for each digital snow 
model (DSM) for the 1 km2 study region are plotted as red squares. Modelled SWE estimates from this study for each date are 445 
plotted as grey boxplots to illustrate the variability of SWE within our study region. 

The differences in SWE products are likely due to aggregation with different resolution and 
meteorological forcings. The sub-grid variability is shown to be very important in estimating the SWE 
in a prairie environment, where the average SWE is either grossly under or overpredicted. Past studies 
have indicated that SNODAS is unsuccessful at capturing the spatial variability in regions with 450 
persistent winds like the prairies (Lv et al., 2019). We also verified that similar issues occur with snow 
depths. Figure 9b plots a similar graph, except showing the changes in snow depths for the parts of 
January to March 2021. Snow depths show a similar pattern, where there are no snow depths in the 
gridded datasets in January 2021 and March 2021, and snow depths detected for February 2021. 
SNODAS underestimates the snow depths compared to our average CARC SWE, despite having similar 455 
spatial resolution (1 km for SNODAS and a 1 km aggregate for lidar CARC SWE). 
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While Fig. 9a shows that SWE estimates from the UA 4km data are more reliable in February 
2021, Fig. 9b suggests the UCLA-re snow depths are more reliable estimates compared to the average 
CARC snow depths. This suggests snow density estimates in the UCLA-re are overpredicted. No 
gridded product produced non-zero snow depths or SWE in January 2021, despite snow being present 460 
as shown by our lidar and CRNS measurements. The timing of precipitation from all three models also 
does not seem to line up with some of our in-situ measurements. UCLA-re shows a brief precipitation 
event between the 15 January 2021 UAV flight and the 21 January 2021 UAV flight, and coincident 
with a known snowfall event between 18-19 January 2021 (see Supporting Information for Woodley et 
al. (2024)). However, snow disappears quickly after the snowfall event. Lower estimates of mean SWE 465 
and SD are expected for larger spatial resolutions due to increased aggregation (Blöschl, 1999). 

Our analysis shows CRNS has utility for improving SWE estimates in prairie environments, and 
other environments with shallow, heterogeneous snowpacks. CRNS measurements have already shown 
this utility in mountain regions. Integration of CRNS SWE into models, alongside remote sensing data, 
has reduced error spread in the Austrian Alps (Schattan et al., 2020). CRNS has the potential to increase 470 
the coverage of SWE monitoring sites, where currently used technologies within snow monitoring 
networks like SNOTEL may not be optimal in the northern Great Plains. Previous research has shown 
that large errors in SWE were due to subpixel SWE variability of the Northern Great Plains (Tuttle et 
al., 2018). However, we hope that future planned satellite missions such as NISAR, armed with similar 
instrumentation used in the CARC during SnowEx 2021 (Palomaki and Sproles, 2023) can improve 475 
efforts to monitor snow in this relatively under-instrumented region. 

5 Conclusions 

A neutron transport modelling study at an agricultural site in the Northern Great Plains of Montana has 
shown that the spatial variability of shallow and heterogeneous snowpack affects CRNS measurements. 
While bare ground effects have been shown in other studies, the amount of snow heterogeneity in semi-480 
arid prairie environments suggests that the location and magnitude of snow drifts have a larger effect on 
neutron counts. Comparisons with gridded SWE products shows CRNS has the potential to improve 
estimates, when compared to lidar-derived SWE from the site. The snow distribution should be 
considered when siting aboveground CRNS instruments in areas of high snow spatial heterogeneity, 
even for very shallow snowpack like that at the CARC, if the goal is for the instrument to be 485 
representative of the large-scale spatial average. Our analysis suggests that CRNS instruments should be 
placed in areas of low snow accumulation that are nearby higher snow accumulation areas. However, a 
naively sited CRNS instrument (i.e., with no knowledge of the snow distribution) is still 2 to 5 times 
more likely to be representative of the large-scale average SWE than a more conventional, smaller 
footprint SWE sensor such as a snow scale or snow pillow. Our study focuses solely on the effect of 490 
snow distribution on CRNS, but spatial variability of soil moisture is also important to consider, 
especially in shallow snowpack areas such as the prairie where the effect of soil moisture distribution on 
CRNS measurements may be of comparable magnitude to that of snow distribution. This highlights the 
need for further research in semi-arid prairie environments like the northern Great Plains. 
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Code and Data Availability 495 

Code and data used in this analysis will be made available through GitHub at 
https://github.com/heyjoekim/spatial_crns_carc and archived on Zenodo at 
https://doi.org/10.5281/zenodo.14592408.  
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