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Abstract. We present new combined attacks on the AES key sched-
ule based on the work of Roche et al. [16]. The main drawbacks of the
original attack are: the need for high repeatability of the fault, a very
particular fault model and a very high complexity of the key recovery
algorithm. We consider more practical fault models, we obtain improved
key recovery algorithms and we present more attack paths for combined
attacks on AES. We propose to inject faults on the different operations
of the key schedule instead of the key state of round 9 or the correspond-
ing data state. We also consider fault injections in AES constants such
as the RCon or the affine transformation of the SubWord. By corrupting
these constants, the attacker can easily deduce the value of the error. The
key recovery complexity can then be greatly improved. Notably, we can
obtain a complexity identical to a classical differential side-channel at-
tack. Our attacks defeat most AES implementations secure against both
high-order side-channel attacks and fault attacks.
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1 Introduction

Side-channel attacks are a major threat to most cryptosystems implemented on
embedded devices. The main principle of these attacks is to exploit a physical
leakage from the device in order to find some information on the used secret.
Side-channel attacks are categorized in Simple Side-Channel Analysis (SSCA)
and Differential Side-Channel Analysis (DSCA). Another kind of physical attack
is the Fault Analysis (FA) that evaluates the faulty behavior of a cryptosystem
to learn information on the secret. Since the first paper of Kocher et al. [8] on
DSCA, many countermeasures have been proposed to thwart physical attacks
on different cryptosystems.

Recently, the principle of combined attacks has been proposed in order to
attack a cryptosystem protected against both side-channel analysis and fault
analysis. Amiel et al. [1] first clearly presented this new kind of attack on an
RSA implementation secure against SSCA and FA. Combined attacks on the
Advanced Encryption Standard (AES) [10] were also developed in [15, 3, 16].

The most common countermeasure to protect block cipher implementations,
like AES, against DSCA is masking techniques where random values are used
to hide intermediate variables. Simultaneously, protections against FA were also



developed for block ciphers. The most intuitive countermeasure often consists in
the duplication of the block cipher or the computation of its inverse operation.
However combined attacks offer a new attack path. They exploit information,
through either SSCA or DSCA, obtained from a fault before most of FA coun-
termeasures in the literature are able to detect them. Hence, new protections
and new implementation methods have to be considered.

In this article, we present new combined attacks on AES and more partic-
ularly on the AES key schedule. Based on the work of Roche et al. [16], we
evaluate different attack scenarios and implementations of the key schedule that
lead to powerful and efficient combined attacks. Moreover, some of our attack
paths require additional countermeasures compared to Roche et al.’s work.

The paper is organized as follows. In Section 2, we give a brief description
of the AES. Section 3 summarizes the main combined attacks proposed in the
literature on asymmetric and symmetric cryptosystems. We also recall Roche
et al.’s attack and give remarks on its efficiency considering a somewhat more
realistic fault model. In Section 4, we describe our proposed combined attacks on
the AES key schedule. We target different internal operations and we consider
different fault models. We report countermeasures against these attacks on AES
in Section 5. We conclude this article in Section 6.

2 The AES Algorithm

The AES is defined for 128-bit blocks and key sizes 128, 192 and 256 bits. The
128-bit plaintext is viewed as a 4×4 byte matrix, called state, bytes correspond-
ing in some way to elements of IF28 .

The AES operates on states by iterating transformation rounds. The ini-
tial round consists in the AddRoundKey operation, the next rounds consist in
applying successively the transformations SubBytes, ShiftRows, MixColumns and
AddRoundKey, but the last round omits the MixColumns transformation. The
SubBytes is the main building block of AES regarding the side-channel aspect.
Each byte of the state matrix is replaced by its substitute in an SBox. This
SBox is the composition of two transformations: an inversion in IF28 and an
affine transformation. ShiftRows is a cyclic shift operation on each of the four
rows of the state. The first row is unchanged, the second is cyclically shifted
by one byte to the left, the third by two bytes and the fourth by three bytes.
MixColumns considers each column of the state matrix as coefficients of a degree
three polynomial and multiplies them modulo z4 + 1 with a fixed polynomial.
AddRoundKey is a bit-wise XOR operation between the state and the round key.

The round keys are derived from the original key with the AES key scheduling
algorithm. The key schedule has a recursive structure that uses bytes of the
previous column of the key state, bytes of the column of a previous round key and
round constants RConr with r the round number. A non-linear part is realized
using a SubBytes operation on a column, this operation is also called SubWord.
An additional cyclic rotation, noted RotWord, is performed within the column.
Figure 1 details the last three rounds of the key schedule algorithm for AES-128.



In the rest of this paper, we focus our work on AES-128. For more details on
AES, one can refer to the AES standard [10].
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Fig. 1. Last three rounds of the AES-128 key schedule.

3 Related Work on Combined Attacks

Recently, one of the main area of research in side-channel analysis is combined
attacks. A combined attack exploits leakage information from both a Fault Anal-
ysis (FA) and a classical side-channel attack like Simple Side-Channel Analysis
(SSCA) or Differential Side-Channel Analysis (DSCA). Both symmetric and
asymmetric cryptosystems have been shown vulnerable to this attack. We briefly
review the combined attacks proposed in the literature.



3.1 Combined Attacks on Asymmetric Cryptosystems

Amiel et al. [1] combine a fault attack with an SSCA in order to break a modu-
lar exponentiation that is supposedly secure against faults and SSCA. The au-
thors attack a left-to-right atomic square-and-multiply algorithm that is SSCA-
resistant. By injecting a fault in one of the registers at the beginning of the ex-
ponentiation, they detect information on the secret exponent by SSCA. Hence,
the FA protection that is present at the end of the algorithm cannot prevent
the SSCA leakage that has already occurred during the computation. In [1], the
authors propose a countermeasure called Detect and Derive based on the prin-
ciple of infective computation. However, it was shown vulnerable in [17]. In this
paper, Schmidt et al. propose an exponentiation algorithm, as well as a scalar
multiplication algorithm, also based on infective computation. The idea is to be
able to detect a fault as soon as it happens and corrupt the data if necessary
so that no leakage information is available. The principle of the attack of Amiel
et al. seems to be applicable to any classic left-to-right atomic algorithm, either
exponentiation or scalar multiplication. Right-to-left implementations as well as
regular algorithms seem resistant against this kind of combined attack.

In [5], Fan et al. study the case of combined attacks specially targeting elliptic
curve scalar multiplication. Using the properties of elliptic curves, they develop
a powerful attack that can defeat atomic and regular algorithms. In order to
perform the attack, one needs to choose a particular input point of the scalar
multiplication. By injecting a fault after the initial point verification, the attacker
is then able to obtain a point with a small order. During the scalar multiplication,
computations with the faulted point will end up on the infinity point which is
particularly visible by SSCA in most implementations. The attacker is then able
to find information on the secret scalar.

A recent DSCA countermeasure proposed by Dupaquis and Venelli in [4]
seems to be an efficient generic countermeasure against combined attacks. Using
randomized reduction algorithms, one can refresh masks within a modular expo-
nentiation or scalar multiplication for a small overhead. Hence, an attacker is not
able to find by SSCA a particular pattern induced by a fault. However, as the
randomization added by this countermeasure is based on the form of the mod-
ulus, it is not sufficient to prevent combined attacks on a scalar multiplication
for sparse modulus, e.g. like NIST elliptic curves [9].

3.2 Combined Attacks on Symmetric Cryptosystems

The combined attacks proposed on symmetric cryptosystems all combine fault
attacks with DSCA. In [15], Robisson and Manet introduce the Differential Be-
havioral Analysis (DBA) which combines a safe-error attack and DSCA. We
recall that safe-error attacks are based on the information whether the device
has a normal behavior or not in presence of a fault. The authors show that the
DBA can break an AES hardware implementation, however it is ineffective on
masked implementations.



Clavier et al. [3] successfully attack an AES protected with first-order mask-
ing. More generally, their combined attack reduces the DSCA countermeasure of
one order. This attack is focused on the first round and requires the knowledge
of faulty ciphertexts. Hence, a fault countermeasure like the inverse computation
or the duplication of the AES prevents this attack.

Recently, Roche et al. [16] propose the first combined attack on AES im-
plementation that can defeat both a boolean masking of any order and a fault
countermeasure. The attack targets the last round, more precisely, it targets
the key state of round 9. If the attacker is able to inject a fault with good
enough repeatability, he has to perform statistical tests using three simultane-
ous hypothesis to recover one byte of the key. Depending on the fault model
considered, either bit-flip or stuck-at, the fault repeatability can be impacted,
hence the number of power consumption curves required to perform the DSCA.
Considering the bit-flip model, an attacker can defeat a boolean masking of any
order without any overhead in the attack. However, if one considers the stuck-
at model, masking induces a repeatability automatically divided by 2. As our
attacks are based on the work of Roche et al., we recall the principle of their
attack and we propose improvements depending on the fault model considered.

3.3 Remarks on Roche et al.’s Combined Attack

Algorithm 1 Roche et al.’s combined attack key retrieval algorithm.

Input: N triplets of valid-faulty ciphertexts and the side-channel information of the
faulted execution: (C1, C̃1,L1), . . . , (CN , C̃N ,LN )

Output: The guessed round 10 key k10
1: for j = 0 to 15 do
2: for

(
kj10, e

j
9, e

j
10

)
= (0, 0, 0) to (255, 255, 255) do

3: for i = 1 to N do
4: Vi = φ

(
SubBytes

(
SubBytes−1

(
Cj

i ⊕ k
j
10

)
⊕ ej9

)
⊕ kj10 ⊕ e

j
10

)
5: end for
6: σ(kj

10,e
j
9,e

j
10) = A

(
(Li)1≤i≤N , (Vi)1≤i≤N

)
7: end for
8: The maximal σ(kj

10,e
j
9,e

j
10) for ej9 6= 0 corresponds to the guessed value kj10

9: end for
10: return k10

We detail the attack of Roche et al. in Algorithm 1. We denote by φ the con-
sidered leakage model function, e.g. Hamming weight or identity. Let A be any
DSCA statistical function, e.g. Pearson correlation [2] or mutual information [6].
Algorithm 1 has a complexity of 228A on N leakage measurements. We recall
the main relation of Roche et al.’s attack:

C̃j
i = SubBytes

(
SubBytes−1

(
Cj

i ⊕ k
j
10

)
⊕ ej9

)
⊕ kj10 ⊕ e

j
10 , (1)



with C̃j
i the faulty ciphertext byte j of message i, Cj

i the byte j of the correct

ciphertext of message i, kj10 the guessed byte j of the round key K10, ej9 the error

in the byte j of K9 and ej10 the error in byte j of K10. We denote by Kj
r the

byte j of the correct round key r. In order to retrieve the 16 bytes of K10 with
Algorithm 1, we need to assume that for each triplet (Ci, C̃i,Li) the attacker was
able to inject a fault modifying the 16 bytes of K9, where Li is the side-channel
measurement of the faulty message i.

On the efficiency of the combined attack. We fix that N side-channel
leakages are sufficient to obtain a distinguishable correct triplet (kj10, e

j
9, e

j
10) for

any byte j for a given fault repeatability using the test A. The efficiency of
the combined attack depends on the complexity of its key retrieval algorithm
as well as the value of N that impacts the complexity of A. We recall that the
complexity of a classical DSCA is 212A to retrieve 16 bytes compared to 228A
of Algorithm 1. In order to break a masked implementation, an higher-order
DSCA has the same key retrieval complexity of 212A but the high number of
required plaintext N can dramatically reduce the efficiency of the attack. On
the other hand, this combined attack is able to break a masked implementation
of any order with a simple DSCA targeting first-order leakages, hence requiring
much less plaintexts. As an example, we can note that in the experimentations
of [16, Section 5.3], a combined attack with 90% success rate can be obtained
with N < 2000 plaintexts considering a fault repeatability only slightly above
50% and a standard deviation of noise σ = 5. In [12, Section 5] a second-order
DSCA is successful on a first order boolean masking with 45 000 plaintexts on
a similar setup (considering a 90% success rate and σ ≈ 5).

Note also that this combined attack defeats implementations protected against
faults using a single-fault injection mechanism, i.e. no complex multi-fault setup
is required to bypass the protection [18].

On the fault injection assumptions. In [16], the authors consider a fault
injection mechanism that faults the 16 bytes of K9 at each execution of AES
(whatever the pattern of the fault within each byte). The attacker only needs
N fault injections hence N side-channel leakages measurements to perform Al-
gorithm 1. The complexity of the key retrieval algorithm is 228A with N faults
injected.

Injecting a fault on the 16 bytes of K9 during one execution of AES is not
trivial on most implementations. For example, the bytes of the key state K9 may
be spread over a large area on the chip and the spot size of the laser may be
so large that the device would almost certainly cease to function as a result of
the disruption to surrounding circuitry. Note also that if the 16 bytes of the key
state are not computed in one cycle, a fault injection using a clock glitch cannot
impact all bytes.

The single byte fault model. In the following, we consider a more realistic
scenario where the attacker can inject a random fault within one known byte



of index j (a single byte fault model). The attacker has to perform 16 fault
injection campaigns each time retrieving N side-channel leakages. Then, he can
perform Algorithm 1 on each of the bytes with each of the 16 sets of side-
channel leakages. However the attacker has to perform 16N faults as well as
side-channel measurements. Note that if the injected fault modifies m bytes of
the key (a m-byte fault model), the attacker needs d16/meN faults and side-
channel measurements.

Remark 1. Considering the single byte fault model, if a fault is injected in one
of the bytes Kj

9 , then we have that ej10 = ej9 for 0 ≤ j ≤ 15. This property
can reduce the complexity of Algorithm 1 to 220A to find the complete key. If
the fault is wider than a single byte, simple relations between ej10 and ej9 can

be found as long as the fault only impacts the bytes (Kj
9)0≤j≤11. We can also

obtain a complexity of 216A for each of these 12 bytes. If a fault affects multiple
bytes with one byte of the last column of K9, i.e. (Kj

9)12≤j≤15, the SubWord
transformation on this column makes it impossible to find relationships between
errors. For example, consider that K0

9 and K13
9 are simultaneously faulted. From

the equations of the key schedule for K10, we note that the error on K13
9 goes in

the input of the SubWord and is then XOR-ed to K0
10. Hence, one cannot find

easy relations between the values of errors in round 9 and 10.

In this fault model, the main drawbacks of this combined attack are:

– the need for a high repeatability of fault effects,

– a great number of injected faults,

– a key recovery algorithm of very high complexity.

In the following, we propose new attacks that improve these points.

4 Combined Attacks on the AES Key Schedule

The structure of the AES key schedule can be used in order to decrease the
number of faults. First, we target operations of the key schedule. Then, we
consider a fault injection into an AES constant that is XOR-ed with multiple
bytes in the key schedule. Hence, the recursive structure of the key schedule
assures that a single fault will affect several bytes. As we attack known constants,
the attacker can also deduce the value of his fault injection, or at least a small
subset of possible values. Generally, AES constants are not masked using any
DSCA countermeasure, hence whatever the fault model, the fault repeatability
is not affected. Finally, we consider the case of permanent faults that obviously
help with the repeatability issue.



4.1 Targeting the Recursive Structure of the Key Schedule Round

We recall the key schedule equations to compute the bytes of the round key K9:

K0
9 = K0

8 ⊕ RCon9 ⊕ SubBytes
(
K13

8

)
K1

9 = K1
8 ⊕ SubBytes

(
K14

8

)
K2

9 = K2
8 ⊕ SubBytes

(
K15

8

)
K3

9 = K3
8 ⊕ SubBytes

(
K12

8

)
Kj

9 = Kj
8 ⊕K

j−4
9 for 4 ≤ j ≤ 15 .

Due to the recursive property of the key schedule, a fault injected during the
computation of K0

9 is propagated in K4
9 , K8

9 and K12
9 . Hence, we obtain the

following relations for given errors e09, e
1
9, e

2
9, e

3
9 during the computation of the

first 4 bytes of K9:

e09 = ej9 for j ∈ {4, 8, 12} e19 = ej9 for j ∈ {5, 9, 13}
e29 = ej9 for j ∈ {6, 10, 14} e39 = ej9 for j ∈ {7, 11, 15} .

We can also deduce relations on the errors ej10 on K10. Indeed, if K0
9 is faulted

during its computation we have from the key schedule equations of round 10:

ej10 = ej9 for j ∈ {0, 8} ej10 = 0 for j ∈ {4, 12} .

Similar relations can easily be obtained if a fault is injected during the compu-
tation of K1

9 , K2
9 or K3

9 .
The attacker only needs 4N faults and side-channel measurements to recover

the complete key. The key recovery algorithm can also be improved from 220A
of the original attack (see Remark 1). In order to retrieve the byte K0

10, the
attacker needs a loop on k010 and e09, as the error e010 is known from the error on
round 9. Hence, the complexity to find this byte is 216A. Once e09 is found, the
attacker directly determines the errors for the bytes K4

9 , K8
9 and K12

9 . Thus, a
simple loop on kj10 with j = 4, 8, 12 for each of those bytes is necessary. Then, the
complexity for these 3 bytes is only 28A. The same method applies to the bytes
K1

9 , K2
9 and K3

9 . The complexity for the complete key is (4× (216 + 3× 28))A =
(218 + 3× 210)A.

4.2 Targeting the RCon

Single byte random fault model. First, we assume a fault that has a random
effect on a byte. We recall the equations to compute the first bytes of the columns
of K9:

K0
9 = K0

8 ⊕ RCon9 ⊕ SubWord
(
K13

8

)
K4

9 = K4
8 ⊕K0

9

K8
9 = K8

8 ⊕K4
9 K12

9 = K12
8 ⊕K8

9 .

Note that RCon9 affects 4 bytes of K9, more precisely RCon9 is implicitly XOR-
ed with the bytes K0

9 , K4
9 , K8

9 , K12
9 . If we consider that the attacker can inject a



fault noted ε9 into the round constant of round 9 of the key schedule, then this
fault will affect the 4 bytes of K9 in the exact same way. Figure 2 represents the
impact of such a fault on the end of the key schedule. An attack scenario similar
to the one presented previously in § 4.1 can be applied to recover the bytes
K0

10, K4
10, K8

10 and K12
10 . The attacker only needs N faults and side-channel

measurements. The complexity of the key recovery is only (216 + 3× 28)A to
retrieve 4 bytes. Finally, note that the fault can be injected at any time before
the computation of the round 9 of the key schedule. The fault can also have
a permanent effect on RCon9. In this case, the attacker only needs one fault
injection and N side-channel measurements to perform the attack.
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Fig. 2. Effect of a fault injection on RCon9 on the end of the key schedule. The color
gray represents faulty elements.

Single byte known fault model. An adversary can use the fact that he
attacks a known constant in order to deduce the value of the error he injects. He
is then able to lower the complexity of the key recovery algorithm. Suppose that
the attacker has characterized his fault injection setup but is not able to know
which bit he targets, he can greatly reduce the number of hypothesis on the error
on K9. For example, in a single bit stuck-at 0 or 1 model, the error ε9 can take
only 4 possible values due to the value of RCon9 = 0x1B. In a single bit bit-flip
model, the error can take 8 different values. Finally, if the attacker knows which
bit he targets, he can directly deduce the value of the error. In this last case, the
attacker knows the values of e09 = e49 = e89 = e129 = ε9, hence he knows the values



of the corresponding errors on K10 as shown in § 4.1. The complexity of the key
recovery algorithm is approximately 210A to recover 4 bytes which is the cost
of a classical first-order DSCA on 4 bytes. A permanent fault on RCon9 has the
same consequences on the number of faults and side-channel measurements as
previously noted.

4.3 Targeting the Affine Transformation

In this section, we consider implementations of AES where the SubWord (and
SubBytes) operations are computed as an inverse in IF28 followed by the affine
transformation. Most first-order DSCA countermeasures use this type of imple-
mentation, e.g. [11, 19]. More importantly, most higher-order DSCA countermea-
sures compute the inverse and the affine transformation separately, e.g. [14, 13,
7]. In this case, we can find a similar but more efficient approach than previously.

Let InvIF28
be the inverse in IF28 with the convention InvIF28

(0) = 0. Let f
be the affine transformation of the SubBytes such as: f (x) = ω (x) + δ defined
in the standard basis by Ω.X +∆ as:

Ω =



1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1


and ∆ =

[
0 1 1 0 0 0 1 1

]
.

Practically in the AES, an element X ∈ IF28 is identified to the integer X727+
X626 + · · ·+X0. Hence, ∆ is considered as ∆ = 0x63 in a real implementation.
The SubBytes operation then becomes: SubBytes(X) = Ω.InvIF28

(X)⊕∆. As the
SubWord operation of the key schedule corresponds to the SubBytes on 4 bytes,
the same remark also applies.

We write again the first key schedule equations for K9 detailing the SubBytes:

K0
9 = K0

8 ⊕ RCon9 ⊕Ω.InvIF28

(
K13

8

)
⊕∆

K1
9 = K1

8 ⊕Ω.InvIF28

(
K14

8

)
⊕∆

K2
9 = K2

8 ⊕Ω.InvIF28

(
K15

8

)
⊕∆

K3
9 = K3

8 ⊕Ω.InvIF28

(
K12

8

)
⊕∆ .

Single byte random fault model. Different attack scenarios are possible
depending on the implementation and on the duration of the effect of the fault.

In the first scenario, we consider the effect of the fault transient. An attack
similar to the one presented in § 4.1 can be applied by targeting ∆. The com-
plexities are identical. To retrieve the complete key, the attacker needs 4N faults



and side-channel measurements. The complexity of the key recovery algorithm
is (218 + 3× 210)A.

In a second scenario, we consider that the implementation has a variable
∆SW for the SubWord different from the ∆SB of the SubBytes. In the case of
an hardware implementation, we can similarly consider that the SubBytes and
SubWord logical structures are located at different physical positions on the chip.
Suppose that an attacker can inject a fault in ∆SW that lasts until the end of
AES. Then, this error affects both K9 and K10. We can find relations between
the errors in round 9 and 10 to simplify the key recovery algorithm. First, let

∆̃SW = ∆SW ⊕ eSW where eSW is the error injected in ∆SW . From the round
9 key schedule equations, we have:

K̃j
9 = Kj

9 ⊕ eSW for 0 ≤ j ≤ 15 ,

with K̃j
r the faulty key byte j of round key r. From the fact that we have the

same error eSW in the SubWord of round 10, we have:

K̃0
10 = K̃0

9 ⊕ RCon10 ⊕ SubBytes
(
K̃13

9

)
⊕ eSW

= K0
10 ⊕

(
SubBytes

(
K13

9 ⊕ eSW

)
⊕ SubBytes

(
K13

9

))
= K0

10 ⊕ e010
K̃1

10 = K1
10 ⊕

(
SubBytes

(
K14

9 ⊕ eSW

)
⊕ SubBytes

(
K14

9

))
= K1

10 ⊕ e110
K̃2

10 = K2
10 ⊕

(
SubBytes

(
K15

9 ⊕ eSW

)
⊕ SubBytes

(
K15

9

))
= K2

10 ⊕ e210
K̃3

10 = K3
10 ⊕

(
SubBytes

(
K12

9 ⊕ eSW

)
⊕ SubBytes

(
K12

9

))
= K3

10 ⊕ e310 .

Hence we obtain the following errors for the other bytes ofK10, for j ∈ {0, 1, 2, 3}:

ej+4
10 = ej+12

10 = ej10 ⊕ eSW

ej+8
10 = ej10 .

With only N faults and side-channel measurements, the attacker can retrieve all
16 bytes of K10. Using the previous relations, we can also simplify Algorithm 1.
A loop on the three hypothesis (k010, e

0
9, e

0
10) is necessary as there is no known

relation between e09 and e010, i.e. a complexity of 224A. Once e09 is found, the
attacker knows that e09 = ej9 for 1 ≤ j ≤ 15. However e110, e210 and e310 are still
unknown. The complexity to retrieve the corresponding bytes is 3×216A. Finally,
the attacker knows ej9 and ej10 for 4 ≤ j ≤ 15 from the previous relations. The
overall complexity to retrieve all the bytes is (224 + 3× 216 + 3× 210)A.

In the last scenario, we consider that the SubWord and the SubBytes use the
same variable ∆, or the same logical structure in an hardware implementation.



If the fault in ∆ lasts until the end of AES, it affects K9, K10 and the SubBytes
in the data path of the last round. The same observations as in the last scenario
applies. However, as the data path is also modified we need to adapt Equation
(1), corresponding to Line 4 of Algorithm 1, into :

SubBytes
(
SubBytes−1

(
Cj

i ⊕ k
j
10

)
⊕ ej9

)
⊕ ej9 ⊕ k

j
10 ⊕ e

j
10 .

The error ej9 is the same at the output of SubWord in round 9 of key schedule
and in the last SubBytes of the data path. Hence, we just have to add a XOR
with ej9 after the SubBytes in order to retrieve the key. The number of faults
and the complexity of the key recovery algorithm are identical to the previous
scenario.

Single byte known fault model. As in the RCon case, we know the value of
the constant ∆ we want to fault. If the attacker characterized his fault injection
setup, he should be able to reduce to a small subset (or directly determine)
the value of the error. In this case, the attacker knows ej9 for 0 ≤ j ≤ 15.
Considering the first scenario where the attacker temporarily faults a ∆ in one
of the SubBytes, he needs to obtain 4N faults and side-channel measurements
as well as a key recovery complexity of 212A to retrieve the key. We obtain a
combined attack with complexity identical to a classical DSCA. In the second
and third scenarios, the key recovery complexity becomes (220 + 3× 210)A with
only N faults and side-channel measurements in order to retrieve the key.

Remark 2. The attack of [16] targets a key state or data state possibly masked
with a high-order DSCA countermeasure. Hence, if the fault injection setup has
a stuck-at effect, the repeatability of the fault is divided by 2. However, most
AES implementations do not consider AES constants masked. Thus our attacks
on RCon and the affine transformation are not affected by the decrease in fault
repeatability of a stuck-at model.

We summarize in Table 1 the different attacks proposed in this paper. For
each scenario, we note the fault model considered, the number of necessary faults
and the number of statistical tests A performed in the key recovery algorithm.

5 Countermeasures

An intrinsic property of Roche et al.’s attack and our propositions is that it
requires that an attacker can cipher the same plaintext twice. Note that this is
not possible in certain cryptographic protocols, notably in banking transactions.
Indeed, a counter can be added to the plaintext and make this kind of combined
attack impossible.

As already pointed out in [16, Remark 6], the original combined attack of
Roche et al. does not necessarily target the key K9 but can also target the data
state in the round 9. In that case, the key K10 is correct. Thus one cannot only
check the coherence of the key at the end of an AES.



Table 1. Summary of the complexities of the different combined attacks, where A is
a DSCA statistical test used on N measurements to recover a byte of key. We recall
that the complexity of a classical DSCA is 212A to retrieve 16 bytes.

Attack # faults # A

Key state K9 [16]
− Transient random fault on 16 bytes N 228

Key state K9 § 3.3
− Transient random fault on 1 byte 16N 220

Recursive structure of the key schedule § 4.1
− Transient random fault on 1 byte 4N 218 + 3× 210

RCon § 4.2a

− Transient random fault on 1 byte N 216 + 3× 28

− Transient known fault on 1 byte N 210

− Permanent random fault on 1 byte 1 216 + 3× 28

− Permanent known fault on 1 byte 1 210

SubWord § 4.3
− Transient random fault on 1 byte 4N 218 + 3× 210

− Transient known fault on 1 byte 4N 212

− Permanent random fault on 1 byte N 224 + 3× 216 + 3× 210

− Permanent known fault on 1 byte N 220 + 3× 210

a Attack on 4 bytes.

The aim of this combined attack is to find correlations on the plain cipher-
text. Hence, an efficient countermeasure consists in storing the ciphertext still
masked while either an inverse operation or a duplication of the operation is
performed [16]. Consider C1 ⊕M1 and C2 ⊕M2 the ciphertexts C1 and C2 of
the same message masked with M1 and M2 respectively. The final coherence

verification is then performed as (C1 ⊕ M1) ⊕ M2
?
= (C2 ⊕ M2) ⊕ M1. This

countermeasure thwarts most our attacks.

Note that if a permanent fault is injected in the affine transformation, a
coherence check consisting of two AES encryptions would not detect the error.
A check using an AES encryption and a decryption would detect it as the affine
transformation differs between the two process. However, even if the error is
not detected, this does not offer a valid attack path as the data state would be
corrupted from the first round of the AES. Hence, the attacker is not able to
find relationships between errors at the rounds 9 and 10.

However, a coherence check cannot detect a permanent fault on RCon9 as
presented in § 4.2. The value RCon9 is XOR-ed in the key schedule and it is
symmetrically used in the encryption and decryption process. Hence, performing
two encryptions or an AES and its inverse does not detect a faulty RCon9 while
our combined attack is still feasible. A possible countermeasure would be to
perform a known answer test or to compute an integrity check on the value of
RCon9 in a software implementation.



6 Conclusion

We propose in this paper combined attacks on the AES key schedule that de-
feat classical AES implementations secure against high-order DSCA and fault
attacks. We present attacks on the different parts of the key schedule that use
its structure in order to reduce the number of faults injected as well as the key
recovery complexity. Contrary to the original attack, the performance of our pro-
posed attacks on AES constants is not impacted whether a stuck-at or a bit-flip
model is considered when attacking a masked implementation. Moreover, the key
recovery algorithm of [16] can be greatly improved from the original complexity
of 228 DSCA statistical tests on N measurements to only 212 which is equiv-
alent to a classical DSCA key retrieval. The coherence check proposed in [16]
defeat most of our propositions. However, our attack path on RCon9 requires a
particular integrity check.
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