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Scilab is an open-source cross-platform computing environment for engineering and scientific applications. 
It provides a high-level programming language with hundreds of built-in functions for numerical computa-
tion. Additionally, it encompasses Xcos, which is a Causal Block Diagrams-based graphical editor for mod-
eling and simulation of dynamical systems. Thus, it supports model-based simulation. With emerging tech-
nologies like cyber-physical systems, ubiquitous computing, smart devices and ambient intelligence, the sub-
ject reality (simuland) involves multiple heterogeneous and distributed interacting entities. Hence, the mod-
eling and simulation of these emerging systems is evolving towards constructing distributed simulations 
where individual models of distributed entities interact with each other via well-defined and agreed interfac-
es. Although distributed simulation has been widely utilized by mainly defense modeling and simulation 
community since the 1980s, the combination of distributed simulation with model-based simulation tech-
niques for simulating technical systems poses new research challenges. To date, Scilab and Xcos do not con-
tain built-in distributed simulation capabilities. This paper first introduces the requirement of distributed 
model-based simulation and then presents an implementation strategy aligned with the Scilab and the Xcos 
software architecture.

1 Introduction 
Scilab is an open source, cross-platform computing 
environment [1]. It is widely employed for engineer-
ing and scientific applications such as signal pro-
cessing or optimization [2]. 

Scilab encompasses a high-level programming lan-
guage with hundreds of built-in functions for numeri-
cal computation and a graphical editor, called Xcos, 
for modeling and simulation of dynamical systems 
using Causal Block Diagrams.

Technical system is the term that is used for all man-
made machines [3]. As the emerging category of 
technical systems, Cyber Physical Systems (CPS) are 
now addressing new capabilities and properties. CPS 
are real-time systems which are composed of distrib-
uted networked heterogeneous physical devices and 
computational components [4]. They were introduced 
as the integration of computing with the physical 
processes [5]. They are characterized by their net-
worked interacting components.

Not only the technical systems, but their operation 
environment is also changing. Further ubiquitous 
computing concepts are integrating mobile computing 
capabilities with pervasive elements of the environ-
ment, including sensors, actuators and computing 

nodes [6]. With ambient intelligence, the environment 
is getting smarter and reactive [7]. Simuland is de-
fined as the real-world item of interest; the object, 
process, or phenomenon to be simulated [8]. The 
simuland in the modeling and simulation of technical 
systems is evolving rapidly towards involving multi-
ple heterogeneous, and distributed interacting entities. 
Hence, distributed simulation tools and techniques 
are more required now for co-simulating loosely 
coupled individual models of distributed entities of 
emerging technical systems. These techniques and 
tools are required in model-based simulation envi-
ronments, like Scilab, that are extensively used in the 
engineering of technical systems.

Distributed simulation is a technology that enables a 
simulation to be executed on multiple computing 
nodes, such as a set of networked personal computers 
[9]. It usually deals with the execution of simulations 
on loosely coupled systems. It includes execution on 
geographically distributed computers interconnected 
via a wide area network such as the Internet. While 
the traditional motivations were reducing execution 
time, enabling geographically distributed experimen-
tation, integrating simulators from different manufac-
turers and fault tolerance, recently, the distributed 
nature of simulands and the corresponding models 
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has been declared the fundamental purpose of distrib-
uted simulation [10].

The communication among the entities in a distribut-
ed simulation can be conducted through pair-wise 
connections or by utilizing a shared bus (middleware) 
that all simulations can use collectively. High Level 
Architecture (HLA) proposes industry-wide accepted 
standardization in a shared bus by specifying the 
interfaces with the interconnected entities and the 
shared bus [11][12][13]. There are also some efforts 
that focus on providing HLA functionalities in model-
based simulation environments. Pawletta et al. pro-
pose a HLA toolbox for MATLAB [14][15]. For-
wardSim is providing HLA Toolbox for MATLAB 
[16] and HLA Blockset Simulink [17], while Theppa-
ya et al. offer an approach to integrate HLA Runtime 
Infrastructure Services with Scilab [18].

These efforts constitute bases for constructing an 
HLA capability in a model-based simulation envi-
ronment. While it is a legitimate requirement to sup-
port HLA for a distributed simulation toolbox, due to 
high complexity and a relatively gradual learning 
curve, simple and relatively easy pair-wise network-
ing is regarded as the initial capability set towards a 
more capable distributed simulation toolbox. There-
fore, this study presents an attempt at enabling pair-
wise connections between simulation entities, particu-
larly in Scilab and Xcos.

One of the widely employed techniques for pair-wise 
networking simulations is to use Transmission Con-
trol Protocol / Internet Protocol (TCP/IP) or User 
Datagram Protocol (UDP). Accordingly, this paper 
will present an implementation strategy for UDP and 
TCPI/IP networking features in Scilab and Xcos 
aligned with their software architecture. Section 2 
presents an implementation strategy for a scripting 
level networking Application Programming Interface 

(API) that is designed as an external Scilab module. 
Then, Section 3 introduces an approach for develop-
ing a networking block library as an Xcos palette.

2 Scilab Networking Module  
Scilab supports several general purpose programming 
languages, such as C/C++, Java or FORTRAN. The 
Scilab Networking Module is proposed as an external 
Scilab module. It aims to constitute an abstraction 
layer for Scilab users. This abstraction layer will 
wrap BSD Sockets [19], a classical socket API that 
was developed in the 1980s. 

Briefly, the Scilab Networking Module will give 
Scilab the ability to open a socket by choos-
ing/reserving a Port number and the local IP address 
of the device. Then, based upon the protocol that will 
be used (TCP/UDP), Scilab will start communication 
in a Client/Server architecture.

Scilab software architecture promotes a methodology 
to create external modules. Our concern here is to 
embed the capabilities of an external library to the 
Scilab engine. In Scilab, this is called interfacing 
[20]. Interfacing is the linking process, by which 
Scilab can use native function that is developed using 
a general purpose programming language, as a primi-
tive Scilab function. 

Gateway is a term used in Scilab for a function, writ-
ten in C language, that is responsible for converting 
the data to and from the native function, and provides 
a call interface to the native function. It is also called 
wrapper function because it wraps the native func-
tion, so it can be regarded as a Scilab primitive func-
tion (Figure 1). 

The gateway function relies on some header files, 
such as api_scilab.h, MALLOC.h and Scierror.h. 
These headers support the gateway with all function 
prototypes needed to interact with the Scilab engine.

Network Module

Scilab Engine

High-level function

Native function Socket API

Scilab API Gateway function (wrapper)
Low-level function

Figure 1 Extending native function to the Scilab engine using Gateway



Towards a Distributed Simulation Toolbox for Scilab 

Below is an example of a native function that is a part 
of the Scilab Networking Module. UDPsend_dblData 
sends data (doubles) using the UDP protocol. It is a 
pure C function that is called by the gateway.

As given in the following code listing, it opens a UDP 
socket for the Scilab process in order to send the data 
to the specified address and the port number. 

int UDPsend_dblData(char *_stServerName, 
int _iPort, double _dblData) 
{ 
 int sock, length, n; 
 struct sockaddr_in server; 
 struct addrinfo hints,*res; 
 char str[INET_ADDRSTRLEN]; 
 
 memset(&hints,0,sizeof hints); 
 hints.ai_family=AF_INET; 
 hints.ai_socktype=SOCK_DGRAM; 
 
 if((n=getaddrinfo(_stServerName, NULL, 
&hints, &res))!=0) 
 fprintf(stderr, "getaddrinfo error: 
%s\n",gai_strerror(n)); 
 
 sock = socket(AF_INET,SOCK_DGRAM,0); 
 if (sock < 0) 
 
perror("socket failed!"); 
 
 server.sin_addr=((struct 
sockaddr_in*)res->ai_addr)->sin_addr; 
 server.sin_family = AF_INET; 
 server.sin_port = htons(_iPort); 
 length=sizeof(struct sockaddr_in); 
 
 /* send data using UDP */ 
 n=sendto(sock, &_dblData, 
sizeof(double), 0, (const struct 
sockaddr*)&server, length); 
 if (n < 0){ 
 perror("UDP-send failed!"); 
 
printf("%s:%d",inet_ntop(AF_INET,&server.
sin_addr,str,sizeof(str)),server.sin_port
);} 
 else 
 printf("UDP-sending %f, n=%d\n", 
_dblData, n); 
 
 shutdown(sock,SHUT_RDWR); 
} 

Code 1. Native C function to send data using UDP.

Gateways incorporate various logical sections or 
steps. These steps will be presented as code listings 

for the example gateway that wraps the native func-
tion UDPsend_dblData. The first step, as presented 
in Code 2, is to declare the local variables that are 
required for the wrapper function. These local varia-
bles will be used by the  Scilab engine for data ex-
change.

 int sci_udpclient(char *fname) 
{ 
 SciErr sciErr; 
 int* portAddr = NULL; 
 int* dataAddr = NULL; 
 int* domainAddr = NULL; 
 double port = 0; 
 char *domain = NULL; 
 double dblData = 0; 
 char* strData = NULL; 

Code 2. Define local variables

In Code 3, we let Scilab check the number of input 
and output arguments which will be provided by the 
Scilab engine. Then, these input and output argu-
ments are assigned to the local variables that have 
already been defined.

CheckInputArgument(pvApiCtx, 3, 3); 
CheckOutputArgument(pvApiCtx, 0, 1); 
 
sciErr = 
getVarAddressFromPosition(pvApiCtx, 1, 
&domainAddr); 
 if(sciErr.iErr) 
 { 
  printError(&sciErr, 0); 
  return 0; 
 } 
 sciErr = 
getVarAddressFromPosition(pvApiCtx, 2, 
&portAddr); 
 if(sciErr.iErr) 
 { 
  printError(&sciErr, 0); 
  return 0; 
 } 
 sciErr = 
getVarAddressFromPosition(pvApiCtx, 3, 
&dataAddr); 
 if(sciErr.iErr) 
 { 
  printError(&sciErr, 0); 
  return 0; 
 } 

Code 3. Define variables and addresses pointers

Code 4 presents the validity check for each parame-
ter. The Scilab API provides various functions for 
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each datatype validation; here, we present only two of 
these functions: isStringType and isDoubleType. Re-
spectively, these functions check whether the value 
given is of string type or of double type. When the 
validation is successful, it executes the function that 
is responsible for taking the data from the Scilab 
engine. For the local variables, we use getAllocated-
SingleString to copy the string value to a local varia-
ble, and getScalarDouble to copy the double value to 
a local variable. 

Notice that the first string value is for the domain 
address, and the second double value is for the port 
number.

/* ====== check inputs ======= */ 
 // check domain 
 if(!isStringType(pvApiCtx, 
domainAddr)) 
 { 
  Scierror(999, _("%s: Wrong 
type for input argument #%d: A string 
expected.\n"), fname, 1); 
  return 0; 
 } 
 if ( 
getAllocatedSingleString(pvApiCtx, 
domainAddr, &domain) ) 
 { 
  Scierror(999, _("%s: Wrong 
size for input argument #%d: A scalar 
expected.\n"), fname, 1); 
  return 0; 
 } 
 // check port 
 if(!isDoubleType(pvApiCtx, portAddr)) 
 { 
  Scierror(999, _("%s: Wrong 
type for input argument #%d: A Integer 
expected.\n"), fname, 2); 
  return 0; 
 } 
 if (getScalarDouble(pvApiCtx, 
portAddr, &port) ) 
 { 
  Scierror(999, _("%s: Wrong 
size for input argument #%d: A scalar 
expected.\n"), fname, 2); 
  return 0; 
 } 
Code 4. Check and get parameters value from Scil-
ab Console

Finally, in Code 5, we check the last parameter, 
which holds the data that we want to send, then call 

the native function that is responsible for sending the 
data using the address and the port number.

if (getScalarDouble(pvApiCtx, dataAddr, 
&dblData)) 
{ 
 Scierror(999, _("%s: Wrong size for 
input argument #%d: A scalar 
expected.\n"), fname, 3); 
   return 0; 
} 
UDPsend_dblData(domain,(int)port, 
dblData); 
sciprint("Data sent (UDP): %f size: 
%d\n",dblData,sizeof(dblData)); 

Code 5. Calling the native function

3 Xcos Networking Palette 
In this section, we will introduce an approach for 
developing a networking block library as Xcos pal-
ette. Rather than employing a native API, our ap-
proach adopts Scilab’s native support for the Tool 
Command Language (TCL). TCL is a general pur-
pose scripting language that was designed in the 
1980s [21]. Scilab offers a native mechanism to in-
voke TCL language code directly from Scilab code 
using the TCL_EvalStr function. 

TCL core supports TCP sockets, but UDP implemen-
tations have been provided as extensions of the TLC 
core [22]. This section presents a TCL-based imple-
mentation strategy that utilizes core TCP sockets. In 
Code 6, the SERVER_open function, which is used to 
open a new TCP socket on the given port number, is 
presented. This function just wraps several TCL code 
lines into Scilab code. The great advantage of this 
approach with TCL is that it is cross-platform, as all 
Scilab distributions contain TCL by default.

function SERVER_open(port) 
 TCL_EvalStr("set ::SERVER_handle [socket 
-server SERVER_newClient 
"+string(port)+"]");  
 TCL_EvalStr("fconfigure $::SERVER_handle 
-blocking 0 -translation crlf;"); 
 printf("Server open for client Request at 
Port%d\n ",port) 
endfunction 

Code 6. TCP server initialization

When developing external blocks for Xcos, interface 
functions are used to define the block appearance, the 
number of inputs and outputs and the behavior. Code 
7 shows an interface function of the block that sends 
data to a remote client. The function has three argu-
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ments: job, arg1 and arg2. Job specifies the mode of 
the Scilab block’s interface function. There are three 
modes:
Plot: In this mode, data about the block are displayed 
on the plot.
Set: In this mode, the block has its parameters initial-
ized using the scicos_getvalue function.
Define: In this mode, block appearance is initialized 
and also the inputs and outputs are checked.

function 
[x,y,typ]=newcsi_block_m(job,arg1,arg2) 
  
 x=[]; 
 y=[]; 
 typ=[]; 
 
 select job 
  
 case "plot" then 
standard_draw(arg1) 
case "getinputs" then 
[x,y,typ]=standard_inputs(arg1) 
case "getoutputs" then 
[x,y,typ]=standard_outputs(arg1) 
case "getorigin" then 
[x,y]=standard_origin(arg1) 
 case "set" then 
  
 x=arg1 
 graphics=arg1.graphics; 
 model=arg1.model; 
 exprs=graphics.exprs 
 
 while %t do 
  
 [ok,ip,rv,exprs]=scicos_getvalue('Set TCP 
server parameters',.. 
 ['TCP port';'no use';],.. 
 list('vec',1,'vec',1),.. 
 exprs)  
  
 if ~ok then  
 break, 
 end 
 model.rpar = [ip;rv]; 
 graphics.exprs = exprs 
 x.graphics = graphics 
 x.model = model 
 break 
 end 
  
 case "define" then 
  
 in=0 
 out=1 
  

 model=scicos_model() 
 model.sim=list("mybf",5) 
  model.out=1  
  
  model.blocktype="c" 
  model.dep_ut=[%t %t] 
 model.label="TCP R" 
  exprs=[string(["1234";"0"])] 
  gr_i=['txt=[''TCP 
RECEIVER''];'; 
 
 'xstringb(orig(1),orig(2),txt,sz(1),s
z(2),''fill'')'] 
  disp(gr_i); 
 x=standard_define([4 2],model,exprs,gr_i) 
 disp("ready to go") 
 End 
 
endfunctionsd 

Code 7. The block interface function

Computation functions are used to define the behav-
ior of an Xcos block during a simulation. They have 
input parameters – block and flag. Block corresponds 
to the block which owns this function, and flag repre-
sents the simulation phase. Using the flag parameter, 
we can define the function behavior in different simu-
lation phases of an Xcos model, such as initialization, 
simulation and termination.
In the following example, see Code 8, a computation 
function of the block which receives data over the 
network is given. Particular tasks are performed in 
different simulation phases. When flag has value 4 
(initialization), the function starts the TCP server. If 
flag is 5 (termination), it stops the server. If flag is 1 
(simulation), the computation function sets block 
output to what is received from the TCP server.

function block=mybf(block,flag) 
 if flag==1 then 
 block.outptr(1)(1)=retval; 
 end 
 
if flag==4 then 
global retval; 
retval=0; 
 
 mode(0); 
 
SERVER_close(); 
SERVER_open(block.rpar(1)); 
 
end 
if flag==5 then 
 SERVER_close(); 
end 
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 endfunction 
 
function SERVER_readableEvent(str) 
 
disp (str); 
global retval; 
retval=strtod(str); 
endfunction  

Code 8. A block computation function

4 Conclusion 
After discussing the emerging requirements for hav-
ing distributed simulation capabilities in model-based 
simulation environments for technical systems, the 
paper presents an implementation strategy for an 
initial peer-to-peer networking capability for Scilab 
and Xcos with the Scilab Networking Module and the 
Xcos Networking Palette. 

The Scilab Networking Module exercises an imple-
mentation strategy that exploits the Scilab gateway, 
which enables interfacing with general purpose pro-
gramming language APIs and the Xcos Networking 
Palette employs TCL as a general purpose scripting 
language. While utilizing general purpose program-
ming language APIs is more complex, they provide 
flexibility for developers to extend the feature set of 
the API using general purpose programming lan-
guages. Running TCL scripts in Scilab, on the other 
hand, is easier to implement, but limits the user with 
the TCL capabilities. 

This paper presents a first attempt towards a distrib-
uted simulation toolbox in Scilab. Future work in-
cludes developing a full capability implementation 
for peer-to-peer communication. Both TLC and Scil-
ab gateway will be employed where appropriete. 
Further, we will be investigating the implementation 
strategies for shared bus architectures like HLA.
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