
Improved Collision Attack on MD4

Yusuke Naito*, Yu Sasaki*, Noboru Kunihiro*, and Kazuo Ohta*

*The University of Electro-Communications, Japan
{tolucky, yu339, kunihiro, ota} @ice.uec.ac.jp

Abstract

In this paper, we propose an attack method to find collisions of MD4 hash function. This
attack is the improved version of the attack which was invented by Xiaoyun Wang et al [1].
We were able to find collisions with probability almost 1, and the average complexity to find
a collision is upper bounded by three times of MD4 hash operations. This result is improved
compared to the original result of [1] where the probability were from 2−6 to 2−2, and the
average complexity to find a collision was upper bounded by 28 MD4 hash operations. We also
point out the lack of sufficient conditions and imprecise modifications for the original attack in
[1].

keywords: Collision Attack, MD4, Hash Function, Message Modification

1 Introduction

In August 2004, at the rump session of CRYPTO 2004, Wang et al. announced that their group
discovered collisions of various hash functions such as MD4, MD5, HAVAL-128, RIPEMD [2].
In March 2005, details of their attack methods were published [1,3], and these papers brought
big impact to cryptographic society.

The probability to find a collision on MD4 was 2−6 to 2−2 [1]. Although this probability
was very high, we aimed at constructing a more efficient attack which finds a collision with
probability almost 1. In the middle of the research, we found that there was an ambiguity on
the estimation of the success probability in [1] so that we needed to remove the ambiguity. In
this paper, we show how we removed the ambiguity and the result of an improved method.

Our improving process consists of roughly two stages. The first stage is removing the am-
biguity of the probability mentioned in [1], and consequently, we were able to reconstruct the
attack method to find a collision with probability exactly 2−2. The second stage is improving
the probability further in order to archive success probability almost 1. At this stage, we intro-
duced new message modification techniques. Using these techniques, the complexity to find a
collision can also be reduced. In our method, the complexity is upper bounded by three times
of MD4 hash operations.

2 Improving Process

2.1 Discovering lacked sufficient conditions

We realized that all sufficient conditions were not listed on the paper [1]. Therefore, the first
task of improvement was discovering the lacked sufficient conditions, and adding them into the

1

table of original sufficient conditions. Two sufficient conditions, a6,30 = 0, b4,32 = c4,32, were
newly discovered in this process. We show how they were discovered in Table 1.

Table 1: Discovery of ”a6,30 = 0”

Step Shift ∆mi The i-th output for M ′

21 3 231 a6[−29, 30,−32]

Table 2: Discovery of ”b4,32 = c4,32”

Step Shift ∆mi The i-th output for M ′

14 7 d4[−27,−29, 30]
15 11 c4

16 19 b4[19]
17 3 a5[−26, 27,−29,−32]
18 5 d5

Table 1 and 2 are part of tables written in [1].
Table 1 indicates the situation where the value of a6,30 has to be 0. In the right edge column

of table 1, there is an output difference ”a6[30]”. ”a6[30]” means that the value of a6,30 has to
be changed from 0 to 1 by modification. Therefore, we need to guarantee that the value of a6,30

before the modification has been set to 0, but this condition is not listed in [1]. Therefore, we
add the new sufficient condition ”a6,30 = 0”.

Table 2 shows the situation where the value of b4,32 has to be equal to c4,32. The value of
d5 is calculated by following expression,

d5 ←− ((d4 + G(a5, b4, c4) + m4 + 0x5a827999) mod 32) ≪ 5.

Here, the function G is as follows;

G(X,Y, Z) = (X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z).

Now, we focus on the fact that the value of a5,32 was changed from 1 to 0. The change in
a5,32 may cause the change in 32nd bit of G(a5, b4, c4), and after bits are shifted by 5 bits, it
may result in the change in d5,5. However, table 2 also shows there must not be any difference
in d5,5. Therefore, the influence of the change in a5,32 has to be canceled when G(a5, b4, c4)
is calculated. From the feature of G function, if the value of b4,32 and c4,32 are the same, the
value of G keeps unchanged in spite of the change in a5,32. However, [1] doesn’t guarantee this
condition, and thus, we add the new sufficient condition ”b4,32 = c4,32”

2.2 Apply More Precise Modifications than [1]

Wang et al. introduced various message modification methods [1]. However, we found some of
their modifications cannot modify message appropriately in some cases. Therefore, we propose
more precise modification in order to surely modify message appropriately.

2

Modification of d5,19 and c5,32

There is a sufficient condition on d5,19 and c5,26. When both of them are not satisfied, it
is necessary to modify both of them. In the modification method [1], the extra condition
”a2,17 = b2,17” has to be set in order to enable the value of c5,26 to be modified. Whereas, in
the case d5,19 is modified, a2,17 which is the corresponding value in round 1, is also modified.
This results in breaking the existing extra condition ”a2,17 = b2,17”. This situation happens
with probability 1

4 . To avoid this conflict of modification, we change the way to modify d5,19.
When d5,19 is modified, we use internal collision to cancel the modification to a2,17.

Estimation of the Success Probability of [1] about c5,26

As we explained above, the extra condition is broken with probability 1
4 . However, even if

the extra condition is broken, there still remained a chance that modification of c5,26 is done
correctly. We explain the mechanism and evaluate the precise success probability of this modifi-
cation. Table 3 shows the modification of c5,26. We assume that d5,19 has already been modified,

Table 3: Modification of ”c5,26”

step shift Modify mi Chaining value after Extra Conditions
message modification in 1st round

6 7 m5 → m5 + 29 d2[17], a2, b1, c1 d2,17 = 0
7 11 c2, d2[17], a2, b1 a2,17 = b1,17

8 19 b2, c2, d2[17], a2 c2,17 = 0
9 3 m8 → m8 − 216 a3, b2, c2, d2[17] b2,17 = 0
10 7 m9 → m9 − 216 d3, a3, b2, c2

and consequently, the extra condition ”a2,17 = b2,17” has been broken. If we do nothing except
for the modification shown in Table 3, the value of c2 will be changed because of the broken
extra condition. However, there is another way to prevent the influence of the change of d2[17]
without using the extra condition. This method is modifying m6 in order to guarantee that de-
sirable c2 will be produced with c1, changed d2, a2, b1 and changed m6. In details, the following
expression guarantees the desirable c2.

m6 ←− (c2 ≫ 11)− c1 − f(d′2, a2, b1) (1)

The expression (1) can be seen only in the modification of d6,29. Table 4 shows the modification

Table 4: Modification of ”d6,29”

m5 ←− m5 ± 223

m6 ←− (c2 ≫ 11)− c1 − f(d′2, a2, b1)
m7 ←− (b2 ≫ 19)− b1 − f(c2, d

′
2, a2)

Add an extra condition ”b2,31 = 1”
m9 ←− (d3 ≫ 7)− d′2 − f(a3, b2, c2)

of d6,29. The expression (1) is included in Table 4. Therefore, even though the extra condition
”a2,17 = b2,17” is broken, if d6,29 is modified, c5,26 is able to be modified appropriately.

3

As a result , the probability that c5,26 satisfies the sufficient condition after multi-step mod-
ification is:

1. c5,26 satisfies the sufficient condition without being modified: Prob.12

2. c5,26 is modified and d5,19 is not modified, so that the extra condition is hold: Prob. 14

3. Both of c5,26 and d5,19 are modified and the extra condition is broken, but c2 is modified
when d6,29 is modified: Prob. 18

Therefore, the total success probability for c5,26 is 1
2 + 1

4 + 1
8 = 7

8 .

Similar situation occurs when both of c5,32 and c6,32 are modified. According to [1], we need
to set the extra condition c2,23 = 0 to modify c5,32. [1] doesn’t mention how to modify c6,32.
However, if we apply the same modification introduced in that paper, the value of c2,23 has to
be changed to modify c6,32. This results in breaking the existing extra condition c2,23 = 0, and
this time, there is no opportunity to modify c6,32 without using extra conditions. This case
happens with probability 1

4 . To avoid this conflict of modification, we change the way to modify
c5,32. We used another technique to modify c5,32.

Modification of c5,29

The modification of c5,29 explained in [1] also has a problem. In this method, the value of d2,20

is modified to make an internal collision. However, there is a sufficient condition on d2,20, which
is d2,20 = a2,20. Therefore, if c5,29 is modified, it breaks the sufficient condition d2,20 = a2,20,
and modification of c5,29 doesn’t make any sense. This happens with probability 1

2 . To avoid
breaking a sufficient condition by modifying d5,29, we change the way to modify d5,29. We used
another technique to modify d5,29.

Now, all the ambiguous modifications are replaced with precise modifications, and we are
able to satisfy all sufficient conditions in round 1 and 2.

2.3 Modifications of sufficient conditions in round 3

Although we are able to modify all sufficient conditions in round 1 and 2, two sufficient conditions
in round 3 are still remained. However, we realized the method to modify these conditions. As
a result of using our technique, the probability to find a collision becomes almost 1, and the
complexity is upper bounded by three times of MD4 hash operations.

3 Conclusion

Without applying our techniques to [1], the probability to find a collision is from 2−6 to 2−2, and
the complexity to find a collision is upper bounded by 28 MD4 hash operations. We estimated
that the probability of the result of [1] is 2−5.61··· because of two sufficient conditions in round
3 (1

4), two lacked sufficient conditions (1
4), modification of c5,29 (1

2), modification of d5,19 (7
8),

and modification of c5,32 (3
4).

However, after our techniques are applied, the probability and the complexity to find a
collision are greatly improved. The probability to find a collision becomes almost 1, and the
complexity to find a collision is upper bounded by three times of MD4 hash operations.

In addition, this technique is expected to be able to be applied to MD5 hash function as
well. We will announce the details of our technique later.

4

In the end of this paper, we put an example of a random message where [1] cannot generate
a collision message pair and a collision message pair which was generated with the same random
message by using our technique. Table 5 shows this result.

Table 5: Example of the generated collision pair

Mrandom 24ce9d37de4dfca0a3b88fc39c9f9e5c92ee86ada2c9e8b088f3a020c5368a69
0e503cc80c2368f978ff57bf21a1762ad018afb8daa431e9308bf382806a18a1

M1 368b9d377e2dfc60b5b88fcb0c8fbe5601a6662d9ecc3929aa35aabf887f929f
2740a2c8c8c12039bbb401bdc1983331e45e1f61c150d565ee27d04af1dfec4c

M ′
1 368b9d37fe2dfc6025b88fcb0c8fbe5601a6662d9ecc3929aa35aabf887f929f

2740a2c8c8c12039bbb401bdc1983331e45d1f61c150d565ee27d04af1dfec4c

References

[1] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, Xiuyuan Yu: Cryptanalysis of the
Hash Functions MD4 and RIPEMD, Advances in EUROCRYPT2005, LNCS 3494, pp. 1–18,
2005.

[2] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, Hongbo Yu: Collisions for Hash Functions MD4,
MD5, HAVAL-128 and RIPEMD, rump session, CRYPTO 2004, e-Print, 2003.

[3] Xiaoyun Wang, Hongbo Yu: How to break MD5 and Other Hash Functions, Advances in
EUROCRYPT2005, LNCS 3494, pp. 19–35, 2005.

[4] Ronald L. Rivest: The MD4 Message Digest Algorithm, CRYPTO’90 Proceedings, 1991,
http://theory.lcs.mit.edu/ rivest/Rivest-MD4.txt

5

