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Abstract. Standard security notions for encryption schemes do not guarantee any security
if the encrypted messages depend on the secret key. Yet it is exactly the stronger notion
of security in the presence of key-dependent messages (KDM security) that is required in a
number of applications: most prominently, KDM security plays an important role in analyzing
cryptographic multi-party protocols in a formal calculus. But although often assumed, the
mere existence of KDM secure schemes is an open problem. The only previously known
construction was proven secure in the random oracle model.
We present symmetric encryption schemes that are KDM secure in the standard model (i.e.,
without random oracles). The price we pay is that we achieve only a relaxed (but still useful)
notion of key-dependent message security. Our work answers (at least partially) an open
problem posed by Black, Rogaway, and Shrimpton. More concretely, our contributions are as
follows:
1. We present a (stateless) symmetric encryption scheme that is information-theoretically

secure in face of a bounded number and length of encryptions for which the messages
depend in an arbitrary way on the secret key.

2. We present a stateful symmetric encryption scheme that is computationally secure in face
of an arbitrary number of encryptions for which the messages depend only on the respec-
tive current secret state/key of the scheme. The underlying computational assumption is
minimal: we assume the existence of one-way functions.

3. We give evidence that the only previously known KDM secure encryption scheme cannot
be proven secure in the standard model (i.e., without random oracles).
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1 Introduction

Proofs of security are a good and sound way to establish confidence in an encryption system.
However, “proof” is a bit misleading here: usually, a security proof is not an absolute statement,
but merely shows that under certain assumptions, the scheme is resistant against a certain class of
attacks. Nothing is guaranteed if the assumptions are invalidated or attacks outside the considered
class take place. Therefore, it is crucial that
– the underlying assumptions are plausible, and
– the considered class of attacks is as general as possible.
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Additionally, encryption schemes are most often used only as a building block in a larger protocol
context, and thus

– the considered class of attacks should allow for meaningful and general analysis of the encryption
scheme in a larger protocol context.

Indistinguishability of ciphertexts. The most established class of attacks consists of attacks
targeted against the indistinguishability of ciphertexts (IND-CPA [16], resp. IND-CCA [21] attacks).
Here, adversary A’s goal is to win the following game: first, A chooses two messages m0, m1, then
gets the encryption cb of mb (for a random b ∈ {0, 1}), and finally outputs a guess b′ for b. Now A
wins if b = b′, i.e., if it guessed correctly which message was encrypted. The scheme is secure if no
adversary wins (significantly) more often than in half of the cases. Intuitively, security in this sense
implies that “one ciphertext looks like any other.”

The IND-CPA and IND-CCA notions have been tremendously successful and even proved equiv-
alent to a number of alternative and arguably not less appealing notions (cf. [5,6,10,19]). At the same
time, IND-CPA and IND-CCA security can be achieved under various plausible number-theoretic
assumptions [16,13,11].

Key-dependent message security. However, there is one security property that is useful and
important in many applications, yet is not covered by IND-CPA or IND-CCA security: security in
presence of key-dependent messages. More concretely, imagine a scenario in which the adversary can
request encryptions of arbitrary (but efficiently evaluatable) functions of the secret decryption key.
In other words, the adversary chooses a function g and gets the encryption of g(K) under secret key
K. Note that this is something the adversary may not be able to generate on its own, not even in
the public-key setting. The adversary’s goal is now to distinguish such a key-dependent encryption
from an encryption of a random message. Security of an encryption is a useful notion to consider
since

– in relevant practical settings, this notion is necessary: consider, e.g., encrypting your hard drive
(which may contain the secret key, e.g., on the swap partition, or in a file that contains your
secret keyring),

– certain protocols use key-dependent message security explicitly as a technical tool [8],

and, possibly most importantly from a theoretical perspective,

– key-dependent message security is a key ingredient for showing that security results that are
proven in a formal calculus are also computationally sound.

This latter reason may come a bit surprising, hence we explain it in more detail.

Formal security proofs. The idea to automate security proofs can be traced back to the seminal
work of Dolev and Yao [14], who described a formal calculus to analyze security protocols. To
make the calculus accessible to automatic provers, however, base primitives like encryption (or,
later, signatures) had to be over-idealized, disconnecting them from their concrete computational
implementations. What was missing for almost 20 years was a soundness result, i.e., a result that
essentially states“whatever can be proven in the abstract calculus holds as well in the cryptographic
world, where the ideal encryption operator is implemented with an encryption scheme.”

But finally, the soundness result by Abadi and Rogaway [1] connected the formal, machine-
accessible world with the cryptographic world. However, with standard encryption schemes, only a
certain subset of possible protocols could be considered, namely those that only contain expressions
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which fulfil a certain“acyclicity”condition.3 To achieve full generality, a stronger requirement (secu-
rity in the presence of key-dependent messages) on the encryption scheme was needed. This is not
a peculiarity of the approach of Abadi and Rogaway; similar problems occur in related approaches,
e.g. [20,2,4]. In particular, Adão et al. [2] show that in a certain sense, key-dependent message
security is a necessity for formal soundness.

Related work. Around the time when the need for key-dependent security had been realized,
formal characterizations of the security notion were given in [8,7]. Moreover, [7] showed a simple
symmetric encryption scheme to be secure with respect to their notion. However, their scheme was
proven in the random oracle model, and the proof made heavy use of the “ideal” nature of the
random oracle (more details on this in Section 3). Black et al. posed the question of achieving
key-dependent security in the standard model.

Backes et al. [3] consider several strengthenings of the definition from [7]. They prove structural
results among the notions (including a way to “patch” a scheme that is secure in the sense of [7] to
match the notions from [3]). However, Backes et al. do not give an actual construction of a secure
scheme.

Our work. Our goal is to achieve key-dependent message security, as defined by Black et al., in
the standard model. We present several results:

– a (stateless) symmetric encryption scheme that is information-theoretically secure in face of a
bounded number and length of encryptions for which the messages depend in an arbitrary way
on the secret key.

– a stateful symmetric encryption scheme that is computationally secure in face of an arbitrary
number of encryptions for which the messages depend only on the respective current secret
state/key of the scheme. The underlying computational assumption is minimal: we assume the
existence of one-way functions.

We also stress the strictness of key-dependent message security:

– We give evidence that the only previously known KDM secure encryption scheme cannot be
proven secure in the standard model (i.e., without random oracles).4

Note. Recently, we learned about the (concurrent and independent) work [17] of Halevi and
Krawczyk. They are interested more generally in keyed primitives (such as pseudorandom func-
tions, PRFs) which are secure in face of key-dependent inputs. They also show that an encryption
scheme constructed from such a PRF inherits the underlying PRF’s resilience against key-dependent
inputs/messages. In particular, Halevi and Krawczyk construct a PRF (and a corresponding encryp-
tion scheme) that is secure in face of inputs which depend in an arbitrary, but known-a-priori way
on the key. (That is, for each way in which the query may depend on the key, they give a PRF
which is secure in face of such inputs.)

In contrast to that, we are interested in constructing encryption schemes that are secure in
face of (encryptions of) messages that depend in an arbitrary, adaptively determined way on the
key. Unfortunately, neither our schemes nor the schemes of [17] can handle the important case of
non-trivial key cycles, that is, cyclic chains of encryptions of key Ki under key Ki+1 mod n.

3 They also did only prove security against passive adversaries. However, active security was achieved by
subsequently by [20,2,4].

4 A similar, but technically different result is also contained in the independent work [17].
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2 Preliminaries

Basic notation. Throughout the paper, k ∈ N denotes the security parameter of a given con-
struction. Intuitively, a larger security parameter should provide more security, but a scheme’s
efficiency is also allowed to degrade with growing k. A negligible function vanishes faster than
any given polynomial. The statistical distance between two random variables X and Y is de-
noted by δ(X ; Y ). The Rényi entropy H2(X) of a random variable X is defined as H2(X) :=

−
∑

x log2 Pr [X = x]
2
. Two families (Xk) and (Yk) of random variables are computationally indistin-

guishable (written X ≈ Y ) if for every PPT (probabilistic polynomial-time) algorithm A, the func-
tion |Pr [A(Xk) = 1]− Pr [A(Yk) = 1]| is negligible in k. A family UHF of universal hash functions
is a family of functions h : {0, 1}n → {0, 1}m with the property that for x, x′ ∈ {0, 1}n with x 6= x′,
all y, y′ ∈ {0, 1}m, and uniformly chosen h ∈ UHF , we have that Pr[h(x) = y, h(x′) = y′] = 2−2m.

We will further need a strengthened version of the leftover hash lemma that takes into account
additional information S about the randomness K and some additional information Q unrelated
to K.

Lemma 1 (Leftover Hash Lemma, extended). Let K, Q, and S be random variables over bit-
strings of fixed length. Let h be uniformly distributed over a family UHF of universal hash functions.
Let U be uniformly distributed over bitstrings of length |h(K)|. Assume the following independences:

– U and (h, S, Q) are independent.
– K and Q are independent.
– h and (K, S, Q) are independent.

Then the following bound holds:

δ(h, h(K), S, Q ; h, U, S, Q) ≤ 2|S|+|h(K)|/2−H2(K)/2−1.

In a typical application of this lemma, h, K, and Q would be mutually independent, and S
would be a function of (h, K, Q) (say, a side channel). Furthermore, U would be some completely
independent random variable, representing the ideal randomness. This would then imply all the
independence conditions in the lemma.

Proof. In the following, s, q, k range over all values taken by S, Q, K, respectively. By applying the
definition of the statistical distance, we have

ε := δ(h, h(K), S, Q ; h, U, S, Q)

=
∑

s,q

Pr[S = s, Q = q] δ(h, h(K)|S = s, Q = q ; h, U |S = s, Q = q). (1)

Here X |(S = s) stands for the distribution of X under the condition S = s. Since h and (K, S, Q)
are independent, h|(S = s, Q = q) is a universal hash-function. And since U is independent of
(S, Q, h), we have that U is uniformly distributed and independent of h given S = s, Q = q. Further,
since by assumption h is independent of (K, S, Q), we have that h and K are independent given
S = s, Q = q. Thus the leftover hash lemma in its basic form [18] applies, and we get

δ(h, h(K)|S = s, Q = q ; h, U |S = s, Q = q) ≤ 2|h(K)|/2−H2(K|(S=s,Q=q))/2−1.
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Combining this with (1) we get

ε ≤
∑

s,q

Pr[S = s, Q = q] · 2|h(K)|/2−H2(K|(S=s,Q=q))/2−1

=
∑

s,q

Pr[S = s, Q = q] ·
1

2

√

2|h(K)| ·
∑

k

Pr[K = k|S = s, Q = q]2

≤
∑

s,q

Pr[Q = q] ·
1

2

√

2|h(K)| ·
∑

k

Pr[S = s|Q = q]2 · Pr[K = k|S = s, Q = q]2

=
∑

s,q

Pr[Q = q] ·
1

2

√

2|h(K)| ·
∑

k

Pr[K = k, S = s|Q = q]2

≤
∑

s,q

Pr[Q = q] ·
1

2

√

2|h(K)| ·
∑

k

Pr[K = k|Q = q]2

(∗)
=

∑

s,q

Pr[Q = q] ·
1

2

√

2|h(K)| ·
∑

k

Pr[K = k]2

=
∑

s,q

Pr[Q = q] ·
1

2

√

2|h(K)| · 2−H2(K)

=
∑

s,q

Pr[Q = q] · 2|H(k)|/2−H2(K)−1

=
∑

s

2|H(k)|/2−H2(K)−1 = 2|S|+|H(k)|/2−H2(K)−1.

Here (∗) uses that Q and K are independent. ut

Key-dependent message security. For formalizing key-dependent message security, we use a
variation on the definition of Black et al. [7]:

Definition 2 (KDM security, standard model, symmetric setting). Let Π = (K, E ,D) be a
symmetric encryption scheme, let K := (K1, . . . , Kn) be secret keys (where n is polynomial in the
security parameter), and let A be an adversary. Let
– RealK be the oracle that on input g, µ returns C ← E(1k, Kµ, g(K)), and
– FakeK be the oracle that on input g, µ returns C ← E(1k, Kµ, U) for an independently uniformly

selected fresh U ∈ {0, 1}|g(K)|.
In both cases, g is encoded as a circuit.5 The KDM advantage of A is

Adv
KDM

Π (A) :=
∣
∣
∣Pr

[

K
$
← K : ARealK(·) = 1

]

− Pr

[

K
$
← K : AFakeK(·) = 1

]∣
∣
∣

Here K
$
← K means that each key Ki is chosen independently using K.

We say that Π is KDM secure iff for every PPT adversary A and every polynomial n, the
advantage function Adv

KDM

Π (A) is negligible in the security parameter. We require that A only
queries its oracle with fixed-length functions g, i.e., |g(K)| is the same for all values of K.

5 This has the side-effect that for a polynomial-time adversary A, the function g is also polynomial-time
computable.
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The relation to real-or-random security. Definition 2 bears a great resemblance to the real-
or-random (ROR-CPA) definition for encryption schemes from [5]. The main difference is that
Definition 2 equips the adversary with an oracle that delivers encryptions of key-dependent messages
(i.e., evaluations) g(K). The way in which these messages depend on the keys is completely up to
the adversary; the only constraint is that g must be efficiently evaluatable and have a fixed output
length.

On achieving KDM security and active KDM security. Using the equivalence of ROR-CPA
and IND-CPA security from [5], it is easy to see that Definition 2 is strictly stronger than IND-
CPA security. A natural adaption of Definition 2 to active attacks—such a notion is called AKDM
security in [3]—consists in equipping the adversary with a decryption oracle that is restricted in
the usual sense to prevent trivial attacks. And similarly to the passive case, it is easy to see that
AKDM security is strictly stronger than IND-CCA security. On the other hand, once a scheme is
KDM secure, it can be easily and without (much) loss of efficiency upgraded to AKDM security, as
formalized and proved in [3]. Hence, the main difficulty lies in finding a scheme that is KDM secure
in the first place. In the following, this will be our focus.

3 The scheme of Black et al.

Definition 2 is very hard to achieve. In fact, the only construction that is known, due to Black et
al. [7], to achieve Definition 2 is in the random oracle model. It will be very useful to take a closer
look at their scheme. We will argue that in a very concrete sense, nothing less than a random oracle
will do for their scheme. Hence, their construction merely shows how powerful random oracles are,
but does not give a hint on how to achieve KDM security in the standard model. This constitutes
one motivation for our upcoming weakening of KDM security.

Scheme 3 (The scheme ver). Define the symmetric encryption scheme ver = (K, E ,D) with
security parameter k ∈ N, message space {0, 1}k and key space {0, 1}k through

– K(1k) outputs a uniform random key K ∈ {0, 1}k.

– E(1k, K, M) samples R
$
← {0, 1}k and outputs the ciphertext (R, H(K||R)⊕M).

– D(1k, K, (R, D)) outputs the message H(K||R)⊕D.

The security of ver with a random oracle. Black et al. prove

Theorem 4 (Security of ver [7]). If H is a random oracle, then ver is KDM secure.

The main idea of the proof is to consider an event bad, where bad occurs iff

1. the adversary queries H at any point K||R that was previously used for encryption, or
2. one of the functions g submitted to the encryption oracle queries H at the currently used point

K||R.

If bad does not occur, the adversary’s view is identical in the Real and Fake experiments, thanks
to the fact that different random oracle queries H(X), H(Y ) (X 6= Y ) are statistically independent:
each message is padded with completely fresh and message-independent randomness. Hence, by
showing (with an inductive argument) that bad occurs only with small probability, [7] show the
scheme ver KDM secure.
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The insecurity of ver without a random oracle. Put informally, the proof of ver utilizes one
essential property of the random oracle H : knowledge about arbitrary many values H(Yi) (with
Yi 6= X) does not yield any information about H(X). This use of a random oracle as a provider of
statistical independence is what makes the proof fail completely with any concrete hash function
used in place of the random oracle. There is no hope for the proof strategy to succeed without
random oracles. A little more formally, we can show that in the random oracle model, there exists
a specific hash function H that has a number of generally very useful properties: H is collision-
resistant, one-way, can be interpreted as a pseudorandom function (in a way compatible with ver),
and H makes ver IND-CPA. But H makes ver completely insecure in the presence of key-dependent
messages. Hence, there can be no fully black-box KDM security proof for ver that relies on these
properties of H alone.

Theorem 5 (Insecurity of ver). Relative to a random oracle O, there exists a function H such
that

1. H is collision-resistant,
2. for any function p(k) ∈ kΘ(1), H is one-way w.r.t. the uniform input distribution on {0, 1}p(k),
3. the function FK(R) := H(K||R) is a pseudorandom function with seed K,
4. the scheme ver, instantiated with H, is IND-CPA secure, but
5. the scheme ver, instantiated with H, is not KDM secure.

Proof (sketch). Assume for simplicity that the security parameter k is even. Say that the random
oracle O maps arbitrary bitstrings to k-bit strings. Then denote by O`(x) the first k/2 bits of O(x).
Now consider the function H : {0, 1}∗ → {0, 1}k with

H(x) :=

{

O(x) for |x| 6= 2k,

O(x`)⊕ (O`(x)||O`(O`(x))) for x = x`||xr and |x`| = |xr| = k.

We show the claimed properties for H :

1. H is collision-resistant. It is clear that collisions H(x) = H(y) (with x 6= y) cannot be found
efficiently if x 6= 2k or y 6= 2k. So assume x = x`||xr and y = y`||yr for |x`| = |xr | = |y`| = |yr| = k.
Collisions of this form imply O`(x`)⊕O`(x) = O`(y`)⊕O`(y) and thus

O`(x`)⊕O`(y`) = O`(x) ⊕O`(y). (2)

If x` = y`, then this constitutes a collision in O`, so we may assume x` 6= y`. But the distributions
of O` on k-bit strings and on 2k-bit strings are independent and both uniform. Hence, finding x and
y to satisfy (2) requires a superpolynomial number of queries to O` (resp. O) with overwhelming
probability.

2. H is one-way w.r.t. the uniform distribution on {0, 1}k. For p(k) = 2k, this follows from
collision-resistance and the fact that H is compressing: Since the preimages of H are not unique, if
we are able to find a preimage x′ of H(x) for random x ∈ {0, 1}2k, with noticeable probability we
will have x 6= x′. This allows to find collisions efficiently. For details see [12]. For p(k) 6= 2k, this
follows by definition of H and the fact that the random oracle is one-way.
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3. FK(R) := H(K||R) is a pseudorandom function. Consider an adversary A that has oracle
access to O and to FK for uniformly chosen K. We denote A’s i-th query to FK by Ri. Without loss
of generality, assume that A never asks for the same FK evaluation twice, so the Ri are pairwise
distinct. Furthermore, let Xi := K||Ri, and Yi := O`(K||Ri). We claim that A doesn’t query O
with K or any of the values Xi, Yi, except with negligible probability.

We prove our claim inductively as follows. Let Ei denote the event that A queries O with a
value that starts with K prior to the i-th FK query. Clearly, E1 happens with exponentially small
probability. So fix an i ≥ 1. To complete our proof, it is sufficient to show that under condition ¬Ei,
the probability for Ei+1 to happen is bounded by a negligible function that does not depend on i.

Assume that ¬Ei holds. That means that, given A’s view up to and including the (i − 1)-th
FK query, the key K is uniformly distributed among all k-bit values (or k-bit prefixes of 2k-bit
values) not yet queried by A. By the polynomiality of A, this means that, from A’s point of view,
K is uniformly distributed on an exponentially-sized subset of 0, 1k. But this means that until the
i-th FK query, A has only an exponentially small chance to query one of K, Xj, Yj (j < i). Hence
Ei+1 | ¬Ei happens only with exponentially small probability.

Summing up, A never queries O with K or any of the Xi, Yi, except with negligible probability.
Hence, FK can be substituted with a truly random function without A noticing, and the claim
follows.

4. ver with H is IND-CPA. Follows immediately from 3.

5. ver with H is not KDM secure. A successful KDM adversary A on ver is the following: A
asks its encryption oracle for an encryption of O(K) (e.g., using g with g(x) = O(x) as input to
the oracle). In the real KDM game, the ciphertext will be

(R, H(K||R)⊕O(K)) = (R,O`(K||R)||O`(O`(K||R))),

and hence of the form (R, t||O`(t)) for some t, which can be easily recognized by A. But in the fake
KDM game, the ciphertext will have the form (R, U) for a uniformly and independently distributed
U , which is generally not of the form (R, t||O`(t)). Hence, A can successfully distinguish real en-
cryptions from fake ones. ut

Halevi and Krawczyk’s example. Halevi and Krawczyk give a different example of the “non-
implementability” of ver (see [17, Negative Example 4]). They argue that the random oracle H in
ver cannot be implemented with a PRF that is constructed from an ideal cipher using the Davies-
Meyer transform. Their example has the advantage of being less artificial, while being formulated
in the ideal cipher model.

4 Information-theoretic KDM security

Since key-dependent message security is very hard to achieve, we start with two simple schemes
that do not achieve full KDM security, but serve to explain some important concepts.

4.1 The general idea and a simple scheme (informal presentation)

First observe that the usual one-time pad C = M ⊕K (where C is the ciphertext, M the message,
and K the key) does not achieve KDM security. Encryption of M = K results in an all-zero
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ciphertext that is clearly distinguishable from a random encryption. However, the slight tweak

C = (h, M ⊕ h(K)) (h independently drawn universal hash function)

does achieve a certain form of key-dependent message security: the pad h(K) that is distilled from
K is indistinguishable from uniform and independent randomness, even if h and some arbitrary (but
bounded) information M = M(K) about K is known. (When using suitable bitlengths |K| and |M |,
this can be shown using the leftover hash lemma [18].) So the encryption M ⊕ h(K) of one single
message M = M(K) looks always like uniform randomness. Hence the scheme is KDM secure in a
setting where the encryption oracle is only used once (but on the other hand, information-theoretic
security against unbounded adversaries is achieved).

4.2 A more formal generalization of the simple scheme

Of course, one would expect that by expanding the key, the scheme stays secure even after multi-
ple (key-dependent) encryptions. This is true, but to show this, a hybrid argument and multiple
applications of the leftover hash lemma are necessary. We formalize this statement now.

Scheme 6 (The scheme p-BKDM (for “p-bounded KDM”)). Let p ∈ Z[k] be a positively-
valued polynomial, let `(k) := (2p(k)+3)k, and let UHF be a family of universal hash functions that
map `(k)-bit strings to k-bit strings. Define the symmetric encryption scheme p-BKDM = (K, E ,D)
with security parameter k ∈ N, message space {0, 1}k, and key space {0, 1}`(k) through
• K(1k) outputs a uniform random key K ∈ {0, 1}`(k).

• E(1k, K, M) samples h
$
← UHF and outputs the ciphertext C = (h, h(K)⊕M).

• D(1k, K, (h, D)) outputs the message h(K)⊕D.

Definition 7 (Bounded KDM security). Let p ∈ Z[k] be a positively-valued polynomial. Then a
symmetric encryption scheme Π is p-bounded KDM secure if it is KDM secure against PPT adver-
saries that query the encryption oracle at most p(k) times. Further, Π is information-theoretically
p-bounded KDM secure if it is KDM secure against arbitrary (i.e., computationally unbounded)
adversaries that query the encryption oracle at most p(k) times.

Theorem 8 (Bounded KDM security of p-BKDM). The scheme p-BKDM is information-
theoretically p-bounded KDM secure.

Proof. In the following, we abbreviate xi, .., xj with xi..j for all variables x. Let n be the number
of keys used. Let an adversary A be given that queries the encryption oracle at most p(k) times.
Without loss of generality we can assume the adversary to be deterministic (by fixing the random
tape that distinguishes best) and that it performs exactly p(k) queries. In the i-th encryption in the
real experiment, let µi denote the index of the key that has been used, let hi be the hash function
chosen by the encryption function, let mi be the message that is encrypted, and let ci be the second
component of the resulting ciphertext (i.e., (hi, ci) is the i-th ciphertext). Since the adversary is
deterministic, mi depends deterministically from the keys K1,n and the ciphertexts c1..i−1, h1..i−1,

i.e., there are deterministic functions f̂i with mi = f̂i(K1,n, c1..i−1, h1..i−1). Similarly, there are
deterministic functions µ̂i such that µi = µ̂i(c1..i−1, h1..i−1).

Let Ui be independent uniformly distributed random variables on {0, 1}k that are independent
of all random variables defined above. Let

εi := δ(h1..i, c1..i ; h1..i, U1..i)
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To show that the scheme is information-theoretically p-bounded KDM secure, i.e., that the adversary
cannot distinguish the real and the fake experiment, it is sufficient to show that εp(k) is negligible
since the view of A can be deterministically computed from h1..p(k), c1..p(k).

Fix some i ∈ {1, . . . , p(k)}. Let K := Kµi
, Q := h1..i−1, S := (mi, c1..i−1), h := hi and let U be

uniformly distributed on {0, 1}k and independent of (K, Q, S, h). The following conditions hold by
construction:

– h is a universal hash function.
– U is uniformly distributed and independent of (h, S, Q).
– K and Q are independent.
– h is independent of (K, S, Q).

So the conditions for Lemma 1 are fulfilled and we have

δ(h, h(K), S, Q ; h, U, S, Q) ≤ 2|S|+|h(K)|/2−H2(K)/2−1 = 2ik+k/2−`(k)/2−1 ≤ 2−k

and thus

δ(h1..i, ci, c1..i−1 ; h1..i, Ui, c1..i−1)

≤ δ(h1..i, hi(Kµi
), mi, c1..i−1 ; h1..i, U, mi, c1..i−1) ≤ 2−k (3)

Since (hi, Ui) is independent of (h1..i−1, c1..i−1, U1..i−1) by construction, from (4.2) we have

δ(h1..i, Ui, c1..i−1 ; h1..i, Ui, U1..i−1) = εi−1

and hence using (3) and the triangle inequality for the statistical distance, we have

εi = δ(h1..i, ci, c1..i−1 ; h1..i, Ui, U1..i−1) ≤ 2−k + εi−1.

Since ε0 = 0, it follows that εp(k) ≤ p(k) · 2−k is negligible. ut

4.3 Discussion

The usefulness of bounded KDM security. Our scheme p-BKDM can be used in any protocol
where the total length of the encrypted messages does not depend on the length of the key. At a
first glance, this restriction seems to defeat our purpose to be able to handle key cycles: it is not
even possible to encrypt a key with itself. However, a closer inspection reveals that key dependent
messages occur in two kinds of settings. In the first setting, a protocol might make explicit use of
key cycles in its protocol specification, e.g., it might encrypt a key with itself (we might call this
intentional key cycles). In this case, p-BKDM cannot be used. In the second setting, a protocol
does not explicitly construct key cycles, but just does not exclude the possibility that—due, e.g.,
to some leakage of the key—some messages turn out to depend on the keys (we might call this
unintentional key cycles). In this case, the protocol does not itself construct key cycles (so the
restriction of p-BKDM that a message is shorter than the key does not pose a problem), but only
requires that if key cycles occur the protocol is still secure. But this is exactly what is guaranteed
by p-BKDM. So for the—possibly much larger—class of protocols with unintentional key cycles
the p-BKDM scheme can be used.
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Multiple sessions of p-BKDM. Theorem 8 guarantees that even in the case of multiple sessions,
the scheme p-BKDM is secure assuming that at most p(k) encryptions are performed in all sessions
together. In some applications, especially if the number of sessions cannot be bounded in advance,
one might need the stronger property that we may encrypt p(k) messages with each key. Intuitively,
we might argue that when we receive an encryption (h, M ⊕ h(K)) of a message M , the entropy
of the key K decreases by at most |M ⊕ h(K)| bits, but as long as enough entropy remains in K,
we do not learn anything about M , and neither about the keys M depends on. This leads to the
following conjecture:

Conjecture 9. The scheme p-BKDM is KDM-secure if the adversary performs at most p(k) encryp-
tions under each key Ki. This holds even if different keys have different associated polynomials pi

(i.e., key Ki has length O(pi(k)k) and we encrypt pi times under Ki).

Unfortunately, we do not know how to formally prove Conjecture 9. Formalizing the above intuition
is not straightforward, since it is not clear how to alone define what it means that the entropy of a
given key decreases while the entropy of the others does not. We leave this conjecture as an open
problem.

Why encrypt only key-dependent messages? Definitions 2 and 7 give the adversary (only)
access to an encryption oracle which encrypts arbitrary functions of the key (in contrast to [17] which
additionally provides an encryption oracle for normal messages). In Definition 2, no generality is
lost, since an ordinary encryption oracle can be emulated by choosing this function as a constant
function. Call such “ordinary” encryption queries non-KDM queries. Now it is conceivable that a
scheme allows for an unbounded number of non-KDM queries, but only a limited number of actually
key-dependent queries. The security of such schemes can be appropriately captured using, e.g., the
security definition of [17], which incorporates separate encryption oracles for key-dependent and
non-KDM queries. While our Definition 7 does not allow to model such schemes, it is easy to see
that our scheme p-BKDM is not secure against an unbounded number of non-KDM encryptions
(not even against computationally bounded adversaries).

5 Computational KDM security

5.1 Motivation

The dilemma with hybrid arguments. The discussion in Section 4.3 does not only apply to
our scheme p-BKDM. There seems to be a general problem with proving KDM security with a
hybrid argument. Starting with the real KDM game, substituting the first encryption with a fake
one first is not an option: the later encryptions cannot be properly simulated. But to substitute
the last real encryption first is not easy either: for this, there first of all has to be a guarantee
that at that point, the last key has not already leaked completely to the adversary. In our case,
with a bounded overall number of encryptions, we can give an information-theoretic bound on the
amount of information that has been leaked before the last encryption. But if there is no such bound,
information theory cannot be used to derive such a bound. Instead, a computational assumption
must be used. Yet, there seems to be no straightforward way to derive a useful statement (e.g.,
about the computational key leakage) that reaches across a polynomial number of instances from a
single computational assumption without using a hybrid argument. Of course, this excludes certain
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interactive assumptions, which essentially already assume security of the scheme in the first place.
We do not believe that it is useful or interesting to investigate such constructions and assumptions.

In other words, we cannot use hybrid arguments since we do not know where to place the first
hybrid step. This situation is similar (but not identical) to the case of selective decommitments [15]
and adaptively secure encryption (e.g., [9]).

Hybrid (KEM/DEM) encryption schemes. Another common tool for constructing encryption
schemes are hybrid encryption schemes (no relation to hybrid arguments). In a hybrid encryption
scheme, a ciphertext consists of a KEM (key encapsulation mechanism) part and a DEM (data
encapsulation mechanism) part. The KEM part of the ciphertext encapsulates a symmetric key
K that is unrelated to the message M to be encrypted. The DEM part of the ciphertext is a
(symmetric) encryption of M under K. The actual secret key sk of the hybrid scheme is the secret
key that is needed to decrypt the KEM part. It is tempting to use a hybrid construction to get
rid of the dependency of message and secret key. However, there still is a dependency between M
and sk: the KEM ciphertext provides a relation between sk and K on the one hand, and the DEM
ciphertext relates K and M on the other. Hybrid encryption techniques do not help to get rid of
dependencies between message and secret key.

Similarly, hybrid encryption techniques cannot be used to increase the allowed message lengths
of the scheme from the previous section. Concretely, it may be tempting to use the p-BKDM
scheme as a KEM to encapsulate a short key K, and then to use that key K as secret key for
a computationally secure DEM which encrypts long messages with short keys. Unfortunately, this
breaks the security proof of p-BKDM (and also, depending on the used DEM, also the security
itself). Namely, the proof of p-BKDM depends not on the size of the KEM key K, but on the
amount of released information about the actual KEM secret key (which corresponds to the length
of the message in the KDM setting). So hybrid encryption does not help here, either.

Stateful KDM security. To nonetheless get a scheme that is secure in face of arbitrarily many
encryptions of key-dependent messages, we propose stateful encryption schemes. In a stateful en-
cryption scheme, the secret key (i.e., the internal state) is updated on each encryption. (Decryption
must then be synchronized with encryption: we assume that ciphertexts are decrypted in the order
they got produced by encryption.) For such a stateful encryption scheme, there are essentially two
interpretations of KDM security:

• the message may depend on the current secret key (i.e., state) only, or
• the message may depend on the current and all previously used secret keys (i.e., on the current

and all previous states).

We call the first notion weak stateful KDM security, and the second strong stateful KDM security.
Weak stateful KDM security can be thought of as KDM security in a setting in which erasures are
trusted, and strong stateful KDM security mandates that erasures are not trusted (in the most
adversarial sense).

Definition 10 (Weak and strong stateful KDM security). A stateful symmetric encryption
scheme Π is secure in the sense of weak stateful KDM security iff Π is fulfills Definition 2, where
the encryption queries are interpreted as a function in the current state of the encryption algorithm.
Further, Π is secure in the sense of strong stateful KDM security iff Π satisfies Definition 2, where
the encryption queries are interpreted as a function in the current and all previous states of the
encryption algorithm.
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Below we will give a scheme that circumvents the hybrid argument dilemma using precisely the
fact that there is a changing state.

Relation to Black et al.’s notion of“stateful KDM security”. Black et al. [7] already consider
the potential KDM security of a stateful symmetric encryption scheme. They show that there can be
no stateful KDM secure scheme. However, they showed this under the assumption that encryption
is deterministic. In our definition, encryption is still probabilistic, even though stateful. We use the
state update mechanism in addition to using randomness, not instead of it. Their argument does
not apply to our definition of stateful KDM security, neither to our weak nor to our strong variant.

Weak vs. strong stateful KDM security. For some applications, strong stateful KDM security
is necessary: encrypting your hard drive (that may contain the secret key) cannot be done in a
provably secure way with weak stateful KDM security. (Once the secret key gets to be processed
by the scheme, the state may have already been updated, so that the message now depends on a
previous state.) Also, the notion of key cycles (i.e., key Ki is encrypted under Ki+1 mod n) does
not make sense with weak stateful KDM secure schemes. In these cases, the use of a strong stateful
KDM scheme is fine. However, it seems technically much more difficult to construct a strong stateful
KDM secure scheme.

5.2 A secure scheme

We do not know how to fulfill strong stateful KDM security. (The issues that arise are similar as in
the stateless case.) However, we can present a scheme that is secure in the sense of weak stateful
KDM security.

Idea of the construction. Our scheme is a computational variant of p-BKDM (although its
analysis will turn out to be very different). The main problem of p-BKDM is that the secret key
runs out of entropy after too many KDM encryptions. Only as long as there is enough entropy left
in K, a suitably independent random pad can be distilled for encryption. However, in a computa-
tional setting, randomness can be expanded with a pseudorandom generator, and some distilled,
high-quality randomness can be used to generate more (pseudo-)randomness as a new key. More
concretely, consider the following scheme:

Scheme 11 (The scheme sKDM (for “stateful KDM”)). Let UHF be a family of universal
hash functions that map 5k-bit strings to k-bit strings, and let G be a pseudorandom generator
(against uniform adversaries) that maps a k-bit seed to a 6k-bit string. Define the stateful symmetric
encryption scheme sKDM = (K, E ,D) with security parameter k ∈ N, message space {0, 1}k, and
key space {0, 1}5k through
• K(1k) outputs a uniform random initial key (i.e., state) K0 ∈ {0, 1}5k.
• E(1k, Kj, Mj) proceeds as follows:

1. sample hj
$
← UHF ,

2. set Sj := hj(Kj),
3. set (Kj+1, Pj) := G(S),
4. output Cj := (hj , Pj ⊕Mj).

Ciphertext is Cj , and new key (i.e., state) is Kj+1.
• D(1k, Kj, (hj , Dj)) proceeds as follows:

13



1. set Sj := hj(Kj),
2. set (Kj+1, Pj) := G(S),
3. output Mj := Pj ⊕Dj .

Plaintext is Mj, and new key (i.e., state) is Kj+1.

Theorem 12. If G is a pseudorandom generator, then sKDM satisfies weak stateful KDM secu-
rity.

Proof. Fix an adversary A that attacks sKDM in the sense of weak stateful KDM security. Say
that, without loss of generality, A makes precisely p(k) encryption queries for a positively-valued
polynomial p ∈ Z[k]. Assume that A has an advantage that is not negligible.

Preparation for the hybrid argument. For 0 ≤ j ≤ p(k), define the hybrid game Game j as
follows. Game j is the same as the weak stateful KDM game with adversary A, only that
• the first j encryption queries are answered as in the fake weak stateful KDM game (i.e., with

encryptions of uniform and independent randomness), and
• the remaining queries are answered as in the real game (i.e., with encryptions of adversary-

delivered functions evaluated at the current secret key).

Base step for the hybrid argument. We will reduce distinguishing between two adjacent games
to some computational assumption. We will now first formulate this assumption. Let K ∈ {0, 1}5k

be uniformly distributed, and let M ∈ {0, 1}k be arbitrary (in particular, M can be a function of
K). Then by Lemma 1 it follows that δ(M, h, h(K) ; M, h, Uk) ≤ 2−k for independently sampled

h
$
← UHF and independent uniform Uk ∈ {0, 1}k. (Actually, in this case we could even use the

original version of the Leftover Hash Lemma [18].) This implies

δ(M, h, G(h(K)) ; M, h, G(Uk)) ≤ 2−k,

from which the computational indistinguishability chain

(M, h, G(h(K)))
︸ ︷︷ ︸

=:DR

≈ (M, h, G(U)) ≈ (M, h, U6k)
︸ ︷︷ ︸

=:DF

(4)

for independent uniform U6k ∈ {0, 1}6k follows by assumption on G. For our hybrid argument, it is
important that (4) even holds when M is a function of K chosen by the distinguisher.

Hybrid argument. We will now construct from adversary A an adversary B that contradicts (4)
by distinguishing DR and DF . This contradiction then concludes our proof. Let n denote the number
of keys. Let µi denote the index of the key chosen by A for the i-th encryption. Let gi denote the
function chosen by A in the i-th encryption. Then, the adversary B chooses some j ∈ {1, . . . , p(k)}
uniformly at random and then performs the following simulation for A:
– The first j − 1 encryptions requested by A are simulated as fake encryptions (i.e., with random

messages). This is possible without using the keys since for a random message, hi(Kµi
) is

information-theoretically hidden in the ciphertext.
– For the j-th encryption, B chooses Kµ randomly for all µ 6= µj and defines6 M(K) :=

gj(K1, . . . , Kµj−1, K, Kµj+1, . . . , Kn) and requests an input D =: (M, h, (P, K ′)) with that M .

6 Note that in this function definition, K is the argument while the Kµi
are hardwired. In particular, B

does not need to know the actual value of K for this step.
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(Note that D may be DR or DF .) Then B sets the new key Kµj
:= K ′ and gives (h, M ⊕ P )

as the ciphertext to A.
– For all further encryptions queries, B computes the real ciphertext using the keys K1, . . . , Kn

produced in the preceding steps.
– Finally, B outputs the output of A.

It is now easy to verify that if B gets DR as input, B simulates the Game j − 1, and if B gets DF

as input, B simulates the Game j. Hence

Pr
[
B(DR) = 1

]
− Pr

[
B(DF ) = 1

]

=
1

p(k)

p(k)
∑

j=1

Pr [A = 1 in Game j − 1]−
1

p(k)

p(k)
∑

j=1

Pr [A = 1 in Game j]

=
1

p(k)

(
Pr [A = 1 in Game 0]− Pr [A = 1 in Game p(k)]

)
.

The right hand side is not negligible by assumption, thus the right hand side is not negligible either.
This contradicts (4) and thus concludes the proof.

5.3 The usefulness of stateful KDM security

In a sense, strong stateful KDM security is “just as good” as standard KDM security. Arbitrarily
large messages (in particular keys) can be encrypted by splitting up the message into parts and
encrypting each part individually. The key-depencies of the message parts can be preserved, since
the dependencies across states (i.e., dependencies on earlier keys) are allowed. This technique is
generally not possible with weak stateful KDM security. We know of no weakly stateful KDM
secure scheme with which one could securely encrypt one’s own key (let alone construct key cycles).

But despite the drawbacks of weak stateful KDM security, we believe that this notion is still
useful: first, it serves as a stepping stone towards achieving strong stateful KDM security (or even
stateless KDM security). Second, in certain applications, weak stateful KDM security might be
sufficient. Imagine, e.g., a setting in which the encrypted message contains side-channel information
(like, say, internal measurements from the encryption device) on the internal state/secret key. If we
assume that the old state is erased after encryption, the side-channel information only refers to the
current internal state, and weak stateful KDM security is enough to provide message secrecy. Third,
weak stateful KDM security provides an alternative assumption to the assumption of absence of
key cycles in the formal protocol analysis setting. Instead of assuming the absence of key cycles
(this assumption may not make sense in a scheme in which the key space is larger than the message
space), we can assume that the encrypted terms depend only on the current internal state of the
encryption algorithm. This assumption is still a strengthening of standard IND-CPA security and
makes sense, since the encryption algorithm is only used to encrypt.
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