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Abstract

Chameleon signatures were introduced by Krawczyk and Rabin, being non-interactive sig-
nature schemes that provide non-transferability. However, that first construction employs a
chameleon hash that suffers from a key exposure problem: The non-transferability property re-
quires willingness of the recipient in consequentially exposing a secret key, and therefore inval-
idating all signatures issued to the same recipient’s public key. To address this key-revocation
issue, and its attending problems of key redistribution, storage of state information, and greater
need for interaction, an identity-based scheme was proposed in [1], while a fully key-exposure
free construction, based on the elliptic curves with pairings, appeared later in [7].

Herein we provide several constructions of exposure-free chameleon hash functions based
on different cryptographic assumptions, such as the RSA and the discrete logarithm assump-
tions. One of the schemes is a novel construction that relies on a single trapdoor and therefore
may potentially be realized over a large set of cryptographic groups (where the discrete loga-
rithm is hard).

Keywords: Digital signatures, undeniable signatures, collision-resistant hashing, trapdoor com-
mitments, chameleon signatures, chameleon hashing.

1 Introduction

A chameleon hash function is a trapdoor collision-resistant hash function: Without knowledge of
the trapdoor information, a chameleon hash function has the same characteristics of any crypto-
graphic hash function, such as pre-image and collision-resistance; however, collisions and second
pre-images can be easily computed once the trapdoor is known.

An interesting application of chameleon hashing is to obtain non-transferable signature algo-
rithms known as chameleon signatures.



1.1 Chameleon Signatures

Chameleon signatures, introduced in [12], are signature schemes based on the hash-and-sign
paradigm. To authenticate a message m, a signer computes its digest value h using a chameleon
hash function, and then signs h using an arbitrary signing algorithm of the signer’s choice.

In applications, users include the description of a particular chameleon hash as part of their
public keys, attesting their knowledge of the corresponding trapdoors. In this scenario, a signer
who wished to provide a recipient with a non-transferable signature could hash the message to be
signed with the chameleon hash function of the recipient, signing the resulting digest value. While
the recipient is able to verify the signature as correct, a third party would only be able to ascertain
that some message was signed (by the signer to the recipient). The third party would be aware that
the signing value could have been re-used by the recipient to authenticate any message of choice,
since the signature is a function of the hash value % alone and not of the original message, and
because the recipient can easily find collisions for the hash value h. Therefore, a third party would
not be willing to accept a proposed message content from the recipient in the absence of further
evidence.

To determine the original message content one depends on a secondary signer affirmation or,
if the signer is uncooperative, on the dispute settlement method described next.

Settlement of disputes. In case of disputes, it is easy to ascertain whether or not a proposed mes-
sage content is indeed the original one committed by the signer. A judge would summon both
signer and recipient. If the signer can produce a different message that is authenticated by the
same signing value of the proposed message, the contested signature is considered invalid. Re-
member that such a collision proves that the recipient has put forth a forged signature at some
point in time, as nobody apart from the recipient has more than a negligible probability of suc-
cessfully finding a second message that produces the same signing value.

The dispute-settling procedure described above shows that chameleon signatures provide
non-repudiation, as well as non-transferability. Unlike undeniable signatures (introduced in [6]),
which similarly provide both of these features, chameleon signatures require no interaction be-
tween the signer and recipient for the purpose of issuing a signature. This great improvement in
communication complexity comes at a mild disadvantage that, as mentioned above, chameleon
signatures leak the information that a user signed something for a specific recipient, a characteris-
tic not shared with undeniable signatures.

Applications of chameleon signatures. The non-transferability property is convenient in many
scenarios in which the signer has a legitimate interest in controlling subsequent disclosures of the
signed information. One application suggested in [1] is private auctions. In this context, the signer
is an auction bidder, and does not wish to have its signed bid value published before the auction
closing time and/or unless it wins the bidding. If the bid is leaked by the auctioneer, a second
bidder (who does not trust the auctioneer) cannot ascertain the validity of the claimed bid without
first contacting the original bidder. Another application that has been widely proposed for both
undeniable and chameleon signatures is secure software distribution, resistant to bootlegging.
Here a software vendor would distribute multiple binaries implementing the same functionality,
making it difficult to recognize between bona-fide versions and potentially virotic ones. To protect
legitimate users, the software vendor issues recipient-specific signatures on a particular binary. If
later the user were to post the signed binary in a file-sharing network, others downloading the
software would do so at their own risk — the presence of the non-transferable signature would not



confer authenticity onto the posted binary.

1.2 The Key Exposure Problem

The first construction of a chameleon signature [12] employed for hash function the Chaum-
Pedersen trapdoor commitment. More precisely, a potential recipient chooses and publishes a
regular discrete logarithm-based public key y = g%, where ¢ is the generator of a cyclic group G
and z is the secret key. Later, a user who wishes to sign message m can compute the chameleon
hash value h = y™g", where r is an auxiliary integer chosen uniformly at random by the signer.
Here it is understood that m is a short binary message that has value smaller than the order of
the group G when interpreted as the binary expansion of a non-negative integer. However, to
extend the scheme to arbitrary length messages, it is sufficient to first hash the long message using
a regular, cryptographic hash function.

Notice that if the recipient forges the signature, and two pairs (m, r) and (m/, r’) become known
to the signer (during a dispute), the signer can recover the secret key z of the recipient from h =
gty = gm/yTI, giving = = ”Z’__TC”

This is a highly undesirable outcome from the recipient’s viewpoint, as it invalidates all signa-
tures ever issued to the associated public key y. A third-party is therefore more likely to believe
claims made by the recipient about presenting an original (non-forged) signature, knowing that
such forgery would negatively affect the recipient. In fact, the deterrent effect of key exposure on
forgeries threatens the claims of non-transferability provided by the scheme. Therefore, to sup-
port non-transferability in any practical sense, we believe chameleon signatures schemes should
necessarily rely on key-exposure free chameleon hash function, described next.

Previous work on Key Exposure Freeness. The problem of key exposure was partly addressed
in [1], where it is shown how to build identity-based chameleon hash functions. The advantage of
using the identity-based primitives is that applications could direct the use of transaction-specific
chameleon hashes: The public key associated to a transaction-specific hash function is computed
by the signer from specially formatted strings that describe the transaction, and which include the
signer and recipient information as well as some nonce or time-stamp. In that paper, these strings
were called customized identities. Later, if the recipient wishes to forge the signature, it suffices
for him to communicate with the trusted authority (of the identity-based scheme) to recover the
trapdoor information associated with the transaction-specific public key. It is understood that the
trusted authority will only provide the trapdoor information to the recipient designated in the
formatted string. Notice that the trapdoor recovery is an optional step, the trapdoor information
being necessary only when the recipient wishes to deviate from the basic protocol by finding hash
collisions and re-using signing tokens. This extra interaction adds less communication complex-
ity than key revocation and key update in a classical public key infrastructure, but may still be
too burdensome in certain applications, and therefore offering only a partial answer to the key
exposure problem.

In [7], Chen et al. provide a specific construction of a key-exposure free chameleon hash func-
tion, working in the setting of Gap groups with bilinear pairings. While that certainly constitutes
the first full construction of a key-exposure free chameleon hash, it does not settle the question of
whether constructions exist that are either based on other cryptographic assumptions, or of more
efficient schemes, for instance of comparable performance to the original chameleon hash function
in [12].



Our Contribution. In this paper we show that key-exposure-free solutions exist whose security
depends on non-pairing-based assumptions, such as the security of the RSA signature scheme. In
fact, we show that the construction of [1] already enjoys the key-exposure-freeness property when
used in a PKI setting instead of as the proposed identity-based application.

In all of the constructions, the public key is divided into two components, one permanent and
the other ephemeral. Except for the scheme in section §4, all require a double-trapdoor context,
and the components of the public key is made to correspond to each of the trapdoors. Non-trans-
ferability is supported through eventual compromise of the ephemeral component of the public
key only. We also show that this technique can be applied broadly whenever a double-trapdoor is
available.

More surprisingly, we have a novel construction of a key-exposure free chameleon hash func-
tion that does not rely on a double-trapdoor mechanism (section §4). To the best of our knowledge
this is a novel result, of independent interest.

1.2.1 Organization of the paper.

In the following section, we provide the precise definition of key-exposure free chameleon hashes,
and present several requirements that such hashes should satisfy for efficient application to a
chameleon signature scheme. We follow that with a section that shows how chameleon hashes
satisfying different subsets of these security requirements correspond to trapdoor commitment
schemes satisfying different properties. Sections §4 and §5 present constructions of key-exposure
free chameleon hashes based on single, and double trapdoors, respectively, and are followed by a
few concluding remarks.

2 Definition and Requirements

A key-exposure free chameleon hash function is defined by a set of efficient algorithms:

Key Generation accepts as input a security parameter x in unary form, and outputs a pair
(SK,PK). It is a probabilistic algorithm, denoted as:

KeyGen: 1" — (SK,PK)

Hash accepts as input a public key PK, a label £, a message m and an auxiliary random param-
eter r and outputs a bitstring h of fixed length .

Hash : (PK,L,m,r) — C € {0,1}"

Universal Forge accepts as input the secret key SK associate to public key PK, a label £, a
message m, and auxiliary parameter r, and computes a second message m’ and random parameter
r’ such that Hash(PKC, L, m,r) = C = Hash(PKC, L, m/,1").



UForge(SK, L, m,r) — (m/,r"), such that
Hash(PK, L, m,r) = C = Hash(PK, L,m/ 1)

Instance Forge accepts as input a tuple (PK, £, m,r,m’,r") of a public key, a label, and two pairs
of a message and auxiliary random parameter, where C' = Hash(PK, £, m,r) = Hash(PK, L, m/,r"),
and computes another collision pair (m”, ") that also satisfies C' = Hash(PK, £, m" ).

IForge(PK, L,m,r,m’,r") — (m”,7"), such that
Hash(PK, L,m,r) = C = Hash(PK, L,m/,r") = Hash(PK, L,m", ")

The security requirements of a chameleon hash include:!

Collision-resistance: There is no efficient algorithm that given only P, £, m and r, (but not the
secret key SK) can find a second pair m/, ' such that C' = Hash(PK, £, m,r) = Hash(PK, L, m/, 1)
with more than negligible probability over the choices of PXC, £, m and r.

Semantic Security: The chameleon hash value C does not reveal anything about the possible
message m that was hashed. In formal terms, let H[X | denote the entropy of a random variable X,
and H[X|Y] the entropy of the variable X given the value of a random function Y of X. Semantic
security is the statement that the conditional entropy H[m|C] of the message given its chameleon
hash value C' equals the total entropy H[m| of the message space.

Message hiding: Assume the recipient has computed a collision using the universal forgery al-
gorithm, i.e., a second pair (m/, ') s.t. Hash(PK, £, m,r) = C = Hash(PK, L, m',r"), where (m, r)
was the original value signed. Then the signer, upon seeing the claimed values (m/,r’), can suc-
cessfully contest this invalid claim by releasing a third pair (m”, r"), without having to reveal the
original signed message. Moreover, the entropy of the original value (m, r) is unchanged by the
revelation of the pairs (m/,r’), (m”,r"), and any further collisions: H[(m,r)|C, (m/,r"), (m",r")] =
H{(m,r)|C].

Key Exposure Freeness: If a recipient with public key P has never computed a collision under
label £, then given C' =Hash(PIC, £, m, r) there is no efficient algorithm that can find a collision (a
second pair m/, r’ mapping to the same digest C'). This must remain true even if the adversary has
oracle access to UForge(SK, -, -, -) and is allowed polynomially many queries on triples (£;, m;, ;)
of his choice, except that £; is not allowed to equal the challenge label L.

!'We adopt information-theoretic formulations of semantic security and message hiding properties because these
lead to simpler proofs. Moreover, information-theoretic security (with respect to semantic security and message hid-
ing) is indeed achieved by all constructions of chameleon hashing schemes currently in the literature as well the ones
proposed in this paper.



Remark: Notice that when a chameleon hash with key-exposure freeness is employed within a
chameleon signature then any label £ must be explicitly committed to the signature along with
the identity of the recipient and a description of the hashes (see [12]).

3 Previous Work on Trapdoor Commitments

Trapdoor commitment schemes were introduced as early as 1988, with the work of Brassard et
al. [4]. Trapdoor commitment schemes are closely related to chameleon hashes. Yet the two no-
tions are not truly equivalent. The reason is that chameleon hashes, intended for use in combi-
nation with signature schemes, require extra properties that are not enjoyed by every trapdoor
commitment scheme. Indeed, in reviewing the literature in trapdoor commitments, we have iden-
tified at least four categories of commitments, which have all different degrees of suitability for
use as a chameleon hashing scheme. The first category, what we called “stateful” trapdoor com-
mitment schemes, cannot be used at all as chameleon hashes.

Stateful Trapdoor Commitments: These refer to trapdoor commitments which have the prop-
erty that the knowledge of the trapdoor by itself is not sufficient to enable the computation of alter-
nate de-commitments. In fact, it is necessary that the committing party know the trapdoor, execute
a variant commitment algorithm that produces the commitment plus some auxiliary information,
and save that auxiliary information (state) for later use in the alternate de-commitment algorithm.
One example of such constructions are simulation-sound trapdoor commitments, see [13].

Such trapdoor commitment schemes cannot be used as chameleon hashes. In the chameleon
hashing setting it is required that the recipient be able to find collisions (alternate de-commitments)
from the digest value and the trapdoor information alone. All chameleon hashes must be stateless
trapdoor commitment schemes.

Key Exposing Commitments: The chameleon hashing algorithm of Krawczyk and Rabin suf-
fered from the key exposure problem, which limits its application in the chameleon hashing set-
ting. It corresponds to the well-known Pedersen commitment scheme [17]. Another example of
a trapdoor commitment that suffer from the key exposure problem is given by several construc-
tions in Marc Fischlin’s thesis [10], including one based on factoring, originally introduced in [8]
(without reference to trapdoors). Another construction is provided by Shamir and Kalai [20] in re-
lation to online/offline signatures (notion introduced by Even, Goldreich, and Micali [9]). In short,
a signature on a chameleon hash is computed offline and then a signature on a new message is
derived by computing a collision of the hash (online phase). Although very efficient, their original
chameleon hash scheme, based on factoring, also suffers from the key exposure problem. This
implies, in particular, that the online phase of their mechanism can actually be performed only
once.

Non-Perfect-Hiding Commitments: These schemes are key exposure free, but they do not al-
low the execution of the instance forge algorithm IForge. In other words, they do not permit
adjudication without the original valid signature being disclosed at some stage. These schemes
might be interesting in a variety of application scenarios for which key exposure is not acceptable
due to high cost of key-redistribution, but where the privacy of the message signed is no longer



important at the time the matter comes for adjudication. In the following section we describe one
original scheme of this type.

Message-Hiding and Key-Exposure-Free Commitments: This lead to the most flexible and suit-
able application as chameleon hashes. The first claim of construction of such a scheme is included
in [7], where a pairings-based algorithm is given. However, the property is actually present
(though not recognized as such) in the scheme in [1], based on a well-known RSA commitment
scheme, first described in [15]. Therefore the use of pairings is not needed to obtain key-exposure-
free schemes. In the following we explain how the RSA commitment scheme can be used to pro-
vide both guarantees, and we also present two new constructions. The first is based on a trapdoor
commitment scheme [5] based on the Paillier’s cryptosystem [16]. The second requires pairings,
and is based on the trapdoor scheme described in [11]. Its security is dependent on the so-called
Strong Diffie-Hellman assumption.

The crucial feature enjoyed by the commitment schemes in this category is that they are all
double-trapdoor. One of the trapdoors is the secret key (used in the algorithm UForge to find
collisions) and the other is some trapdoor function of the label used in the IForge.

4 Key Exposure Freeness Without Message Hiding

In this section we describe a trapdoor commitment scheme that can be seen as a chameleon hash
providing key exposure freeness but no perfect message hiding. Unlike other schemes, it has the
unique and appealing feature of relying on a single trapdoor.

The scheme is related to a twin Nyberg-Rueppel signature, introduced in [14]. The key gener-
ation is similar to that of other discrete logarithm-based schemes. Notice that while we describe
the scheme in the finite field setting, the scheme may potentially be instantiated in other groups
where the DL is hard.

Key Generation: The scheme specifies a safe prime p of bitlength «. This means that p = 2¢ + 1,
where ¢ is also prime, and a generator g of the subgroup of quadratic residues Q,, of Z;, i.e, g
has order ¢q. The recipient chooses as secret key z at random in [1,¢ — 1], and his public key is
computed as (g,y = ¢g*). Let H be a collision-resistant hash function, mapping arbitrary-length
bitstrings to strings of fixed length 7: H : {0, 1}* — {0,1}".

The Hash Scheme: To commit to a message m, it is sufficient to choose random values (7, s) €
Z, x Z,, and compute:

e = H(m,r); and Hash(m,r,s) = r — (y°¢° mod p) mod q.

Collision Finding: Let C denote the output of the chameleon hash on input the triple (m,r, s).
A collision (m/, 7/, s’) can be found by computing (m’, ', s’) such that:

¢ =H(m',7"); and C = 1" — (y* ¢° mod p) mod q.



First, the recipient chooses a random message m’, a random value &’ € [1,¢ — 1], and computes
' = C + (¢* mod p) mod ¢, ¢ = H(m/,'), and s’ = k' — ¢’z mod ¢. Notice that indeed:

r’ — (ye,gsl mod p) mod g = C + (gk/ mod p) — (g”/gsl mod p) mod ¢q) = C.

Key Exposure Freeness and Collision-Resistance: The security of the scheme depends on whether
twice signing a message (without redundancy), using the above variant of Nyberg-Rueppel, is se-
cure. This was proven in appendix A to [14], where the concept of twinning signature schemes is
considered. The only difference from the scheme above is that we have substituted e = H(m, )
for r in the exponent of y. The only modification to the proof, which is formally the same, is that
the probability of collisions is changed from finding collisions in the whole ring Z, to finding them
over the image of H(-). Therefore, provided that this hash is collision-resistant, the conclusion of
security is unchanged. Notice that we do not need to model the function (-) as a random or-
acle. Instead, the proof of security for the twin Nyberg-Rueppel works in the generic model of
computation.

Semantic Security: Notice that when the committing party computes the value C, it can choose
s completely independently of m and r. Since g is an element of order ¢, the term ¢° uniformly
covers the whole subgroup of quadratic residues, independently of the value ry"(™"). The result
follows. More formally, from the commitment equation, for each random r and message m, there
is a one-to-one correspondence between the commitment C' and the value s. This implies that the
conditional probability ;.(m, r|C) equals p(m,r|s). But the latter value is simply p(m, r) since s is
chosen independently of m and 7.
Now, consider the definition of conditional entropy:

HimrlCl =~ S S plm,r,C)log(pu(m, 1C)).

m,r€{0,1}7 xZy CEZy

The internal summation becomes 3 e 1(m, 7, C)log(p(m, r)), which equals 1i(m, r) log(p(m, r)).
Therefore,

H[maT‘C] = - Z H(ma ’I”) log(lu’(m7r)) = H[m7r]'
m,re{0,1}7 X Zq

Notice that the proof is automatic once shown that the probability of the message conditioned on
the commitment value is really equal to the unconditioned probability. In the remaining schemes
we describe here, our proofs of semantic security will be shortened to only show the equality
between conditioned and unconditioned probabilities.

Remark: We have defined the above scheme using the short version of the Nyberg-Rueppel sig-
nature, for convenience of reference to the twin signatures work [14]. It is also possible to define a
trapdoor commitment scheme using the long form, as:

e = H(m,r); and Hash(m,r,s) = ry®¢g° mod p.



5 Key Exposure Freeness with Message Hiding

In this section we provide some examples of chameleon hash with key exposure freeness. Any
stateless trapdoor commitment with two trapdoors may be adequate, but the schemes below are
based on common assumptions and well-known constructions.

We stress that these candidate functions are not new but are rather well-known and have been
proposed as trapdoor commitments by others. We are showing that, unlike other trapdoor com-
mitment schemes, they can be easily adapted and transformed in chameleon hashes that provide
simultaneously key exposure freeness and message hiding.

5.1 Scheme based on RSA and Factoring

The scheme below is based on a well-known trapdoor commitment and has two trapdoors, the
factors of an RSA modulus and roots of elements in the RSA ring. This fact has been exploited
in [1] to build an identity-based chameleon hash and was independently noticed by Gennaro
in [11], where the basic scheme is also extended to allow for several trapdoors and applied to the
construction of concurrently non-malleable proofs of knowledge.

Key Generation: Let 7 and « be security parameters. As before, let H be a collision-resistant
hash function mapping strings of arbitrary length to strings of fixed length 7. Let n = pq with the
two prime numbers p and ¢ in the set {2°71 ... 2% — 1}. A random prime integer e is computed
s.t. e > 27, and such that it is relatively prime to the order ¢(n) = (p—1)(¢—1) of the multiplicative
residues modulo n. The secret key d is computed such that ed = 1 mod ¢(n).

The recipient’s public key is (n, e) and his secret key is (p, ¢, d).

The Hash Scheme: Let S be the string uniquely identifying the recipient and let £ be a label.
Let C : {0,1}* — {0,---,2%71} be a secure hash-and-encode scheme, mapping arbitrary bit-
strings to integers less than n. In general, such schemes are probabilistic, requiring an auxiliary
random string. For instance, the EMSA-PKCS encoding, defined in [19], requires a random (or
pseudo-random) salt at least 64 bits long, while the EMSA-PSS encoding, defined in [2, 18], can
take an auxiliary random string of bit-length equal to 7, the output length of the cryptographic
hash function H. Our notation will not make the random parameter explicit, as the nature of
the encoding (i.e., deterministic or non-deterministic) is immaterial to the following discussion as
long as the encoding scheme is uniquely invertible, i.e., the output of the encode function can be
decoded to recover the hash value.

Given J = C(L£) in Z,, the secret trapdoor is extracted as B = J 4 mod n, i.e., a secure RSA
signature on L.

The Hash(-) algorithm is:

Hash(£,m,r) = J"™¢ mod n, where J = C(£)

Collision Finding: To compute a collision (m’, '), the recipient would chose a random message
m’ and consider the following equation:



J'H(m)re _ J'H(m’)r/e’

and solve it for » modulo n, that is:

! = pBHM=H) mod .

Collision-Resistance and Key Exposure Freeness: Exposing a collision allows anybody to ex-
tract the secret key B associated to the value J = C(L). Indeed,

J'H(m),re _ J’H(m’),r/e — T‘//T‘ _ BH(m)—’H(m/).

Clearly, the absolute value of A = H(m) — H(m') is smaller than 27 and given that e is a prime
integer larger than 27, it follows that gcd(A,v) = 1. Using the extended Euclidean algorithm for
the GCD, one computes o and 3 such that A + fv = 1. B can now be extracted:

B= (r'/r)O‘Jﬁ.

As B is a secure RSA signature on £, and computing collisions is equivalent to breaking this
signature scheme, we conclude that finding collisions is hard without knowledge of the trapdoor.
Finally, notice that since revealing collisions is equivalent to computing signatures, the scheme is
safe from key exposure as the EMSA-PSS RSA signature scheme is resistant against active attacks.

Semantic Security: For each message m, the value C =Hash(L, m, r) is uniquely determined by
the value r, and vice-versa. Therefore, the conditional probability ;:(m|C) equals that of p(m|r),
which equals ;(m), as m and r are independent variables. The semantic security follows — see the
example in the previous section for details.

Message Hiding: Let C' be the commitment value. It is sufficient to show that, once a collision
is revealed, a person who does not know the trapdoor can compute a de-commitment to C' under
any message m” of her choice. From the above proof of the collision-resistance property we see
that the revelation of a collision (m,r), (m’,r’") discloses the trapdoor information B = C(£)%. In
order to find another collision, it is sufficient to choose m/” and set r” = B (m)=H(m')

Remark: This RSA-based scheme is a multi-trapdoor scheme in the sense of Gennaro [11], as the
second trapdoor is multiply instantiated — in other words, there is one trapdoor per label. Instead
of relying on the Strong RSA assumption as the scheme described in [11], the version described
above relies on the security of the EMSA-PSS RSA signature.

5.2 Scheme based on RSA[n,n] and Factoring

In [16], Paillier proved that, for each h € Z”, of order a non-zero multiple of n, the function 7,
that maps elements in (Z,, Z;,) to elements in Z*,, defined as:

Fi : (a,b) — h%" mod n?,

10



is a trapdoor permutation.

In [5], a trapdoor commitment scheme was introduced that is based on the Paillier trapdoor
permutation. The authors of [5] suggest to use their trapdoor commitment to build a chameleon
signature. However, if used directly as they described (i.e., a standard signature over a trapdoor
commitment), the problem of key exposure would arise. We simply observe that their trapdoor
commitment has actually two trapdoors and can be easily extended to support labels as described
below.

Key Generation: Letn = pg with p and ¢ large primes. Let H(-) be a cryptographic hash function
that maps elements of arbitrary length to element of a subset of Z*,. The public key of the scheme
is n, while the private key is (p, q).

The Hash Scheme: Given a message m € Z,, and a label £, compute h = H(L). Next, generate
randomly the pair (r1,72) € (Zy, Z},), and compute ([5]):
C = Hash(L£,m,r,73) = (1 4+ mn)h™ 7 mod n?.

To extend the scheme to commit arbitrary length messages, it is sufficient to employ a crypto-
graphic hash function with codomain in Z,,.

Collision-Finding and Collision-Resistance: Let C' be a commitment with respect to label L,
where h = H(L). From here to compute a collision under a second message m/, the recipient finds
C' = C(1 — m'n) mod n? and computes its inverse under the trapdoor permutation F:

F; H(C') = (a,b), witha € Z, and b € Z,.

The new de-commitment is (m/,r] = a, 7} = b). Without knowledge of the trapdoor, comput-
ing this collision is equivalent to breaking the RSA[n, n] assumption, as shown in [5].

Key Exposure Freeness: Suppose a party can compute a collision under label £, i.e., values
(m,ri,re,m',r}, 1) such that

(14 mn)h™rd = (1 +m'n)h" (rh)",

where h = H(L). It follows that (see full argument in [5]) the one can recover values a and b such
that
H(L) =h=(14an)b", (1)

i.e., the party can compute the Paillier signature (a,b) on the “message” L. This is not feasible,
since the Paillier signature is resistant against existential forgeries under active attacks in the ran-
dom oracle model, by reduction to the RSA[n,n] assumption.

Semantic Security: The semantic security of this commitment scheme has been shown in [5].

11



Message Hiding: Assuming a collision (m/, ], r5) has been revealed to the committing party,
she has learned a Paillier signature (a,b) on the value £. To obtain a collision, she computes the
value § = a1 mod n, chooses an arbitrary message m”, and computes r{ = 4 +&(m/ —m”) (as an
integer) and 74 = rf + d(m” — m’) mod n. One may readily verify that (m”, r}, ry) commits to the
same value as (m/, r, rh).

Remark: Note that when computing the collision, the new value | may fall outside the interval
[1,n — 1]. This is not a problem, as there is no requirement that collisions look like plausible initial
commitments. In a chameleon hashing scheme the goal is just to prove that the trapdoor-owner
has revealed a collision. If it is required that derived collisions look like plausible commitments,
the scheme can be “fixed” by redefining the interval where r; is chosen to be much larger than
[1,n—1].

5.3 Scheme based on SDH and DL

Gennaro in [11] proposes a new trapdoor commitment scheme based on the Strong Diffie-Hellman
(SDH) assumption introduced by Boneh and Boyen [3]. Informally, the /-SDH assumption says
that if G is a cyclic gap-DDH group of prime order ¢ and g is a generator of such a group, then an
attacker that sees G, g, g%, . . ., g“é, for an = € Z,, should not be able to compute i and e such that
ha:—i—e =g.

We show here that such a trapdoor commitment scheme can support labels and that collisions
cannot be used to compute the master trapdoor.

Key Generation: Let G = (g) be a gap-DDH group of order ¢ and let = € Z,. The public key of
the recipient is h = ¢g”. Let H(-) be a cryptographic hash function that maps elements of arbitrary
length to elements of Z,,.

The Hash Scheme: Let e = H(L), where L is the label. Given a message m, select a random
r € Zq and compute ([11]):

Hash(L,m,r) = g"™ (¢°h)".

Let F denote the output of the chameleon hash divided by ¢"(™). To verify that the hash was
computed correctly, one can check whether (¢", hg®, F') is a Diffie-Hellman triple. Remember that
Gap groups have efficient algorithms to decide the Diffie-Hellman problem.

Collision Finding, Collision-Resistance, and Key Exposure Freeness: Following [11], given a
pair (m, g"), it is efficient to find a collision (m’, ¢"') if = is known by setting:

g" = g" glHm)=H(m")/(z+e)] )
Conversely, exposing a collision (m, g") and (m’, g" ) allows anybody to efficiently compute g'/(+¢)
(which, in general, is a hard computational problem under the SDH assumption). To obtain key
exposure freeness, one needs the result that even if several values f; = gl/ (z+ei) are known, it
is difficult computing other values f; under different e; — i.e., under different labels £;. As re-
marked in [11], this result has been proved in [3], where the values f; are shown to be “weak
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signatures.” Moreover, since the knowledge of = permits computing such values efficiently, it is
clear that deriving = from collisions is infeasible.

Semantic Security and Message Hiding: From the discussion above, it is clear that with the
trapdoor information, exactly one collision can be computed under each message m’, proving
the semantic security of the scheme. It remains to be shown that collisions, and the consequent
exposure of the value f. = ¢'/(®+¢), permit finding other collisions under the same label. It is
sufficient to observe that the collision-finding equation (2) does not require knowledge of x, but
only of the value f,.

6 ID-based Chameleon Hashing

The double-trapdoor mechanism, introduced in the previous sections to build key-exposure-free
chameleon hashes, can be used to build identity-based ones, as shown in [1]. The resulting ID-
based mechanisms are not key-exposure free, though key exposure may be overcome through
”identity customization”, described below.

It is a standard assumption with ID-based schemes that system users are universally identifi-
able by IDs, i.e., unique bit-strings easily derivable from the public information associate with the
the individual within the system. For example, an ID could be a user’s e-mail address, augmented
by some information such as an expiration-date. If identity customization is desired, this basic ID
is augmented with information specific to a particular transaction (such as a message sequence
number and IDs of the other parties to the transaction).

An ID-based chameleon hashes share all the benefits typical of ID-based constructs (such as
ID-based encryption or signature schemes); in particular they dispense with the need for explicit
mechanisms for distribution of keys and certificates. In the context of chameleon hashing these
benefits are compounded by the fact that entities /users do not need to contact the trusted author-
ity to recover the secret key associated to their IDs, as is the case with identity-based schemes in
general. Indeed, the only use of the trapdoor information within a chameleon hashing scheme is
the production of forgeries. As long as the parties do not wish to deviate from the basic scheme
they do not need to contact the third party, while still enjoying the non-transferability conferred
simply by the potentiality of such forgeries — a third-party cannot ascertain whether the recipient
of a signature has not recovered the trapdoor information it is entitled to.

Moreover, through identity customization — having an augmented ID appear as the recipient
of a single signature — the ID-based scheme may reduce the penalty for the recipient for engaging
in forgery to the loss of the original signature only. Therefore, in practice, such schemes achieve
similar benefits of key-exposure free chameleon hashes as well as all the advantages of being
identity-based.

6.1 Description

An ID-based chameleon signature on a message consists of a traditional signature scheme, such
as RSA or DSA, computed over the ID chameleon hash of a message under the identity of the
intended recipient.

As with all identity-based schemes, only the trusted third party can extract the secret key
corresponding to an identity — though as mentioned above, such a secret does not need to be
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retrieved by the recipient unless he wants to forge the signature. This last observation is crucial to
the performance of the scheme, particular when used in combination with identity customization.
If the secret key needed to be recovered for every customized identity, the scheme would revert to
an online protocol.

6.1.1 Identity Customization

The identity-based chameleon hash function offers a natural way to mitigate the key exposure
problem without requiring the recipient to interact with the signer. Indeed, the hash can be com-
puted under a customized identity J; for instance, J could be the result of applying a hash-and-
encode function C(-) to the identity of the recipient, concatenated with the identity of the signer,
plus some transaction identifier:

J = C(identity_recipient || identity_signer || transaction_ID).

In this case, the scheme should stipulate that the secret key corresponding to J will be provided
only to the recipient, identified as the person whose identity prefixes the string used to form the
public key J. The use of properly customized identities eliminates also the need for checking
whether secret keys have been compromised given that customized identities are unique to each
message sighed and the corresponding secrets have not even been computed by the trusted au-
thority. As remarked in [1], in a practical system, recipients would be eventual signers, and thus
would have an interest in recovering secret keys occasionally, to ensure that the trusted party
works correctly and that the non-transferability property holds. Clearly such frequency could be
considerably lower than the frequency of transactions the recipient participates in.

6.1.2 Constructions

The idea is to have a trusted third party replace the role of the recipient in the key generation
process and produce several instances of the ephemeral public key, one per each recipient. The
label £ in the key-exposure-free schemes is then substituted with a customized identity when
computing the chameleon hash.

For instance, the scheme described in Section §5.1 can be easily turned into an ID-based one as
shown in [1]. In practice, the main trapdoor (the factors of the RSA modulus n) is owned by the
trusted party T, which then generates all the parameters required by the scheme. The hash-and-
encode mapping, C, must now be deterministic (for instance, it is possible to use the deterministic
version of the EMSA-PSS encoding) and J is computed as J = C(S) in Z,, where S is the identity
string associated to the recipient. The secret key B, a secure RSA signature on J, is given by T to
the recipient (optionally, under request from such recipient).

The Hash(-) algorithm is:

Hash(S,m,r) = J"™ " mod n,
where H(+) is the secure hash function.
Given the knowledge of B, the recipient can easily find a collision (m/, ") by computing:
' = ¢ BTM=H) mod n.

A similar technique can be used to build ID-based chameleon hashes from the schemes de-
scribed in Sections §5.2 (based on RSA[n,n] and Factoring) and §5.3 (based on SDH and DL).
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7 Conclusions and Open Problems

In this paper we outline a formal security model for chameleon hash functions, including pre-
cise specifications of the message-hiding and key-exposure freeness properties. We conclude that
single-trapdoor commitment schemes are not sufficient for the construction of chameleon hashes
- instead a double-trapdoor mechanism is required. Here an interesting question poses itself: The
double-trapdoor mechanism can either be used to construct an identity-based chameleon hash
scheme (in the sense of [1]) or a key-exposure free one, but not both. Are there efficient schemes
that are simultaneously identity-based and key-exposure free, perhaps based on a construction
with multiple (more than two) consecutive trapdoors?

Our results include three constructions of schemes satisfying the full security model, two based
on RSA, as well as a construction based on pairings. This significantly augments the family of
chameleon hashes satisfying both key-exposure freeness and message hiding, of which only one
example was previously known ([7]), based on pairings. We have also provided an example of
trapdoor commitment that provides key-exposure freeness, but not message hiding — and that
relies on a single trapdoor, the first such construction to our knowledge.
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