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ABSTRACT
We present OOlong, an object calculus with interface in-
heritance, structured concurrency and locks. The goal of
the calculus is extensibility and reuse. The semantics are
therefore available in a version for LATEX typesetting (written
in Ott), a mechanised version for doing rigorous proofs in
Coq, and a prototype interpreter (written in OCaml) for
typechecking an running OOlong programs.

CCS Concepts
•Theory of computation → Operational semantics; Concur-
rency; Interactive proof systems; •Software and its engineer-
ing → Object oriented languages; Concurrent programming
structures; Interpreters;
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1. INTRODUCTION
When reasoning about object-oriented programming, object
calculi are a useful tool for abstracting away many of the
complicated details of a full-blown programming language.
They provide a context for prototyping in which proving
soundness or other interesting properties of a language is
doable with reasonable effort.

The level of detail depends on which concepts are under study.
One of the most used calculi is Featherweight Java, which
models inheritance but completely abstracts away mutable
state [14]. The lack of state makes it unsuitable for reasoning
about any language feature which entails object mutation,
and many later extensions of the calculus re-adds state as a
first step. Other proposals have also arisen as contenders for
having “just the right level of detail” [3, 18, 26].

This paper introduces OOlong, a small, imperative object
calculus for the multi-core age. Rather than modelling a
specific language, OOlong aims to model object-oriented
programming in general, with the goal of being extensible
and reusable. To keep subtyping simple, OOlong uses in-
terfaces and omits class inheritance and method overriding.
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This avoids tying the language to a specific model of class
inheritance (e.g., Java’s), while still maintaining an object-
oriented style of programming. Concurrency is modeled in a
finish/async style, and synchronisation is handled via locks.

The semantics are provided both on paper and in a mecha-
nised version written in Coq. The paper version of OOlong
is defined in Ott [25], and all typing rules in this paper are
generated from this definition. To make it easy for other
researchers to build on OOlong, we are making the sources
of both versions of the semantics publicly available. We also
provide a prototype interpreter written in OCaml.

With the goal of extensibility and re-usability, we make the
following contributions:

• We define the formal semantics of OOlong, motivate the
choice of features, and prove type soundness (Sections
2–5).

• We provide a mechanised version of the full semantics
and soundness proof, written in Coq (Section 6).

• We provide Ott sources for easily extending the paper
version of the semantics and generating typing rules in
LATEX (Section 7).

• We give three examples of how OOlong can be extended;
support for assertions, more fine-grained locking based
on regions, and type-level tracking of null references
(Section 8).

• We present the implementation of a simple prototype
interpreter to allow automatic type checking and evalu-
ation of OOlong programs. It provides a starting point
for additional prototyping of extensions (Section 9).

This paper is an extended version of previous work [7]. Apart
from minor additions and improvements, the section on
the mechanised semantics has been expanded (Section 6).
The extension to track null references through types is new
(Section 8.3), and the prototype OOlong interpreter has not
been described before (Section 9).

2. RELATED WORK
The main source of inspiration for OOlong is Welterweight
Java by Östlund and Wrigstad [18], a concurrent core calculus
for Java with ease of reuse as an explicit goal. Welterweight



FJ ClJ ConJ MJ LJ WJ OOlong

State × × × × × ×
Statements × × ×
Expressions × × × × ×

Class Inheritance × × × × × ×
Interfaces × ×

Concurrency × × ×
Stack × ×

Mechanised ×∗ × ×
LATEX sources × × ×

Figure 1: A comparison between Featherweight Java, Clas-
sicJava, ConcurrentJava, Middleweight Java, Lightweight
Java, Welterweight Java and OOlong.

Java is also defined in Ott, which facilitates simple extension
and LATEX typesetting, but only exists as a calculus on paper.
There is no online resource for accessing the Ott sources,
and no published proofs except for the sketches in the origi-
nal treatise. OOlong provides Ott sources and is also fully
mechanised in Coq, increasing reliability. Having a proof
that can be extended along with the semantics also improves
re-usability. Both the Ott sources and the mechanised se-
mantics are publicly available online [5]. OOlong is more
lightweight than Welterweight Java by omitting mutable vari-
ables and using a single flat stack frame instead of modelling
the call stack. Also, OOlong is expression-based whereas
Welterweight Java is statement-based, making the OOlong
syntax more flexible. We believe that all these things make
OOlong easier to reason and prove things about, and more
suitable for extension than Welterweight Java.

Object calculi are used regularly as a means of exploring and
proving properties about language semantics. These calculi
are often tailored for some special purpose, e.g., the calculus
of dependent object types [1], which aims to act as a core
calculus for Scala, or OrcO [19], which adds objects to the
concurrent-by-default language Orc. While these calculi serve
their purposes well, their tailoring also make them fit less
well as a basis for extension when reasoning about languages
which do not build upon the same features. OOlong aims
to act as a calculus for common object-oriented languages
in order to facilitate reasoning about extensions for such
languages.

2.1 Java-based Calculi
There are many object calculi which aim to act as a core
calculus for Java. While OOlong does not aim to model
Java, it does not actively avoid being similar to Java. A Java
programmer should feel comfortable looking at OOlong code,
but a researcher using OOlong does not need to use Java as
the model. Figure 1 surveys the main differences between dif-
ferent Java core calculi and OOlong. In contrast to many of
the Java-based calculi, OOlong ignores inheritance between
classes and instead uses only interfaces. While inheritance is
an important concept in Java, we believe that subtyping is a
much more important concept for object-oriented program-
ming in general. Interfaces provide a simple way to achieve
subtyping without having to include concepts like overriding.
With interfaces in place, extending the calculus to model
other inheritance techniques like mixins [12] or traits [24]
becomes easier.

The smallest proposed candidate for a core Java calculus is
probably Featherweight Java [14], which omits all forms of
assignment and object state, focusing on a functional core of
Java. While this is enough for reasoning about Java’s type
system, the lack of mutable state precludes reasoning about
object-oriented programming in a realistic way. Extensions of
this calculus often re-add state as a first step (e.g., [2, 17, 23]).
The original formulation of Featherweight Java was not mech-
anised, but a later variation omitting casts and introducing
assignment was mechanised in Coq (∼2300 lines) [17]. When
developing mixins, Flatt et al. define ClassicJava [12], an
imperative core Java calculus with classes and interfaces. It
has been extended several times (e.g., [9, 27]). Flanagan and
Freund later added concurrency and locks to ClassicJava

in ConcurrentJava [11], but omitted interfaces. To the best
of our knowledge, neither ClassicJava nor ConcurrentJava
have been mechanised.

Bierman et al. define Middleweight Java [3], another imper-
ative core calculus which also models object identity, null
pointers, constructors and Java’s block structure and call
stack. Middleweight Java is a true subset of Java, meaning
that all valid Middleweight Java programs are also valid
Java programs. The high level of detail however makes it
unattractive for extensions which are not highly Java-specific.
To the best of our knowledge, Middleweight Java was never
mechanised. Strnǐsa proposes Lightweight Java as a simpli-
fication of Middleweight Java [26], omitting block scoping,
type casts, constructors, expressions, and modelling of the
call stack, while still being a proper subset of Java. Like Wel-
terweight Java it is purely based on statements, and does not
include interfaces. Like OOlong, Lightweight Java is defined
in Ott, but additionally uses Ott to generate a mechanised
formalism in Isabelle/HOL. A later extension of Lightweight
Java was also mechanised in Coq (∼800 lines generated from
Ott, and another ∼5800 lines of proofs) [10].

Last, some language models go beyond the surface language
and execution. One such model is Jinja by Klein and Nip-
kow [16], which models (parts of) the entire Java architecture,
including the virtual machine and compilation from Java to
byte code. To handle the complexity of such a system, Jinja
is fully mechanised in Isabelle/HOL. The focus of Jinja is
different than that of calculi like OOlong, and is therefore
not practical for exploring language extensions which do not
alter the underlying runtime.

2.2 Background
OOlong started out as a target language acting as dynamic
semantics for a type system for concurrency control [6]. The
proof schema for this system involved translating the source
language into OOlong, establishing a mapping between the
types of the two languages, and reasoning about the be-
haviour of a running OOlong program. In this context,
OOlong was extended with several features, including asser-
tions, readers–writer locks, regions, destructive reads and
mechanisms for tracking which variables belong to which
stack frames (Section 8 outlines the addition of assertions
and regions). By having a machine checked proof of sound-
ness for OOlong that we could trust, the proof of progress and
preservation of the source language followed from showing
that translation preserves well-formedness of programs.



P ::= Ids Cds e (Programs)
Id ::= interface I {Msigs} (Interfaces)

| interface I extends I1, I2
Cd ::= class C implements I {Fds Mds} (Classes)
Msig ::= m(x : t1) : t2 (Signatures)
Fd ::= f : t (Fields)
Md ::= def Msig {e} (Methods)
e ::= v | x | x.f | x.f = e (Expressions)

| x.m(e) | let x = e1 in e2 | new C | (t) e
| finish{async{e1} async{e2}}; e3
| lock(x) in e | lockedι{e}

v ::= null | ι (Values)
t ::= C | I | Unit (Types)

Γ ::= ε | Γ, x : t | Γ, ι : C (Typing environment)

Figure 2: The syntax of OOlong.

3. STATIC SEMANTICS OF OOlong
In this section, we describe the static semantics of OOlong.
The semantics are also available as Coq sources, together
with a full soundness proof. The main differences between
the paper version and the mechanised semantics are outlined
in Section 6.

Figure 2 shows the syntax of OOlong. Ids, Cds, Fds, Mds and
Msigs are sequences of zero or more of their singular counter-
parts. Terms in grey boxes are not part of the surface syntax
but only appear during evaluation. The meta-syntactic vari-
ables are x, y and this for variable names, f for field names,
C for class names, I for interface names, and m for method
names. For simplicity we assume that all names are unique.
OOlong defines objects through classes, which implement
some interface. Interfaces are in turn defined either as a col-
lection of method signatures, or as an “inheriting” interface
which joins two other interfaces. There is no inheritance
between classes, and no overriding of methods. A program
is a collection of interfaces and classes together with a start-
ing expression e. An example of a full OOlong program
(extended to handle integers) can be found in Figure 10.

Most expressions are standard: values (null or abstract ob-
ject locations ι), variables, field accesses, field assignments,
method calls, object instantiation and type casts. For sim-
plicity, targets of field and method lookups must be vari-
ables, and method calls have exactly one argument (multi-
ple arguments can be simulated through object indirection,
and an empty argument list by passing null). We also use
let-bindings rather than sequences and variables. Sequenc-
ing can be achieved through the standard trick of trans-
lating e1; e2 into let = e1 in e2 (due to eager evaluation
of e1). Parallel threads are spawned with the expression
finish{async{e1} async{e2}}; e3, which runs e1 and e2 in
parallel, waits for their completion, and then continues with
e3.

The expression lock(x) in e locks the object pointed to by x
for the duration of e. While an expression locking the object
at location ι is executed in the dynamic semantics, it appears
as lockedι{e}. This way, locks are automatically released at
the end of the expression e. It also allows tracking which
field accesses are protected by locks and not.

` P : t ` Id ` Cd ` Fd ` Md (Well-formed program)

wf-program
∀ Id ∈ Ids. ` Id ∀Cd ∈ Cds. ` Cd ε ` e : t

` Ids Cds e : t

wf-interface
∀m(x : t) : t ′∈ Msigs. ` t∧ ` t ′

` interface I {Msigs }

wf-interface-extends
` I1 ` I2

` interface I extends I1, I2

wf-class
∀m(x : t) : t ′∈ msigs (I ).def m(x : t) : t ′ { e } ∈ Mds
∀Fd ∈ Fds. ` Fd ∀Md ∈ Mds.this : C ` Md

` class C implements I {Fds Mds }

wf-field
` t

` f : t

wf-method
this : C , x : t ` e : t ′

this : C ` def m(x : t) : t ′ { e }

Figure 3: Well-formedness of classes and interfaces.

Types are class or interface names, or Unit (used as the type
of assignments). The typing environment Γ maps variables
to types and abstract locations to classes.

3.1 Well-Formed Program
Figure 3 shows the definition of a well-formed program, which
consists of well-formed interfaces and well-formed classes,
plus a well-typed starting expression. A non-empty in-
terface is well-formed if its method signatures only men-
tion well-formed types (WF-INTERFACE), and an inherit-
ing interface is well-formed if the interfaces it extends are
well-formed (WF-INTERFACE-EXTENDS). A class is well-
formed if it implements all the methods in its interface (the
helper function msigs is defined in the appendix, cf., Sec-
tion A.3). Further, all fields and methods must be well-
formed (WF-CLASS). A field is well-formed if its type is
well-formed (WF-FIELD). A method is well-formed if its
body has the type specified as the method’s return type
under an environment containing the single parameter and
the type of the current this (WF-METHOD).

3.2 Types and Subtyping
Figure 4 shows the rules relating to typing, subtyping, and the
typing environment Γ. Each class or interface in the program
corresponds to a well-formed type (T-WF-*). Subtyping is
transitive and reflexive, and is nominally defined by the in-
terface hierarchy of the current program (T-SUB-*). A well-
formed environment Γ has variables of well-formed types and
locations of valid class types (WF-ENV). Finally, the frame
rule splits an environment Γ1 into two sub-environments Γ2

and Γ3 whose variable domains are disjoint (but which may
share locations ι). The meta-syntactic variable γ abstracts
over variables x and locations ι (to reduce clutter), and the
helper function vardom extracts the set of variables from
an environment (cf., Section A.3). The frame rule is used



` t (Well-formed types)

t-wf-class
class C implements I { } ∈ P

` C

t-wf-interface
interface I { } ∈ P

` I

t-wf-interface-extends
interface I extends I1, I2∈ P

` I

t-wf-unit

` Unit

t1 <: t2 (Subtyping)

t-sub-class
class C implements I { } ∈ P

C <: I

t-sub-interface-left
interface I extends I1, I2∈ P

I <: I1

t-sub-interface-right
interface I extends I1, I2∈ P

I <: I2

t-sub-trans
t1 <: t2 t2 <: t3

t1 <: t3

t-sub-eq

` t

t <: t

` Γ (Well-formed environment)

wf-env
∀ x : t ∈ Γ. ` t ∀ ι : C ∈ Γ. ` C

` Γ

Γ1 = Γ2 + Γ3 (Frame Rule)

wf-frame
∀ γ : t ∈ Γ2.Γ1(γ) = t
∀ γ : t ∈ Γ3.Γ1(γ) = t

(vardom (Γ2) ∩ vardom (Γ3)) = ∅
Γ1 = Γ2 + Γ3

Figure 4: Typing, subtyping, and the typing environment.

when spawning new threads to prevent them from sharing
variables1.

3.3 Expression Typing
Figure 5 shows the typing rules for expressions, most of
which are straightforward. Variables are looked up in the
environment (WF-VAR) and introduced using let bindings
(WF-LET). Method calls require the argument to exactly
match the parameter type of the method signature (WF-

CALL). We require explicit casts, and only support upcasts
(WF-CAST). Fields are looked up with the helper function

1Since variables are immutable in OOlong, this kind of shar-
ing would not be a problem in practice, but for extensions
requiring mutable variables, we believe having this in place
makes sense.

Γ ` e : t (Typing Expressions)

wf-var
` Γ Γ(x ) = t

Γ ` x : t

wf-let
Γ ` e1 : t1 Γ, x : t1 ` e2 : t

Γ ` let x = e1 in e2 : t

wf-call
Γ ` x : t1 Γ ` e : t2

msigs (t1)(m) = y : t2 → t

Γ ` x.m(e) : t

wf-cast
Γ ` e : t ′ t ′ <: t

Γ ` (t)e : t

wf-select
Γ ` x : C

fields (C )(f ) = t

Γ ` x .f : t

wf-update
Γ ` x : C Γ ` e : t

fields (C )(f ) = t

Γ ` x .f = e : Unit

wf-new
` Γ ` C

Γ ` new C : C

wf-loc
` Γ Γ(ι) = C C <: t

Γ ` ι : t

wf-null
` Γ ` t

Γ ` null : t

wf-fj
Γ = Γ1 + Γ2 Γ1 ` e1 : t1 Γ2 ` e2 : t2 Γ ` e : t

Γ ` finish { async { e1 } async { e2 } } ; e : t

wf-lock
Γ ` x : t2 Γ ` e : t

Γ ` lock(x ) in e : t

wf-locked
Γ ` e : t Γ(ι) = t2

Γ ` lockedι{e} : t

Figure 5: Typing of expressions

fields (WF-SELECT). Fields may only be looked up in class
types (as interfaces do not define fields). Field updates have
the Unit type (WF-UPDATE). Any class in the program
can be instantiated (WF-NEW). Locations can be given any
super type of their class type given in the environment (WF-

LOC). The constant null can be given any well-formed type,
including Unit (WF-NULL). Forking new threads requires
that the accessed variables are disjoint, which is enforced by
the frame rule Γ = Γ1 + Γ2 (WF-FJ). Locks can be taken on
any well-formed target (WF-LOCK*).

Section 9 introduces a bidirectional version of the typing
rules which are entirely syntax-directed (meaning they can
be directly implemented by a type checker) and which handle
implicit upcasts, e.g., for arguments to method calls.

4. DYNAMIC SEMANTICS OF OOlong
In this section, we describe the dynamic semantics of OOlong.
Figure 6 shows the structure of the run-time constructs of
OOlong. A configuration 〈H;V ;T 〉 contains a heap H, a
variable map V , and a collection of threads T . A heap H
maps abstract locations to objects. Objects store their class,
a map F from field names to values, and a lock status L
which is either locked or unlocked. A stack map V maps
variable names to values. As variables are never updated,
OOlong could use a simple variable substitution scheme



cfg ::= 〈H;V ;T 〉 (Configuration)
H ::= ε | H, ι 7→ obj (Heap)
V ::= ε | V, x 7→ v (Variable map)
T ::= (L, e) | T1 ||T2 � e | EXN (Threads)
obj ::= (C,F, L) (Objects)
F ::= ε | F, f 7→ v (Field map)
L ::= locked | unlocked (Lock status)
EXN ::= NullPointerException (Exceptions)

Figure 6: Run-time constructs of OOlong.

instead of tracking the values of variables in a map. However,
the current design gives us a simple way of reasoning about
object references on the stack as well as on the heap, and
makes it easier to later add support for assignable variables.

A thread collection T can have one of three forms: T1||T2 � e
denotes two parallel asyncs T1 and T2 which must reduce
fully before evaluation proceeds to e. (L, e) is a single thread
evaluating expression e. L is a set of locations of all the
objects whose locks are currently being held by the thread.
The initial configuration is 〈ε; ε; (∅, e)〉, where e is the initial
expression of the program. A thread can also be in an
exceptional state EXN, which is a well-formed but “crashed”
state that cannot be recovered from. The current semantics
only supports the NullPointerException.

4.1 Well-Formedness Rules
Figure 7 shows the definition of a well-formed OOlong configu-
ration. A configuration is well-formed if its heap H and stack
V are well-formed, its collection of threads T is well-typed,
and the current lock situation in the system is well-formed
(WF-CFG). Note that well-formedness of threads is split into
two sets of rules regarding expression typing and locking re-
spectively A heap H is well-formed under a Γ if all locations
in Γ correspond to objects in H, all objects in the heap have
an entry in Γ, and the fields of all objects are well-formed
under Γ (WF-HEAP). The fields of an object of class C are
well-formed if each name of the static fields of C maps to a
value of the corresponding type (WF-FIELDS). A stack V is
well-formed under a Γ if each variable in Γ maps to a value
of the corresponding type in V , and each variable in V has
an entry in Γ (WF-VARS). A well-formed thread collection
requires all sub-threads and expressions to be well-formed
(WF-T-*). An exceptional state can have any well-formed
type (WF-T-EXN).

The current lock situation is well-formed for a thread if all
locations in its set of held locks L correspond to objects whose
lock status is locked. Two instances of lockedι in e must
refer to different locations ι (captured by distinctLocks(e),
cf., Section A.3), and for each lockedι in e, ι must be in
the set of held locks L. The parallel case propagates these
properties, and additionally requires that two parallel threads
do not hold the same locks in their respective L. Any locks
held in the continuation e must be held by the first thread
of the async. This represents the fact the first thread is
the one that will continue execution after the threads join
(WF-L-ASYNC). Exceptional states are always well-formed
with respect to locking (WF-L-EXN).

Γ ` 〈H;V ;T 〉 : t (Well-formed configuration)

wf-cfg
Γ ` H Γ ` V

Γ ` T : t H `lock T

Γ ` 〈H ; V ; T 〉 : t

wf-heap
∀ ι : C ∈ Γ.H (ι) = (C ,F , L) ∧ Γ; C ` F
∀ ι∈ dom (H ).ι ∈ dom(Γ) ` Γ

Γ ` H

wf-fields
fields (C ) ≡ f1 : t1, .. , fn : tn

Γ ` v1 : t1, .. ,Γ ` vn : tn

Γ; C ` f1 7→ v1, .. , fn 7→ vn

wf-vars
∀ x : t ∈ Γ.V (x ) = v ∧ Γ ` v : t
∀ x ∈ dom (V ).x ∈ dom(Γ) ` Γ

Γ ` V

wf-t-async
Γ ` T1 : t1 Γ ` T2 : t2

Γ ` e : t

Γ ` T1 ||T2 � e : t

wf-t-thread
Γ ` e : t

Γ ` (L, e) : t

wf-t-exn
` t ` Γ

Γ ` EXN : t

wf-l-thread
∀ ι∈ L.H (ι) = (C ,F , locked)

distinctLocks(e) ∀ ι∈ locks (e).ι∈ L
H `lock (L, e)

wf-l-async
heldLocks (T1) ∩ heldLocks (T2) = ∅
∀ ι∈ locks (e).ι∈ heldLocks (T1)

distinctLocks(e) H `lock T1 H `lock T2

H `lock T1 ||T2 � e

wf-l-exn

H `lock EXN

Figure 7: Well-formedness rules.

4.2 Evaluation of Expressions
Figure 8 shows the single-threaded execution of an OOlong
program. OOlong uses a small-step dynamic semantics, with
the standard technique of evaluation contexts (the definition
of E in the top of the figure) to decide the order of evaluation
and reduce the number of rules (DYN-EVAL-CONTEXT).
We use a single stack frame for the entire program and
employ renaming to make sure that variables have unique
names2. Evaluating a variable simply looks it up in the
stack (DYN-EVAL-VAR). A let-expression introduces a fresh
variable that it substitutes for the static name (DYN-EVAL-

LET). Similarly, calling a method introduces two new fresh
variables—one for this and one for the parameter of the
method. The method is dynamically dispatched on the type

2This sacrifices reasoning about properties of the stack size
in favour of simpler dynamic semantics.



E[•] ::= x.f = • | x.m(•) | let x = • in e | (t) • | lockedι{•}

cfg1 ↪→ cfg2 (Evaluation of expressions)

dyn-eval-context
〈H ; V ; (L, e)〉 ↪→ 〈H ′; V ′; (L′, e ′)〉

〈H ; V ; (L, E[e])〉 ↪→ 〈H ′; V ′; (L′, E[e ′])〉

dyn-eval-var
V (x ) = v

〈H ; V ; (L, x )〉 ↪→ 〈H ; V ; (L, v)〉

dyn-eval-let
x ′ fresh V ′ = V [x ′ 7→ v ] e ′ = e[x 7→ x ′]

〈H ; V ; (L, let x = v in e)〉 ↪→ 〈H ; V ′; (L, e ′)〉

dyn-eval-call
V (x ) = ι H (ι) = (C ,F , L)
methods (C )(m) = y : t2 → t , e

this′ fresh y ′ fresh
V ′ = V [this′ 7→ ι][y ′ 7→ v ]
e ′ = e[this 7→ this′][y 7→ y ′]

〈H ; V ; (L, x.m(v))〉 ↪→ 〈H ; V ′; (L, e ′)〉

dyn-eval-cast

〈H ; V ; (L, (t)v)〉 ↪→ 〈H ; V ; (L, v)〉

dyn-eval-select
V (x ) = ι H (ι) = (C ,F , L)
fields (C )(f ) = t F (f ) = v

〈H ; V ; (L, x .f )〉 ↪→ 〈H ; V ; (L, v)〉

dyn-eval-update
V (x ) = ι H (ι) = (C ,F , L)

fields (C )(f ) = t ′ H ′ = H [ι 7→ (C ,F [f 7→ v ], L)]

〈H ; V ; (L, x .f = v)〉 ↪→ 〈H ′; V ; (L, null)〉

dyn-eval-new
fields (C ) ≡ f1 : t1, .. , fn : tn
F ≡ f1 7→ null, .. , fn 7→ null

ι fresh H ′ = H [ι 7→ (C ,F , unlocked)]

〈H ; V ; (L, new C )〉 ↪→ 〈H ′; V ; (L, ι)〉

dyn-eval-lock
V (x ) = ι H (ι) = (C ,F , unlocked) ι 6∈ L
H ′ = H [ι 7→ (C ,F , locked)] L′ = L ∪ {ι}

〈H ; V ; (L, lock(x ) in e)〉 ↪→ 〈H ′; V ; (L′, lockedι{e})〉

dyn-eval-lock-reentrant
V (x ) = ι H (ι) = (C ,F , locked) ι∈ L
〈H ; V ; (L, lock(x ) in e)〉 ↪→ 〈H ; V ; (L, e)〉

dyn-eval-lock-release
H (ι) = (C ,F , locked) L′ = L\{ι}

H ′ = H [ι 7→ (C ,F , unlocked)]

〈H ; V ; (L, lockedι{v})〉 ↪→ 〈H ′; V ; (L′, v)〉

Figure 8: Dynamic semantics (1/2). Expressions.

cfg1 ↪→ cfg2 (Concurrency)

dyn-eval-async-left
〈H ; V ; T1〉 ↪→ 〈H ′; V ′; T ′1〉

〈H ; V ; T1 ||T2 � e〉 ↪→ 〈H ′; V ′; T ′1 ||T2 � e〉

dyn-eval-async-right
〈H ; V ; T2〉 ↪→ 〈H ′; V ′; T ′2〉

〈H ; V ; T1 ||T2 � e〉 ↪→ 〈H ′; V ′; T1 ||T ′2 � e〉

dyn-eval-spawn
e = finish { async { e1 } async { e2 } } ; e3

〈H ; V ; (L, e)〉 ↪→ 〈H ; V ; (L, e1) ||(∅, e2) � e3〉

dyn-eval-spawn-context
〈H ; V ; (L, e)〉 ↪→ 〈H ; V ; (L, e1) ||(∅, e2) � e3〉

〈H ; V ; (L, E[e])〉 ↪→ 〈H ; V ; (L, e1) ||(∅, e2) � E[e3]〉

dyn-eval-async-join

〈H ; V ; (L, v) ||(L′, v ′) � e〉 ↪→ 〈H ; V ; (L, e)〉

Figure 9: Dynamic semantics (2/2). Concurrency.

of the target object (DYN-EVAL-CALL).

Casts will always succeed and are therefore no-ops dynam-
ically (DYN-EVAL-CAST). Adding support for downcasts
is possible with the introduction of a new exceptional state
for failed casts. Fields are looked up in the field map of
the target object (DYN-EVAL-SELECT). Similarly, field
assignments are handled by updating the field map of the
target object. Field updates, which are always typed as Unit,
evaluate to null (DYN-EVAL-UPDATE). We have omitted
constructors from this treatise (Section 8.3 discusses how
they can be added). A new object has its fields initialised
to null and is given a fresh abstract location on the heap
(DYN-EVAL-NEW).

Taking a lock requires that the lock is currently available and
adds the locked object to the lock set L of the current thread.
It also updates the object to reflect its locked status (DYN-

EVAL-LOCK). The locks in OOlong are reentrant, meaning
that grabbing the same lock twice will always succeed (DYN-

EVAL-LOCK-REENTRANT). Locking is structured, mean-
ing that a thread can not grab a lock without also releasing
it sooner or later (modulo getting stuck due to deadlocks).
The locked wrapper around e records the successful taking
of the lock and is used to release the lock once e has been
fully reduced (DYN-EVAL-LOCK-RELEASE). Note that a
thread that cannot take a lock gets stuck until the lock is
released. We define these states formally to distinguish them
from unsound stuck states (cf., Section A.1)

Dereferencing null, e.g., using a null valued argument when
looking up a field or calling a method, results in a Null-
PointerException, which crashes the program. These rules
are unsurprising and are therefore relegated to the appendix
(cf., Section A.2).

4.3 Concurrency
Figure 9 shows the semantics of concurrent execution in OO-



long. Concurrency is modeled as non-deterministic choice of
what thread to evaluate (DYN-EVAL-ASYNC-LEFT/RIGHT).
Finish/async spawns one new thread for the second async
and uses the current thread for the first. This means that
the first async holds all the locks of the spawning thread,
while the second async starts out with an empty lock set
(DYN-EVAL-SPAWN). The evaluation context rule, needed
because DYN-EVAL-CONTEXT does not handle spawning,
forces the full reduction of the parallel expressions to the
left of � before continuing with e3, which is the expression
placed in the hole of the evaluation context (DYN-EVAL-

SPAWN-CONTEXT). When two asyncs have finished, the
second thread is removed along with all its locks3, and the
first thread continues with the expression to the right of �
(DYN-EVAL-ASYNC-JOIN).

5. TYPE SOUNDNESS OF OOlong
We prove type soundness as usual by proving progress and
preservation. This section only states the theorems and
sketches the proofs. We refer to the mechanised semantics
for the full proofs (cf., Section 6).

Since well-formed programs are allowed to deadlock, we must
formulate the progress theorem so that this is handeled. The
Blocked predicate on configurations is defined in the appendix
(cf., Section A.1).

Progress. A well-formed configuration is either done, has
thrown an exception, has deadlocked, or can take one addi-
tional step:

∀Γ, H, V, T, t . Γ ` 〈H;V ;T 〉 : t⇒
T = (L, v)∨T = EXN∨Blocked(〈H;V ;T 〉)∨
∃cfg ′, 〈H;V ;T 〉 ↪→ cfg ′

Proof sketch. Proved by induction over the thread struc-
ture T . The single threaded case is proved by induction over
the typing relation over the current expression.

To show preservation of well-formedness we first define a
subsumption relation Γ1 ⊆ Γ2 between environments. Γ2

subsumes Γ1 if all mappings γ : t in Γ1 are also in Γ2:

Γ1 ⊆ Γ2 (Environment Subsumption)

wf-subsumption
∀ γ : t ∈ Γ.Γ′(γ) = t

Γ ⊆ Γ′

Preservation. If 〈H;V ;T 〉 types to t under some environ-
ment Γ, and 〈H;V ;T 〉 steps to some 〈H ′;V ′;T ′〉, there exists
an environment subsuming Γ which types 〈H ′;V ′;T ′〉 to t.

∀Γ, H, H ′, V, V ′, T, T ′, t.
Γ ` 〈H;V ;T 〉 : t ∧ 〈H;V ;T 〉 ↪→ 〈H ′;V ′;T ′〉 ⇒
∃Γ′.Γ′ ` 〈H ′;V ′;T ′〉 : t ∧ Γ ⊆ Γ′

Proof sketch. Proved by induction over the thread struc-
ture T . The single threaded case is proved by induction over

3In practice, since locking is structured these locks will al-
ready have been released.

the typing relation over the current expression. There are
also a number of lemmas regarding locking that needs prov-
ing (e.g., that a thread can never steal a lock held by another
thread). We refer to the mechanised proofs for details.

6. MECHANISED SEMANTICS
We have fully mechanised the semantics of OOlong in Coq,
including the proofs of soundness. The source code weighs
in at ∼4100 lines of Coq, ∼900 of which are definitions and
∼3200 of which are properties and proofs. In the proof code,
∼300 lines are extra lemmas about lists and ∼200 lines are
tactics specific to this formalism used for automating often
re-occurring reasoning steps. The proofs also make use of
the LibTactics library [20], as well as the crush tactic [8].
We use Coq bullets together with Aaron Bohannon’s “Case”
tactic to structure the proofs and make refactoring simpler;
when a definition changes and a proof needs to be rewritten,
it is immediately clear which cases fail and therefore need to
be updated.

The mechanised semantics are the same as the semantics pre-
sented here, modulo uninteresting representation differences
such as modelling the typing environment Γ as a function
rather than a sequence. It explicitly deals with details such
as how to generate fresh names and separating static and
dynamic constructs (e.g., when calling a method, the body of
the method will not contain any dynamic expressions, such
as lockedι{e}). It also defines helper functions like field and
method lookup.

The Coq sources are available in a public repository so that
the semantics can be easily obtained and extended [5]. The
source files compile under Coq 8.8.2, the latest version at
the time of writing.

As a comparison between the Coq definitions and the paper
versions, here are the mechanised formulations of progress
and preservation:

Theorem progress :
forall P t’ Gamma cfg t,
wfProgram P t’ ->
wfConfiguration P Gamma cfg t ->
cfg_done cfg \/ cfg_exn cfg \/
cfg_blocked cfg \/
exists cfg’, P / cfg ==> cfg’.

Theorem preservation :
forall P t’ Gamma cfg cfg’ t,
wfProgram P t’ ->
wfConfiguration P Gamma cfg t ->
P / cfg ==> cfg’ ->
exists Gamma’,
wfConfiguration P Gamma’ cfg’ t /\
wfSubsumption Gamma Gamma’.

Other than some notational differences (e.g., using the name
cfg instead of spelling out 〈H;V ;T 〉), the biggest notice-
able difference is that the program P is threaded through
all the definitions, among other things to be able to do
field and method lookups. For example, the proposition
P / cfg ==> cfg’ should be read as“cfg steps to cfg’ when
executing in program P”. There is also an explicit requirement



that this program is well-formed (wfProgram P t’, where t’

is the type of the starting expression).

As another example, here is the lemma that states that if
two threads have disjoint lock sets, stepping one of them will
not cause the lock sets to overlap:

Lemma stepCannotSteal :
forall P H H’ V V’ n n’ T1 T1’ T2,
wfLocking H T1 ->
wfLocking H T2 ->
disjointLocks T1 T2 ->
P / (H, V, n, T1) ==> (H’, V’, n’, T1’) ->
disjointLocks T1’ T2.

The propositions disjointLocks T1 T2 and wfLocking H T

correspond to heldLocks(T1) ∩ heldLocks(T2) = ∅ and
H `lock T (cf., Figure 7). The extra element n in the config-
uration (H, V, n, T) is an integer used to generate fresh
variable names.

Finally, we first show how the evaluation context E (cf.,
Figure 8) is expressed in Coq. An evaluation context is a
function taking a single expression to another expression:

Definition econtext := expr -> expr.

Each case of E is represented by a Coq function of type
econtext, for example:

Definition ctx_call (x : _) (m : _) : econtext :=
(fun e => ECall x m e).

To capture which functions are valid evaluation contexts, we
define a proposition is_econtext, which is used by all defi-
nitions which reason about evaluation contexts (the snippet
below shows the dynamic rule DYN-EVAL-CONTEXT):

Inductive is_econtext : econtext -> Prop :=
| EC_Call :

forall x m,
is_econtext (ctx_call x m)

| ...

Inductive step (P : program) :
configuration -> configuration -> Prop :=
| ...
| EvalContext :

forall H H’ V V’ n n’ E e e’ Ls Ls’,
is_econtext E ->
P / (H, V, n, T_Thread Ls e) ==>
(H’, V’, n’, T_Thread Ls’ e’) ->

P / (H, V, n, T_Thread Ls (E e)) ==>
(H’, V’, n’, T_Thread Ls’ (E e’))

| ...

When performing case analysis over which step rules are
applicable, Coq sometimes generates absurd cases where the
an invalid evaluation context is applied. To handle these cases
automatically, we define tactics for unfolding (applying) all
evaluation contexts in scope and finding impossible equalities
in the assumptions (context[e] is the Coq notation for
matching any term with e in it):

Ltac unfold_ctx :=
match goal with

| [H: context[ctx_call] |- _] =>
unfold ctx_call in H

| [_ : _ |- context[ctx_call]] =>
unfold ctx_call

| ...
end.

Ltac malformed_context :=
match goal with
| [Hctx : is_econtext ?ctx |- _] =>
inv Hctx; repeat(unfold_ctx);

try(congruence)
| _ =>
fail 1 "could not prove malformed context"

end.

The tactic malformed_context tries to find an instance of
is_econtext in the current assumptions, inverts it (inv H

is defined as (inversion H; subst; clear H)), unfolds all
evaluation contexts in scope and then uses congruence to
dismiss all subgoals with absurd equalities in the assumptions.
In proofs where case-analysis of the step relation is needed,
the tactic inv Hstep; try malformed_context is used to
only keep the sane cases around.

7. TYPESETTING OOlong
The paper version of OOlong is written in Ott [25], which
lets a user define the grammar and typing rules of their
semantics using ASCII-syntax. The rules are checked against
the grammar to make sure that the syntax is consistent. Ott
can then generate LATEX code for these rules, which when
typeset appear as in this paper. The Ott sources are available
in the same repo as the Coq sources [5]. As an example, here
is the Ott version of the rule WF-LET:

G |- e1 : t1

G, x : t1 |- e2 : t

----------------------------- :: let

G |- let x = e1 in e2 : t

The LATEX rendering of G as Γ and |- as ` is defined elsewhere
in the Ott file, and the rule is rendered as:

wf-let
Γ ` e1 : t1 Γ, x : t1 ` e2 : t

Γ ` let x = e1 in e2 : t

It is also possible to have Ott generate LATEX code for the
grammar, but these tend to require more whitespace than
one typically has to spare in an article. We therefore include
LATEX code for a more compact version of the grammar, as
well as the definitions of progress and preservation [5]. Ott
also supports generating Coq and Isabelle/HOL code from
the same definitions that generate LATEX code. We have not
used this feature as we think it is useful to let the paper
version of the semantics abstract away some of the details
that a mechanised version requires.



8. EXTENSIONS TO THE SEMANTICS
This section demonstrates the extensibility of OOlong by
adding assertions, region based locking, and type-based null
reference tracking to the semantics. They are chosen as
examples of adding new expressions, adding new runtime
constructs, and extending the type system respectively. Here
we only describe the additions necessary, but these features
have also been added to the mechanised version of the se-
mantics with little added complexity to the code. They are
all available as examples on how to extend the mechanised
semantics [5].

8.1 Supporting Assertions
Assertions are a common way to enforce pre- and postcondi-
tions and to fail fast if some condition is not met. We add
support for assertions in OOlong by adding an expression
assert(x == y), which asserts that two variables are aliases
(if we added richer support for primitives we could let the ar-
gument of the assertion be an arbitrary boolean expression).
If an assertion fails, we throw an AssertionException. The
typing rule for assertions states that the two variables are of
the same type. The type of an assertion is Unit.

wf-assert
Γ(x ) = t Γ(y) = t

Γ ` assert (x == y) : Unit

In the dynamic semantics, we have two outcomes of evaluat-
ing an assertion: if successful, the program continues; if not,
the program should crash.

dyn-eval-assert
V (x ) = V (y)

〈H ; V ; (L, assert (x == y))〉 ↪→ 〈H ; V ; (L, null)〉

dyn-exn-assert
V (x ) 6= V (y)

〈H ; V ; (L, assert (x == y))〉 ↪→ 〈H ; V ; AssertionException〉

Note that the rules for exceptions already handle exception
propagation, regardless of the kind of exception (cf., Sec-
tion A.2).

In the mechanised semantics, the automated tactics are
powerful enough to automatically solve the additional cases
for almost all lemmas. The additional cases in the main
theorems are easily dispatched. This extension adds a mere
∼50 lines to the mechanisation.

8.2 Supporting Region-based Locking
Having a single lock per object prevents threads from concur-
rently updating disjoint parts of an object, even though this
is benign from a data-race perspective. Many effect-systems
divide the fields of an object into regions in order to reason
about effect disjointness on a single object (e.g., [4]). Sim-
ilarly, we can add regions to OOlong, let each field belong

to a region and let each region have a lock of its own. Syn-
tactically, we add a region annotation to field declarations
(“f : t in r”) and require that taking a lock specifies which
region is being locked (“lock(x, r) in e”). Here we omit declar-
ing regions and simply consider all region names valid. This
means that the rules for checking well-formedness of fields
do not need updating (other than the syntax).

Dynamically, locks are now identified not only by the location
ι of their owning object, but also by their region r. Objects
need to be extended from having one lock to having multiple
locks, each with its own lock status. We model this by
replacing the lock status of an object with a region map
RL from region names to lock statuses. As an example, the
dynamic rule for grabbing a lock for a region is updated
thusly:

dyn-eval-lock-region
V (x ) = ι H (ι) = (C ,F ,RL) RL( r ) = unlocked

(ι, r ) 6∈ L L′ = L ∪ {(l, r)}
H ′ = H [ι 7→ (C ,F ,RL[ r 7→ locked])]

〈H ; V ; (L, lock(x , r) in e)〉 ↪→ 〈H ′; V ; (L′, locked(ι,r){e})〉

Similarly, the well-formedness rules for locking need to be
updated to refer to region maps of objects instead of just
objects. A region map must contain a mapping for each
region used in the object:

wf-regions
∀ f : t in r∈ fields (C ).r ∈ dom(RL)

C ` RL

The changes can mostly be summarised as adding one extra
level of indirection each time a lock status is looked up on the
heap. The same is true for the mechanised semantics. For
example, in the original mechanisation, the lemma showing
that stepping a thread cannot cause it to take a lock that is
already locked by another thread looks like this:

Lemma noDuplicatedLocks :
forall P t’ Gamma l H H’ V V’ n n’ T T’ t c F,
wfProgram P t’ ->
heapLookup H l = Some (c, F, LLocked) ->
~ In l (t_locks T) ->
wfConfiguration P Gamma (H, V, n, T) t ->
P / (H, V, n, T) ==> (H’, V’, n’, T’) ->
~ In l (t_locks T’).

The function t_locks extracts the locks held by a thread T.
In the version extended with region locks, the same lemma
instead looks like this:

Lemma noDuplicatedLocks : forall
P t’ Gamma l r H H’ V V’ n n’ T T’ t c F RL,
wfProgram P t’ ->
heapLookup H l = Some (c, F, RL) ->
RL r = Some LLocked ->
~ In (l, r) (t_locks T) ->
wfConfiguration P Gamma (H, V, n, T) t ->
P / (H, V, n, T) ==> (H’, V’, n’, T’) ->
~ In (l, r) (t_locks T’).



Notice that instead of having a single taken lock, the object
looked up on the heap has a region map RL whose lock related
to region r is taken. The proof of the lemma is the same as
before, except for one extra inversion and an additional call
to congruence.

This extension increases the size of the mechanised semantics
by ∼130 lines.

8.3 Supporting Nullable Types
Null pointers are famously referred to by Tony Hoare as his
“billion dollar mistake”, referring to the fact that accidentally
dereferencing null pointers has been the cause of many bugs
since their introduction in the 1960s [13]. One way to reduce
the risk of these errors is to have the type system track
which references may be null during runtime. This section
introduces such “nullable types” to OOlong.

We start by extending the syntax of types:

t ::= C | I | C? | I? | Unit

The types C? and I? are given to references which could be
null valued. In the mechanisation, class and interface types
are extended with a boolean flag which tracks if the type is
nullable or not:

Inductive ty : Type :=
| TClass : class_id -> bool -> ty
| TInterface : interface_id -> bool -> ty
| TUnit : ty.

The subtyping rules are extended to allow non-nullable ref-
erences to flow into nullable ones, but not the other way
around:

t-sub-n
t <: t ′

t? <: t ′?

t-sub-n-r
t <: t ′

t <: t ′?

Finally, the type checking rule for null is updated to disallow
non-nullable types (nullable(t) is defined to be true for all
types t? and for Unit):

wf-nullable
` Γ ` t
nullable (t)

Γ ` null : t

For simplicity in this presentation, since there are no construc-
tors in OOlong, we require that all field types are nullable
(since fields are initialised to null). Lifting this restriction
is straightforward, for example by providing a list of initial
field values when creating new objects: new C(e1, . . . , en).

The mechanised semantics grows by ∼100 lines with the type-
level additions shown above. The extension of the subtyping
rules requires some proofs to be extended to handle these
cases and some minor lemmas to be added (e.g., that if t1 <:
t2 and nullable(t1), then nullable(t2)). Allowing non-nullable
types on the heap by adding constructors is possible, but is
complicated by Coq’s inability to generate effective induction
principles for nested data types (cf., [8], Chapter 3.8); the

interface Counter {
add(x : int) : Unit
get(tmp : int) : int

}
class Cell implements Counter {
cnt : int
def init(n : int) : Unit {

this.cnt = n
}
def add(n : int) : Unit {

let cnt = this.cnt in
this.cnt = (cnt + n)

}
def get(tmp : int) : int {

this.cnt
}

}
let cell = new Cell in
let cell2 = (Counter) cell in // (†)
let tmp = cell.init(0) in // (‡)
finish {

async {
lock(cell) in cell.add(1)

}
async {

lock(cell2) in cell2.add(2)
}

};
cell.get(0)

Figure 10: An OOlong program, with added integer support.

new expression would contain a list of expressions, for which
no induction hypotheses are automatically generated during
proofs by induction. Mechanising this extension with hand-
written induction principles is left as future work.

9. PROTOTYPE INTERPRETER
In addition the formalised semantics of OOlong, we have
implemented a simple interpreter for the language. The pur-
pose of this implementation is twofold: to provide an actual
executable semantics, and to minimise the effort of proto-
typing a future extension of OOlong. It is provided together
with the Ott and Coq sources in the OOlong repository [5].

The full implementation is∼760 lines of OCaml, accompanied
by ∼190 lines of comments and documentation. Lexing
and parsing (∼90 lines) is implemented using ocamllex [15]
and Menhir [22]. Type checking (∼190 lines) is based on a
bidirectional version of the typing rules which makes typing
entirely syntax-directed [21].

Figure 11 shows the bidirectional typing rules. Bidirectional
type checking differentiates between inferring a type for an
expression (Γ ` e⇒ t) and checking that an expression has
a given expression (Γ ` e ⇐ t). Most rules mirror the cor-
responding rules in Figure 5, but make explicit which types
are inferred and which are checked against an existing type.
The frame-rule in WF-FJ is exchanged for a requirement



Γ ` e⇒ t Γ ` e⇐ t (Inference/Checking)

bd-infer-var
` Γ Γ(x ) = t

Γ ` x ⇒ t

bd-infer-let
Γ ` e1 ⇒ t1 Γ, x : t1 ` e2 ⇒ t

Γ ` let x = e1 in e2 ⇒ t

bd-infer-call
Γ ` x ⇒ t1 Γ ` e ⇐ t2
msigs (t1)(m) = y : t2 → t

Γ ` x.m(e)⇒ t

bd-infer-cast
Γ ` e ⇐ t

Γ ` (t)e ⇒ t

bd-infer-select
Γ ` x ⇒ C

fields (C )(f ) = t

Γ ` x .f ⇒ t

bd-infer-update
Γ ` x ⇒ C Γ ` e ⇐ t

fields (C )(f ) = t

Γ ` x .f = e ⇒ Unit

bd-infer-new
` Γ ` C

Γ ` new C ⇒ C

bd-infer-lock
Γ ` x ⇒ t2 Γ ` e ⇒ t

Γ ` lock(x ) in e ⇒ t

bd-infer-fj
fv(e1) ∩ fv(e2) = ∅

Γ ` e1 ⇒ t1 Γ ` e2 ⇒ t2 Γ ` e ⇒ t

Γ ` finish { async { e1 } async { e2 } } ; e ⇒ t

bd-check-null
` Γ ` t

Γ ` null⇐ t

bd-check-sub
Γ ` e ⇒ t ′

t ′ <: t e 6= null

Γ ` e ⇐ t

Figure 11: Bidirectional typing rules.

that the free variables in two parallel asyncs are disjoint
(BD-INFER-FJ). Notably, the type of null is never inferred,
but can be given any well-formed type (BD-CHECK-NULL).
Checking any other expression against some type t amounts
to inferring a type t′ and seeing if t′ is a subtype of t (BD-

CHECK-SUB). We omit rules for syntax-directed subtyping,
which is implemented as a simple traversal of the interface hi-
erarchy. Since we only ever type check static programs, there
are no rules for the dynamic expressions ι and lockedι{e}.

The actual evaluation of programs (∼290 lines) is a more
or less direct translation of the dynamic rules in Section 4.
The interpreter evaluates entire configurations one step a
time, until the program terminates or deadlocks. Non-
terminating programs (including programs with livelocks)
are not detected by the interpreter, but will run forever.
Non-deterministic choice is implemented using a “scheduler”
function which decides whether to run the left or the right
thread in a fork. This function is customisable, allowing for
deterministic scheduling as well. There is no parallelism in
the interpreter itself.

To allow for slightly more interesting programs to be writ-
ten, we have also extended the interpreter with support for
integers and addition. This extension adds ∼50 lines of code.
Other than the obvious additions to parsing, type checking
and evaluation, the typing rule BD-CHECK-NULL must also
be updated with the premise t 6= int so that null does not
inhabit the integer type. Figure 10 shows an example pro-
gram written with this extension. Ignoring the integers, it

is also a syntactically correct OOlong program according to
the formal semantics. It shows some of the ways that the
implementation (and formalism) is kept simple. For example,
a function must take exactly one argument, even when it is
not used (cf., method get). Similarly, there is no sequencing
without variable binding, so the Unit result of cell.init(0)
(‡) must be bound to a variable. Note also that the Cell ob-
ject must be aliased (†) in order to be used by both threads in
the subsequent fork (the upcast to Counter is not necessary,
but is included to show all features of the language). All
of these things are of course easily remedied, but the point
of the interpreter is not to provide a smooth programmer
experience, but to keep the implementation simple.

Interpreting the program in Figure 10 gives the following
output:

Ran for 31 steps, resulting in

([], 3)

Heap:

{

0 -> (Cell, {cnt -> 3}, Unlocked)

}

Variables:

{

cell -> 0

cell2 -> 0

cnt -> 0

cnt#4 -> 1

n -> 0

n#0 -> 1

n#2 -> 2

this -> 0

this#1 -> 0

this#3 -> 0

this#6 -> 0

tmp -> null

tmp#5 -> 0

}

The result ([], 3) represents a single thread with an empty
set of held locks and the expression 3 (cf., T in Figure 6).
The heap maps integers (“addresses”) to objects, in this case
a single unlocked Cell object, with a field cnt of value 3.
The “stack” is represented as a map from variables to values
(“addresses”, integers, or null). Since variable names are never
recycled, fresh variable names are sometimes generated to
avoid clashes (e.g., this#3). These names may differ between
different runs due to non-determinism in the scheduling of
threads. For debugging purposes, the interpreter supports
printing a representation of the state as above after every
evaluation step.

The reason for implementing the interpreter in OCaml rather
than in Coq, where correspondence to the formal semantics
could be proven directly, is partly to be able to make the
implementation simpler and partly to lower the threshold for
a potential user. An OOlong program is not guaranteed to
terminate, and since Coq requires all functions to be total,
writing an interpreter would require tricks to work around
this (e.g., limiting evaluation to a maximum number of steps).
We also believe that it is easier for someone without prior



experience to approach OCaml than it is to approach Coq.
We leave implementing a formally verified interpreter in Coq
for future work.

10. CONCLUSION
We have presented OOlong, an object calculus with concur-
rency and locks, with a focus on extensibility. OOlong aims
to model the most important details of concurrent object-
oriented programming, but also lends itself to extension and
modification to cover other topics. A good language calculus
should be both reliable and reusable. By providing a mech-
anised formalisation of the semantics, we reduce the leap
of faith needed to trust the calculus, and also give a solid
starting point for anyone wanting to extend the calculus in a
rigorous way. Using Ott makes it easy to extend the calculus
on paper and get usable LATEX figures without having to
spend time on manual typesetting. The prototype implemen-
tation offers an entry point for the more engineering-oriented
researcher looking to experiment with new language features.

We have found OOlong to be a useful and extensible calculus,
and by making our work available to others we hope that
we will help save time for researchers looking to explore
concurrent object-oriented languages in the future.
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[18] J. Östlund and T. Wrigstad. Welterweight Java. In
TOOLS. Springer, 2010.

[19] A. M. Peters, D. Kitchin, J. A. Thywissen, and W. R.
Cook. OrcO: a concurrency-first approach to objects.
In OOPSLA, 2016.

[20] B. C. Pierce, A. A. de Amorim, C. Casinghino,
M. Gaboardi, M. Greenberg, C. Hritcu, V. Sjöberg, and
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APPENDIX

A. OMITTED RULES
This appendix lists the rules for deadlocked states, exception
propagation, and the helper functions used in the main
article. They should all be unsurprising but are included for
completeness.

A.1 Blocking
The blocking property of a configuration holds if all its
threads are either blocking on a lock or are done (i.e., have
reduced to a value). This property is necessary to distinguish
deadlocks from stuck states.

Blocked(cfg) (Configuration is blocked)

blocked-locked
V (x) = ι H (ι) = (C ,F , locked)

ι 6∈ L
Blocked(〈H ; V ; (L, lock(x) in e)〉)

blocked-deadlock
Blocked(〈H ; V ; T1〉)
Blocked(〈H ; V ; T2〉)

Blocked(〈H ; V ; T1 ||T2 � e〉)

blocked-left
Blocked(〈H ; V ; T1〉)

Blocked(〈H ; V ; T1 ||(L, v) � e〉)

blocked-right
Blocked(〈H ; V ; T2〉)

Blocked(〈H ; V ; (L, v) ||T2 � e〉)

blocked-context
Blocked(〈H ; V ; (L, e)〉)

Blocked(〈H ; V ; (L, E[e])〉)

A.2 Exceptions
Exceptions terminate the entire program and cannot be
caught. The only rule that warrants clarification is the rule
for exceptions in evaluation contexts which abstracts the
nature of an underlying exception to avoid rule duplication
(DYN-EXCEPTION-CONTEXT). For readability we abbre-
viate NullPointerException as NPE. When we don’t care
about the kind of exception we write EXN.

cfg1 ↪→ cfg2 (Exceptions)

dyn-npe-select
V (x) = null

〈H ;V ; (L, x .f )〉 ↪→ 〈H ;V ; NPE〉

dyn-npe-update
V (x) = null

〈H ;V ; (L, x .f = v)〉 ↪→ 〈H ;V ; NPE〉

dyn-npe-call
V (x) = null

〈H ;V ; (L, x.m(v))〉 ↪→ 〈H ;V ; NPE〉

dyn-npe-lock
V (x) = null

〈H ;V ; (L, lock(x) in e)〉 ↪→ 〈H ;V ; NPE〉

dyn-exception-async-left

〈H ;V ; EXN ||T2 � e〉 ↪→ 〈H ;V ; EXN〉

dyn-exception-async-right

〈H ;V ;T1 || EXN � e〉 ↪→ 〈H ;V ; EXN〉

dyn-exception-context
〈H ; V ; (L, e)〉 ↪→ 〈H ′; V ′; EXN〉
〈H ; V ; (L, E[e])〉 ↪→ 〈H ′; V ′; EXN〉

A.3 Helper Functions
This section presents the helper functions used in the formal-
ism. Helpers methods and fields are analogous to msigs, and
we refer to the mechanised semantics for details [5].

vardom(Γ) = {x | x ∈ dom(Γ)}

msigs(I) =

{
Msigs if interface I{Msigs} ∈ P
msigs(I1) ∪msigs(I2) if interface I extends I1, I2 ∈ P

msigs(C) = {Msig | def Msig{e} ∈Mds} if class C...{ Mds} ∈ P

msigs(t)(m) = x : t1 → t2 if m(x : t1) : t2 ∈ msigs(t)

heldLocks(T ) =

{
L if T = (L, e)
heldLocks(T1) ∪ heldLocks(T2) if T = T1 ||T2 � e

locks(e) = {ι | lockedι{e′} ∈ e}

distinctLocks(e) ≡ |locks(e)| = |lockList(e)|
where lockList(e) = [ι | lockedι{e′} ∈ e]


